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Abstract: The impact of different amounts of glycerin, which was used in the system of sodium
alginate/poly(vinyl alcohol) (SA/PVA) hydrogel materials on the properties, such as gel fraction,
swelling ability, degradation in simulated body fluids, morphological analysis, and elongation tests
were presented. The study shows a significant decrease in the gel fraction from 80.5 ± 2.1% to
45.0 ± 1.2% with the increase of glycerin content. The T5 values of the tested hydrogels were varied
and range from 88.7 ◦C to 161.5 ◦C. The presence of glycerin in the matrices significantly decreased the
thermal resistance, which was especially visible by T10 changes (273.9 to 163.5 ◦C). The degradation
tests indicate that most of the tested materials do not degrade throughout the incubation period
and maintain a constant ion level after 7-day incubation. The swelling abilities in distilled water
and phosphate buffer solution are approximately 200–300%. However, we noticed that these values
decrease with the increase in glycerin content. All tested matrices are characterized by the maximum
elongation rate at break in a range of 37.6–69.5%. The FT-IR analysis exhibits glycerin changes in
hydrogel structures, which is associated with the cross-linking reaction. Additionally, cytotoxicity
results indicate good adhesion properties and no toxicity towards normal human dermal fibroblasts.

Keywords: wound dressings; sodium alginate/poly(vinyl alcohol) matrices; hydrogels; glycerin

1. Introduction

Every year, innovative technologies and possibilities in the area of medical and phar-
maceutical research make it possible to develop new approaches in the treatment of
slow-healing wounds and other dermatological disorders. Generally, infections in the
healing wound are very common, especially in the case of patients with diabetes, and
they are characterized by a variety of treatment methods. Very often, such wounds can
become chronic, which can lead to a need for long-term treatment [1–4]. In this situation,
traditional methods of rehabilitation may be insufficient, and that is why a modern product
such as an interactive wound dressing should be used [4,5]. Different types of dressing
materials are commercially available, such as: Algisite M, Tegaderm™ hydrocolloid dress-
ing, Evicel®, Coseal®, and Elasto-Gel™ [3,6]. Nowadays, there is a high availability of
wound treatment options that contain additional natural components, such as: manuka
honey [7–9], Aloe vera [10–13], Echinacea purpurea [14], Calendula officinalis [11], Centella asiat-
ica [15], Azadirachta indica [16,17], Tecomella undulate [18,19], Hypericum perforatum [20,21],
Garcinia mangostana [22,23], Tectona grandis [24] as well as glycerin [25–27]. The active
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substances (saponins, tannins, flavonoids, alkaloids and quinones) that are present in the
herbal extracts or hydrolats can ensure further therapeutic effects, such as antimicrobial,
antioxidant, antibacterial and anti-inflammatory [28–30].

In the case of Elasto-Gel™ dressings, the most important component is glycerin
combined with a hydrophilic polymer. This type of product can be used in the case of some
15–20-year-old chronic wounds, but it is not suitable for third-degree burns, which results
from its antimicrobial activities. It has been proven that the efficiency of 85% glycerin
solutions is characterized by slow bactericidal and very high virucidal activity [6]. Glycerin
(the simplest trihydric alcohol, also called glycerol) is a well-known natural humectant that
can bind and hold moisture at the place of application. Additionally, it can play a role of
denaturant, a fragrance ingredient, a hair conditioning agent, an oral health-care drug, a
skin protectant and conditioning agent as well as a viscosity-decreasing substance [31,32].
It can be produced from natural sources, such as animals and plants, and synthetically
from nontriglyceride. The latest research of the Cosmetic Ingredient Review Expert Panel
confirmed that glycerin is a safe component of products [31,33]. Due to this categorization
glycerin is commonly used in various dermatological and cosmetic products. It turns out
that it was used in 15,654 cosmetic products, including 862 materials for application around
the eye, 160 lipsticks, 369 hair dyes and colours, 1259 bath soaps and detergents, 7756
skincare products, and 244 suntan preparations [31,34].

Interestingly, glycerin present in the three-dimensional network of a polymeric matrix
can absorb excess exudate and prevent its pooling in the wound or on the surround-
ing skin, ensuring a proper wound healing environment [6]. Hence, many researchers
incorporated glycerin into hydrogels, which improved their toughness, transparency, con-
ductivity and thermoplasticity [35–39]. Various possible combinations of glycerin with
the crosslinked polymers, such as: methoxyl pectin/gelatin/carboxymethyl cellulose [40],
chitosan/hydroxypropyl methylcellulose [41], polyacrylamide/gelatin/ε-polylysine [42],
and PVA/sodium alginate [43] have been observed.

Therefore, we focused on the determination of the effect of different glycerin con-
centrations on the physicochemical, structural, morphological, thermal, mechanical and
biological properties of sodium alginate/poly(vinyl alcohol) hydrogel materials.

2. Results and Discussion

The transparency of a hydrogel dressing gives the opportunity to monitor the progress
of the wound healing process without the removal of the dressing. The study shows that
with the addition of glycerin into the SA/PVA system, the hydrogel became transparent.
Moreover, it could be seen that the sample containing 1.7% (v/v) of glycerin (S2G0.5) still
retained high transparency, while the transparency of S2G0 without glycerin drastically
decreased. The same observation was previously reported by Hu et al., who prepared a
poly(vinyl alcohol)/sodium alginate/glycerol organohydrogel electrolyte [35]. Addition-
ally, due to the addition of glycerin to the system, the flexibility of the samples changed.
Without glycerin, the S2G0 hydrogel became more compact and stiffer.

2.1. Gel Fraction

Crosslinking is one of the important processes determining the properties of obtained
hydrogel materials. The gel fraction value gives information about the effectiveness of the
crosslinking process, forming the insoluble fraction. This parameter affects the integrity
of the polymeric network structure and thus prescribes the mechanical and swelling
properties. The gel fractions were calculated, and the results are presented in Table 1.

Table 1. Effect of hydrogel composition on gel fraction (GF%) (n = 3).

Sample Symbol S1G1 S2G1 S3G1 S4G1 S2G0.5 S2G0

GF [%] 45.0 ± 1.2 52.7 ± 1.9 55.9 ± 0.8 59.6 ± 0.8 63.4 ± 1.8 80.5 ± 2.1
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The study showed that increasing PVA concentration noticeably increased the gel
fraction, and at the same time it can be seen that an increase in SA concentration slightly
strengthens the gelation process of the materials. Increasing values of gel fraction imply
that this parameter is mostly dependent on the applied concentration of both ingredients
and that the increase of SA and PVA content leads to better crosslinking. In addition, the
gel fraction is definitely higher for glycerin-free hydrogel (S2G0), which reached the value
of about 80% as compared to S2G1 with the same SA and PVA concentration, indicating
a clear effect on the gelation process. This effect can also be observed when glycerin is
used at a concentration of 1.7% (v/v). This may suggest that glycerin addition reduces
the efficiency of the hydrogel cross-linking process and thus affects the integrity of the
polymeric network. Similar observations were reported by Gwon et al., who described
PVA/glycerin hydrogel preparation with the use of γ-irradiation [44].

2.2. Determination of Swelling Behaviour

The ability of a hydrogel to preserve fluids is an important aspect when evaluating its
value for dressing materials. Fluid absorption capacity depends on critical factors such as
hydrogel composition, and the external stimulus which includes pH, temperature, and the
type of fluids, as shown in Figure 1.
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Figure 1. Effect of hydrogel composition on swelling degree after immersing in (a) distilled water at ambient temperature;
(b) distilled water at 37 ◦C; (c) PBS at ambient temperature; (d) PBS at 37 ◦C (n = 3).

The behavior of the materials in distilled water or phosphate-buffered saline (PBS)
indicates a well-chosen composition of the base matrix, as hydrogel swelling values were
obtained in accordance with expectations and previous studies by the authors on the
preparation of SA/PVA-based hydrogels [12,14,45]. None of the tested hydrogels show
swelling capacity above 300%; moreover, in each case studied, after an initially rapid water
uptake, the hydrogels equilibrated the fluid absorption, reaching an equilibrium state by
the end of the experiment. Nevertheless, some dependence on hydrogel composition,
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immersion temperature or fluid type was observed. Considering the materials differing
in SA and PVA concentrations, no significant effect of the concentration of the solutions
used was observed during the preparation of the mixtures—in each variant the behavior
of the materials was similar. However, it was observed that the presence of glycerin
significantly altered the tendency of the materials to swell, leading to rapid fluid uptake
by the materials without polyol addition of up to about 100% more than for the materials
containing glycerin—a trend of decreasing swelling with the addition of glycerin is clearly
noticeable. The dry hydrogel, without glycerin, is hard and inflexible and takes up fluid
more readily, in contrast to the glycerin-containing materials, which are soft and flexible.
This is likely due to the fact that glycerin increases the moisture content of the materials
by binding water, which provides flexibility and also limits fluid absorption in excess. In
addition, the lower swelling capacity values may also be observed due to the fact that
the addition of acidic glycerin with a pH value of 5 [46] reduces the affinity of alginate
carboxylate anions for water, which in turn reduces the propensity for fluid uptake [14].
The glycerin trend was observed regardless of incubation temperature or fluid used. The
above observations allow us to draw a conclusion that in the case of designing dressing
materials that are to absorb a large exudate from the wound, hydrogels with a lower content
of glycerin could work efficiently. Nevertheless, if the wound does not leak too intensively,
the use of higher concentrations of glycerin would result in a prolonged therapeutic effect
by ensuring the optimal level of moisturization of the wound surrounding. It is also worth
noting that the type of fluid and immersion temperature slightly affect the swelling value
of tested hydrogels. Hydrogels swell less in PBS fluid than in water, while lower values are
obtained during immersion at an elevated temperature for each type of material, regardless
of the composition.

2.3. Degradation Tests

For hydrogels with potential biomedical applications, their degradation when in
contact with body fluids is a key functional parameter. During the release of transdermal
therapeutic substances, it is important to ensure a controlled release of active substances,
with a gradual degradation rate.

A 7-day incubation of the hydrogels in distilled water demonstrated the stability over
time of all materials analyzed (Figure 2), regardless of matrix composition and glycerin
content, which also confirms the authors’ previous observations regarding the tendency of
SA/PVA hydrogels to degrade [12,14,45]. After 24 h of the experiment, the conductivity
of distilled water increased significantly (from 4.2 µS/cm), reaching the lowest value for
sample S1G1 (~80 µS/cm) and a value 2.5 times higher for materials S2G1 and S3G1
(~160–180 µS/cm). These changes were due to the fact that the ion-free medium tends
to reach an equilibrium state upon contact with the material, which is maintained from
the time it reaches 24 h of immersion until the end of the experiment, meaning that the
materials do not rapidly change or decompose over time. An interesting relationship
was observed for materials incubated in PBS fluid containing numerous ions, simulating
the internal environment of an organism. All materials except hydrogel containing 10%
PVA, 1.5% SA, and 3.4% (v/v) glycerin (S3G1) did not degrade throughout the incubation
period and maintained a constant ion level, close to the initial value (13.53 mS/cm). On the
contrary, the presence of the mentioned material after 24 h led to a decrease in PBS fluid
conductivity by 1.5 mS/cm, maintaining a similar value for 7 days of incubation, which
may be due to the absorption of ions from the fluid to the hydrogel surface. However,
the stability of this parameter over time does not preclude the intended applications. The
pH analysis of water and PBS fluid over time supports to draw a general conclusion that
all analyzed materials enriched with glycerin lead to a gradual decrease in pH over time,
while the absence of glycerol does not significantly affect the pH during the analyzed
period. Acidic glycerin is gradually released from the hydrogel into the fluid, lowering
the pH from an initial 6.78 for water and 7.37 for PBS fluid by a maximum of about 2 or
1 unit, respectively. The body-like environmental pH, and thus the ions present in the
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phosphate-buffered saline, have a buffering effect, maintaining the pH at a nearly constant
level. It is well known that at a slightly alkaline pH, –COO− groups derived from SA tend
to ionize, increasing the amount of fluid absorbed [14]. Gradual lowering of the pH of the
environment due to the presence of glycerol inhibits this process so that the materials do
not absorb fluid in excess and the swelling values achieved are at the desired level, which
was also demonstrated during the analysis of the effect of the presence of glycerol on the
swelling capacity of materials in the previous section.
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2.4. FT-IR Analysis

Figure 3 compiles the FT-IR spectra of the obtained hydrogels, with Figure 3a showing
a summary of the spectra of materials obtained using varying contents of the base matrix
components (SA and PVA) with a constant glycerin content (3.4% (v/v), while Figure 3b
collates the spectra of materials with a constant proportion of alginate and poly(vinyl
alcohol), but with varying glycerin content (or none, as a control) in the hydrogel matrix.

Each spectrum in the range 3400–3200 cm−1 has the broadest band, which originates
from the stretching vibrations of –OH– bonds occurring in all base matrix components—
poly(vinyl alcohol), sodium alginate, and glycerin structures [12,14,47,48]. Interestingly, a
lower peak intensity was observed for the lower 1.5% alginate content. The next visible peak
toward short wavelengths, located at 2930–2820 cm−1, is characteristic of the stretching
vibrations of C–H from PVA or glycerin. However, the PVA-derived peak is localized
at about 2880 cm−1 and is more distinct in materials with lower alginate concentrations,
while the C–H group vibrations from glycerin are found at about 2680 cm−1 [12,48,49].
The subsequently observed peaks are located at lower wavenumbers. The deformation
vibrations in the range of 1490–1450 cm−1 are characteristic for C–H bonds derived from
the –CH2– group occurring in the aliphatic PVA chain, and vibrations of O–H bonds at
around 1200–1450 cm−1 are characterized for the hydroxyl groups of PVA and SA, which
interact with each other through hydrogen bonds [45,47,50]. The tensile vibrations from the
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C–O bond are visible and give peaks in the range 1780–1650 cm−1 attributed to carboxyl
groups attached to the rings of alginate acids, which can form ester bonds during chemical
crosslinking reactions of the hydrogel using PEGDA. Moreover, in the case of the hydrogels
obtained by chemical crosslinking using PEGDA, stretching vibrations of the –CH3 groups
at 2920 cm−1, vibrations of C–H and O–H bonds at 1360–1340 cm−1, and strong peaks seen
in the range 1160–1040 cm−1 for the C–O–C are also observed [12,14,47]. The peaks of SA
included strong absorption bands at ~1600 cm−1 and 1415 cm−1, which is related to the
asymmetric and symmetrical stretching vibrations of carboxylate anions (–COO−), and
the intensity increases with the content of SA in the matrix due to the higher number of
free carboxylate anions. Additionally, the bands which appear at 1250 cm−1 and 1035 cm−1

are attributed to C–O–C in glycosidic bonds of SA. Moreover, bands located at 990 cm−1

and 820 cm−1 are also observed and they are assigned to the COH bending and –CH2
twisting [12,14,45,50,51].
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Analysis of Figure 3b with a comparison of spectra depending on the content of
glycerin supports a conclusion that the presence of this simple polyol significantly influ-
ences the degree of the components’ reactivity and the polymerization process. Glycerin
peaks formed at 3600–3000 cm−1, ~2990 cm−1, 1635 cm−1, 1390 cm−1, and 1030 cm−1

wavelengths, and these peaks belong to –O–H, –C–H, –C–C, C–H, and C–O bonds, respec-
tively [48,49,52].

Generally, the presence of glycerin does not significantly influence the location of
peaks, which could suggest a lack of significant changes in the hydrogel structure. However,
it turns out that 3.4% (v/v) content of glycerin significantly changes the physicochemical
properties of the materials. At 1.7% (v/v) content, no significant changes were observed
and at the same time, the transparency of the product was preserved, which is not the
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case for the absence of glycerin. The FT-IR spectrum of hydrogel with maximal polyol
content shows the presence of a clear peak at ~1630 cm−1, originating from the C–C
groups present in glycerin, which is likely to significantly influence the degree of substance
reactivity during the crosslinking process [48,52]. This was confirmed in the gel fraction
study and during swelling studies of the materials. A low value of %GF confirms a
lower degree of conversion in samples containing glycerin. The change in structure
and alterations in the crosslinking process are also confirmed by the peak intensity at
~1240 cm−1, corresponding to intermolecular hydrogen interactions between PVA-alginate
chains [14,45,50]. A decreasing intensity of the peak with increasing addition of glycerin
seems to confirm the above supposition. On the other hand, it is worth mentioning that
the highest content of glycerin positively influences the degree of material swelling—the
materials enriched with polyol swell less abruptly, and are more elastic and flexible, which
can also be caused by changes in hydrogel structure during incomplete crosslinking.

2.5. SEM Analysis

The microstructural properties of the hydrogel wound dressing affect the swelling
ability and gaseous exchange, and thus the wound healing process significantly. Accord-
ingly, Figure 4 presents SEM images of hydrogel containing a constant amount of glycerin,
such as 3.4% (v/v), and Figure 5 shows the results for samples with varying glycerin content:
0; 1.7 and 3.4% (v/v).
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Despite the use of the same amount of glycerin, which can be seen in Figure 5,
the surface of the obtained hydrogels is quite varied. It was caused by the different
compositions, especially the concentration of PVA and sodium alginate solutions. When
the highest contents of PVA (10%, w/v) and the lowest of sodium alginate (1.5%, w/v) were
used, the surface is the densest and is completely homogeneous without any roughness.
However, the structure of sample S3G1 is non-porous. It was observed that the use of 5%
(w/v) PVA solution (S1G1) changes the surface of analyzed samples to be more irregular
when compared to S3G1. However, the most suitable results were obtained for hydrogel
that consists of 2% (w/v) sodium alginate solution (S4G1), because it is the most porous,
which is a positive aspect. Very similar results can be found in the literature [7,12]. Hence,
the 5% (w/v) PVA solution and 2% sodium alginate were selected for further research with
different amounts of glycerin. It was observed that the increase of glycerin content in
the system (S2G1) caused more irregularities and some ripples and bumps appeared on
the surface. However, we must consider the gel fraction, where we noticed a significant
decrease in %GF from about 80% to 50% when comparing the sample with the largest
amount of glycerin and without additives. Taking this into account, the hydrogel sample
S2G0.5 seems the most interesting, because the surface is porous, and the gel fraction is
about 63.4 ± 1.8%. Furthermore, SEM analysis of the cross-section of the basic matrix
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proves that the structure inside the hydrogel is more porous, irregular, and varied; whereas
the average pore size is estimated below 5 µm. Generally, the most important aspect is the
preparation method, especially the type of crosslinking agent. When chemical crosslinking
was used, the hydrogels were characterized by a denser structure than in the case of the
ionic methods. Then, the samples exhibited significant porosity, which was confirmed in
our previous research and in other literature data [35,45,53].

2.6. Thermal Analysis

The thermogravimetric analysis (TGA) curves showing the mass loss and rate of mass
loss profiles of all samples are presented in Figure 6, while Table 2 compares the character-
istic thermal parameters determined from the TG curves for each step in the decomposition
sequence of tested hydrogels. In the case of biomedical products, thermal analysis is
necessary because it makes it possible to select the appropriate sterilization method.
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Table 2. Thermal degradation profiles of hydrogels.

Sample Symbol T5 [◦C] T10 [◦C] T50 [◦C] Tf [◦C] Residual Mass [%]

S1G1 88.7 153.7 153.7 412.8 4.4
S2G1 106.0 163.5 163.5 397.2 7.8
S3G1 111.3 172.5 172.5 415.7 4.4
S4G1 117.6 183.7 183.7 412.9 6.1

S2G0.5 109.1 171.1 171.1 408.5 6.6
S2G0 161.5 273.9 273.9 411.2 6.0

Temperatures at which 5%, 10%, and 50% weight loss was recorded by TG at heating rate 10 ◦C·min−1 in N2
atmosphere, respectively.

From the TG and DTG curves, it is observed that the thermal decomposition process
took place through 4 consecutive steps. The initial stage of decomposition at around
70–100 ◦C starts with dehydration of residual water molecules trapped in the hydrogel
structure, which is in line with the report by Avella et al. [54]. The second stage observed
around 200 ◦C corresponds to simultaneously occurring effects of the glycosidic bonds
cleavage and loss of the adjacent hydroxyl group as water molecules [55]. The TG and
DTG curves revealed a high weight loss by a gradual decomposition at the third-step
observed at about 300 ◦C (with small and broad DTG curves) and consecutively the weight
loss with a very large and sharp DTG for the final stage (~400 ◦C), during which the
decomposition of the PEGDA network occurs [56]. Interestingly, in the case of the S2G1
sample, no decomposition occurred at a temperature of approximately 300 ◦C.

The T5 values of the tested hydrogel networks ranged from 88.7–161.5 ◦C and showed
a correlation to the concentration of SA and PVA solution as well as to glycerin content.
As can be seen with the increasing concentration of the applied PVA and SA solutions,
the temperature at which 5% weight loss of each sample occurred increased from 88.7 ◦C
to 117.6 ◦C. Moreover, the presence of glycerin in the polymeric matrices significantly
decreased the thermal resistance, which is especially clear for samples S2G1 and S2G0,
where T10 is 163.5 ◦C and 273.9 ◦C, respectively.

The performed DSC analysis made it possible to conclude that all prepared com-
positions were characterized by the correct realization of the crosslinking process. No
distinct exothermic effects were found for any of the compositions in the temperature range
below the degradation temperature described by TGA. The DSC curves representing the
heating of the tested materials in the range from −30 to 300 ◦C are summarized in the
Supplementary Information—Figure S1.

2.7. Static Tensile Test

The fundamental limitation of the use of hydrogels is their poor mechanical properties.
Importantly, ideal hydrogel materials for wound dressing need to satisfy the basic require-
ments of mechanical stability, which plays a crucial role in creating an optimal environment
providing protection from infection.

Stretching tests clearly showed the impact of the hydrogels’ compositions on their
mechanical properties. All of the tested membranes were characterized by a medium
maximum deformation rate of around 37.6–69.5% at break. Importantly, with a constant
SA-to-PVA volume ratio, elongation at break increases monotonically with an increasing
concentration of both components. As shown in Figure 7, higher elongation at break
values were observed in the S4G1 and S3G1 systems, which was closely related to a higher
content of PVA leading to an increase in the strength of the polymeric network. It is
noteworthy that when the 10% of PVA solution was introduced into the hydrogel system,
the elasticity was approximately 24% higher than for samples with 5% of PVA. Moreover,
these results are consistent with the measurements of the gel fraction, where the elasticity
of the samples increased with an increasing share of the insoluble fraction of hydrogels.
This can be explained as being because an effective crosslinking process, expressed by the
GF value, leads to the formation of a mechanically stable polymer network with a higher
deformation at break value. Furthermore, the stretching test revealed that samples S3G1
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and S4G1 containing a greater concentration of PVA showed higher tensile strength, where
the highest stress at a break value of around 8.3 N was noted for a matrix with 1.5% of
sodium alginate and 10% of poly(vinyl alcohol). Thus, these results suggest that a lower
crosslink density of obtained hydrogel systems weakened the tensile strength properties.
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2.8. Biological Studies

Cytotoxicity is a very important indicator for biological evaluation that is used for
biomaterials including hydrogel dressing materials. For this purpose, the MTS assay is
used, which is an effective method for assessing cell viability based on the conversion of
the MTS tetrazolium compound by the metabolic activity of the viable cells.

Cytotoxicity analysis performed on an in vitro model indicates that the tested samples
did not show a toxicity effect towards normal human dermal fibroblasts. Some small
differences were observed in the proliferating fraction of cells for sample S2G0 without
glycerin and with 1.7% and 3.4% of glycerin. Namely, the addition of glycerin had a
negative impact on the proliferation. However, this dependence was barely noticeable.
In general, none of the tested samples inhibited the proliferation of the tested cell line
significantly, as evidenced by the plot (Figure 8) in which the surviving fraction exceeds
75%. Additionally, it is worth adding that we compared the cells seeded on the culture dish
(control) to cells seeded on tested samples. Culture dishes are purposed for cell culturing,
and it is clear that the conditions would be better than on tested materials. The positive
effects of the PVA/chitosan with glycerin on the growth of L929 cells are also reported by
Yang et al. [57]. They found that the morphologies of cells treated with prepared hydrogels
were unchanged as compared with the negative samples. Moreover, they demonstrated
increased cell proliferation after 48 h incubation.
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The used CellTracker™ dye passes through cell membranes and is then converted by
esterases present in the cytoplasm of living cells into a fluorescent green cell-impermeant
product. This method provides information about cell viability, cell shape, and mem-
brane integrity.

The images obtained from the fluorescence microscope proved that tested samples
possessed good adhesion properties, displayed an elongated spindle-shaped morphology,
and did not exhibit toxic features. After 72 h of the incubation of NHDF cells on the
hydrogel surface, staining with a green fluorescent dye was performed. As shown in
Figure 9, no morphological alterations were observed for the cells exposed to tested
hydrogels. The cells did not change their shape to round features that might indicate the
early process of apoptosis. Moreover, observed cells showed the presence of multiple
long cellular protrusions whose length exceeded the size of the cell. The cytoskeleton of
observed cells was coherent.
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3. Materials and Methods
3.1. Materials

All chemicals and other substrates used in this study are listed in Table 3 with the
name of the producing company, purity degree, and molecular weight.

Table 3. Chemicals and other substances used in the experiments.

Substrate Producer Purity Degree

Sodium alginate Sigma-Aldrich Inc. Reagent grade
Poly(vinyl alcohol) (Mw 72,000 g/mol) Avantor Performance Materials Poland S.A. Reagent grade

Diacrylate poly(ethylene glycol) Mn. 700 (PEGDA) Sigma-Aldrich Inc. Reagent grade
Ammonium persulphate Avantor Performance Materials Poland S.A. Reagent grade

Glycerin Avantor Performance Materials Poland S.A. Reagent grade
Phosphate buffered saline pH 7.4 ± 0.2 OXOID™ n.d.

3.2. Fabrication of Hydrogel Materials

The fabrication method of proposed hydrogel materials is based on conventional
chemical cross-linking using a 1% solution of ammonium persulfate as an initiator and
poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a cross-linking agent. In
order to synthesize the polymer matrices, it is necessary to prepare aqueous solutions
of 10 and 5% (w/v) of poly(vinyl alcohol) as well as 1.5 and 2% (w/v) of sodium alginate.
Afterwards, proper amounts of these solutions and a constant amount of poly(ethylene
glycol) diacrylate (7.5% v/v) were mixed. To investigate the effect of the glycerin addition
on the chemical structure and properties of SA/PVA films, a series of hydrogels with 0, 1.7,
and 3.4% (v/v) of glycerin content were prepared. A detailed description of the hydrogel
compositions is shown in Table 4. After that, the prepared mixtures were heated to 70 ◦C
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and 4.4% (v/v) of ammonium persulfate was added. Next, all specimens were poured into
Petri dishes and placed on a heating plate with a temperature of 80 ◦C for 1.5 h. In this way,
a series of polymer films all were prepared. Finally, the materials were conditioned for 24 h
in ambient conditions [58].

Table 4. Composition of SA/PVA hydrogels.

Sample Symbol PVA Concentration [%] SA Concentration [%] Glycerin Content [%]

S1G1 5 1.5 3.4
S2G1 5 2 3.4
S3G1 10 1.5 3.4
S4G1 10 2 3.4

S2G0.5 5 2 1.7
S2G0 5 2 0.0

3.3. Gel Fraction

The gel fraction of all hydrogels was measured using samples with dimensions of
10 mm × 10 mm. The samples were initially dried at 40 ◦C for 24 h and weighed (W0). The
samples were allowed to swell in 30 mL of distilled water for 48 h at ambient temperature
until equilibrium swelling was achieved to remove the leachable or soluble parts from the
hydrogels. Once equilibrium swelling was attained, samples were again dried at 40 ◦C for
24 h and weighed (We). The gel fraction (%GF) was calculated using Equation (1):

%GF =
We

W0
× 100%, (1)

3.4. Determination of Swelling Behaviour

The swelling ability is defined as the fractional increase in the weight of the hydrogel
materials due to water absorption. Swelling experiments were performed in a phosphate
buffer solution (PBS, pH 7.4) and distilled water at ambient temperature and at 37 ◦C. The
crosslinked matrices were cut into 10 mm × 10 mm pieces and subsequently dried and
weighed (Wd). Next, each sample was immersed in PBS or distilled water. At specific time
intervals, the swollen hydrogels (Ws) were taken out and immediately reweighed after
carefully wiping off excess liquid with filter paper. The percentage swelling of the samples
was calculated using Equation (2):

%SR =
Ws − Wd

Wd
× 100%, (2)

3.5. Degradation Tests

The degradation of SA/PVA/glycerin hydrogels was examined in vitro in PBS (ini-
tial pH—7.37, conductivity—13.53 mS/cm) as well as in distilled water (initial pH—6.78,
conductivity—4.2 µS/cm). In order to prepare materials for degradation testing, the sam-
ples were cut into half-gram pieces (in triplicate). Each hydrogel specimen was immersed
in 50 mL of immersion solution and then incubated at 37 ◦C. At specific time intervals, the
pH and conductivity values were monitored for each fluid three times during the week.
The 1-week incubation time assumes that the resulting dressings would be in contact with
the patient’s body for a maximum of 7 days.

3.6. FT-IR Analysis

To investigate the chemical structure of the obtained hydrogel materials, attenuated
total reflection (ATR)-Fourier transform infrared (FT-IR) spectroscopy was conducted. The
measurements were performed with a Nicolet iS5 Thermo Scientific spectrophotometer
equipped with an ATR attachment equipped with a diamond crystal. The absorbance
spectra were acquired over a range of 400–4000 cm−1 at ambient temperature.
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3.7. SEM Analysis

The microstructure and surface morphology of the obtained polymer films were eval-
uated by a Tescan Mira 3 scanning electron microscopy instrument equipped with an FEG
Schottky electron emission source at an acceleration voltage of 3.0 kV. The hydrogel speci-
mens were sputter coated with a thin layer of gold for 30 s to improve surface conductivity.

3.8. Thermal Analysis

Thermogravimetric analysis was conducted using a Netzsch TG 209 F1 Libra ap-
paratus. The measuring temperature ranged from 30 ◦C to 900 ◦C at a heating rate of
10 ◦C·min−1 under a nitrogen atmosphere. The measurements were performed on samples
with a mass of 10 ± 0.1 mg placed in Al2O3 crucibles. Moreover, differential scanning
calorimetry (DSC) was applied to evaluate the thermal properties of the hydrogel mate-
rials. The measurement was performed using a Netzsch DSC 204 F1 Phoenix apparatus.
Hydrogel samples with a mass of 10 ± 0.1 mg, placed in aluminum crucibles sealed with
lids, were heated from −30 ◦C to 300 ◦C, at a rate of 10 ◦C·min−1 in a nitrogen atmosphere.

3.9. Static Tensile Test

Static stretching tests were performed on the hydrogels using an MTS Bionix machine
with a constant tensile loading rate of 0.2 mm/s. All specimens were prepared into a
specific paddle shape (75 mm long, 4 mm at the middle, and 25 mm of measuring segment)
using a blanking die. A film test was performed in a dry state. All tests were performed in
accordance with the EN ISO 527:2 standard: Plastics—determination of tensile properties
and results were recorded until the deformation limits were exceeded—i.e., to loss of
sample integrity.

3.10. Cell Culture and Cytotoxicity Studies

Normal human dermal fibroblasts (NHDF) were bought from PromoCell. The NHDF
cell line was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with
15% non-inactivated fetal bovine serum (FBS) and contained a 1% v/v mixture of antibiotics:
penicillin/streptomycin (Gibco). The cells were cultured under standard conditions: 37 ◦C
in a humidified atmosphere with 5% CO2. Before the cytotoxicity experiments, the tested
hydrogels were prepared as discs of approximately 2 cm diameter and were placed in
PBS to remove excess solvent used in the synthesis. Then, the discs were transferred into
a 12-well cell culture plate (Nunc) and dried for 24 h at room temperature. Finally, the
hydrogel discs were sterilized with 70% ethanol and irradiated with a UV lamp. After
preparation of the hydrogel materials, the fibroblast cells were seeded onto the discs at
concentrations of 50,000 cells/well in 2 mL culture medium and incubated at 37 ◦C for
72 h. After this time, the metabolic activity of viable cells was determined by an MTS test.
For this purpose, the culture medium was removed and replaced with 1 mL of DMEM
without phenol red and 200 µL of CellTiter 96AQueousOne Solutions—MTS (Promega).
After 1 h of incubation at 37 ◦C, the absorbance of the formed formazan in the samples
was measured at 490 nm using a Synergy4 (BioTek) multi-plate reader. Additionally, a
“blank” probe (MTS with DMEM) was detected. Each material was triplicate tested in a
single experiment, while each experiment was repeated at least three times.

3.11. Cell Adhesion Assay

Before the bioimaging experiments, the tested materials were prepared as described
above. Then, the fibroblast cells were seeded onto discs placed in a 35 mm imaging dish
with a polymer coverslip at a concentration of 50,000 cells/well in 2 mL culture medium
and incubated at 37 ◦C for 72 h. After this time, the culture medium was replaced with a
5 µM dye solution (CellTracker Green CMFDA) and incubated at 37 ◦C for 1 h. Afterwards,
the hydrogel discs were washed three times with PBS. Visualization of stained cells on
the hydrogel discs was carried out using a Zeiss Axio Observer.Z1 inverted fluorescence
microscope equipped with an AxioCamMRm camera.
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4. Conclusions

Generally, in the case of dermatological applications, such as transdermal systems,
wound dressing, emulsions, or other cosmetics, the presence of glycerin is crucial because
it increases the absorption of active substances through the skin and moisturizes it. Taking
these facts into consideration, glycerin was introduced into the hydrogel matrix to produce
a better carrier of active substances in the context of future applications as modern dressings.
Based on the obtained results, we proved that the presence of glycerin in the structure of
hydrogels directly influenced their properties. A higher content of glycerin significantly
decreased in the gel fraction from 80.5 ± 2.1% to 45.0 ± 1.2%, which influenced the degree of
material swelling—the materials enriched with polyol swelled less abruptly. Furthermore,
they were more elastic and flexible, which could also be caused by changes in hydrogel
structure during incomplete crosslinking due to the presence of glycerin in the matrix. The
swelling ratios in tested fluids were very similar and reached about 200–300%. However,
a trend of a decrease in swelling capacity after the addition of glycerin was noticeable.
Degradation tests indicated that most of the tested materials were not degraded throughout
the incubation period and maintained a constant ion level after 7-day incubation. The pH
analysis of water and PBS fluid over time made it possible to draw a general conclusion
that all analyzed materials enriched in glycerin led to a gradual pH decrease over time,
while the absence of this component did not significantly affect the pH throughout the
analyzed period. Generally, the presence of glycerin did not considerably influence the
location of the peaks in the FT-IR spectra, however, the changes in intensity or presence
of some of such peaks confirmed notable changes in the structure and alterations in the
crosslinking process. Interestingly, the presence of glycerin in the polymeric matrices
significantly decreased thermal resistance, which was especially visible in the case of T10
(from 273.9 ◦C to 163.5 ◦C). Moreover, all the tested hydrogel materials were characterized
by a medium maximum deformation rate of around 37.6–69.5% at break. The proposed
hydrogel materials containing sodium alginate (2% of solution), poly(vinyl alcohol) (5%
of solution), and different amounts (0–3.4%, v/v) of glycerin showed no toxicity towards
normal human dermal fibroblasts (NHDF) and did not induce a substantial decrease in
their viability. This is the most important result because this composition of hydrogel
matrix and type of preparation method can be used for further research, which involves
multi-compartment dressing materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222112022/s1.
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