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Simple Summary: The pharmacological treatment of tumors of the central nervous system poses
major challenges due to the presence of physical obstacles, i.e., the blood-brain barrier, impeding the
delivery of anticancer drugs to the tumor site. Hence, the development of innovative therapeutic
strategies to overcome these obstacles is of pivotal importance to reach significant clinical advances
in brain tumor treatment. In this review, we report the latest studies on carbon dots as an innovative
tool for brain tumor drug delivery.

Abstract: Brain tumors are particularly aggressive and represent a significant cause of morbidity and
mortality in adults and children, affecting the global population and being responsible for 2.6% of
all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain
barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of
the most significant challenges to current brain cancer therapy. In the last decades, carbon dots
have increasingly played the role of drug delivery systems with theranostic applications against
cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and
biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies
devised in their therapeutic management, this review explores the most recent literature about the
advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic
agents in the treatment of brain cancers, together with the strategies devised to allow them to cross
the BBB effectively.

Keywords: brain tumors; drug-delivery systems; blood-brain barrier; nanoparticles; carbon dots;
nanocarriers; theranostic

1. Introduction

Cancer represents one of the leading causes of death worldwide. Brain tumors, fre-
quently defined as brain neoplasms, are a heterogeneous group of neoformations affecting
the central nervous system (CNS). Even if less common than other cancer types, CNS
tumors are particularly aggressive and represent a significant cause of morbidity and
mortality in adults and children [1]. They affect the global population and are responsible
for 2.6% of all cancer deaths, 30% of children’s, and 20% of young adults’ [2,3]. Brain
tumors can be firstly classified based on their benign or malignant character, then on their
origin as primary if they arise from CNS cells, and as secondary or metastatic if they
start as metastases of other cancers [4]. Gliomas are the most common malignant brain
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tumors and comprise astrocytomas, oligodendrogliomas, ependymomas, and several un-
common histologies [5]. According to the World Health Organization (WHO) criteria, they
are histologically classified into four grades (I–IV) related to cancer morphology, biology,
and prognosis.

Glioblastoma (GB) accounts for 50–60% of all gliomas and is a grade IV astrocytoma.
Its prognosis is the worst, with a 12–15 months’ average survival after diagnosis [6,7].
Glioblastoma is characterized by specific morphological features, such as increased cel-
lularity, conspicuous nuclear atypia, the abundant mitotic activity of cancer cells, neo-
angiogenesis, and tumor necrosis. To date, the standard glioblastoma treatment comprises
invasive reduction of the tumoral mass, radiotherapy, and chemotherapy with temozolo-
mide [8]. Failure in its treatment is mainly due to the incapacity to surgically eradicate the
whole tumor mass, the absence of effective drugs able to cross the BBB, and the growth of
multidrug resistance, which contributes to cancer metastasis and patient relapse.

Malignant cancer management requires understanding those characteristics of both
the tumor and its microenvironment that significantly influence therapeutic response and
clinical outcome. In this context, nanomaterial-based anticancer therapies have become
attractive as a means of controlling the tumor microenvironment (TME) and they have the
potential to exceed conventional treatments [9–11]. The growing interest in the application
of nanotechnology in cancer medicine, referred to as cancer nanomedicine, is mainly due to
its promising applications, including drug delivery, in vitro diagnostics, in vivo imaging,
and targeted therapy. Currently, a wide variety of therapeutic nanoparticle (NP) platforms,
including lipid-based, polymer-based, inorganic, viral, and drug-conjugated nanoparti-
cles (NPs), have been approved for use in the clinic as nanocarriers for cancer treatment.
Nanocarriers, due to specific properties such as smaller size, high surface-to-volume ratios,
higher reactivity, drug release profiles, targeting modifications, as well as specific optical
properties, can better reach cancer tissue and release drugs in a controlled manner [12,13].
Among the most-used nanocarriers, carbon nanomaterials, including graphene, fullerenes,
carbon nanotubes, and carbon quantum dots, have attracted the attention of cancer thera-
nostics for their optical, electronic, thermal, and mechanical properties and their versatile
and biocompatible functionalization [14].

Carbon dots (C-dots) have been used as drug delivery systems (DDS) to improve
drug solubility, half-life, and accumulation at the tumorous site, reduce the drugs’ side
effects, and increase their bio-availability and tolerance [15,16]. In this review, we present
a literature survey about the application of C-dots in brain cancer nanomedicine and
highlight the progress in this field.

2. Brain Tumors and Therapeutic Management

There are hundreds of histologically different types of primary brain and CNS cancers.
Gliomas, neuroepithelial tumors originating from the glial or supporting cells of the
CNS, account for 24% of all primary brain and CNS tumors. Gliomas vary greatly in
histology, from benign ependymomal tumors to the most aggressive and deadly grade
IV GB. Glioblastoma is the most common malignant brain tumor, representing about
57% of all gliomas. It is slightly more diffused in males than females, and the median
age at diagnosis is 65 years [17]. Recent evidence reported that GB incidence is highest
globally in North America, Australia, and Northern and Western Europe [18]. GB still has
a poor prognosis and some factors, including advanced age, poor performance status, and
incomplete extension of the resection, contribute negatively [19]. The median survival for
elderly patients who receive treatment is 15 months [20], while the survival rate is only
5.8% at five years post-diagnosis [2].

The first approach to the treatment of brain tumors is surgery. Depending on the
tumor type and location, the resection could be total or partial. This latter method is
preferred, especially in diffuse gliomas, to preserve brain functions and the highest quality
of life possible, and an additional positive aspect lies in the removed tissue being useful for
histological and molecular analyses. Unfortunately, however, the conventional approach is
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often non-effective. Benign, non-diffuse, and, in some cases, low-grade diffuse gliomas are
successfully cured with surgical resection. In contrast, complete eradication is not possible
for high-grade gliomas, such as glioblastoma multiforme. The outcome is frequently poor
in these cases, only aiming for a short increase of patient life expectancy with the help of
chemotherapy and radiotherapy [21]. Moreover, despite the great efforts being made to
increase patient survival, current treatments for high-grade gliomas lack efficacy, partly
due to the impossibility of chemotherapeutics to cross the various barriers that prevent
drugs from reaching the tumor sites [22].

There are three main obstacles to brain tumor treatment: the blood-brain barrier (BBB),
the blood-brain tumor barrier (BBTB), and a relatively weak enhanced permeability and
retention (EPR) effect.

The BBB comprises a highly specialized endothelial cell monolayer, in part covered
by pericytes and basement membrane and almost entirely surrounded by the end-feet
of astrocytes. It forms a heavily restricting barrier that maintains the CNS homeostasis
by limiting the passive uptake of large and hydrophilic molecules and excluding toxins.
Further, it strictly limits drug transport into the brain by serving as a physical (tight
junctions), metabolic (enzymes), and immunological barrier [23].

In analogy to the BBB, the BBTB is located between brain tumor tissues and the
capillaries formed by highly specialized endothelial cells, preventing the paracellular
delivery of most hydrophilic molecules to the tumor site [24]. This barrier is formed
only upon developing brain tumors when cancer cells begin to invade the surrounding
normal brain tissue, and the BBB is damaged (tumor volume > 0.2 mm3) [25]. The BBTB in
low-grade gliomas has the same barrier function as the BBB under normal conditions. On
the other hand, although the BBTB is altered in high-grade gliomas, this alteration is not
sufficient to allow the delivery of therapeutic quantities of drugs and, thus, represents an
obstacle for brain-targeted drug delivery [26].

The EPR effect appears as the brain tumor grows. Indeed, most solid tumors possess
an abnormal vascular production sustained by high levels of vascular growth factors,
like vascular-endothelial growth factor and vascular permeability-enhancing factors (e.g.,
bradykinin, prostaglandin, nitric oxide), together with a lack of functional lymphatic
drainage. These characteristics are the basis for invasive and rapid tumor growth and
lead to new blood vessels with larger lumen, wider fenestrations, and an increase in
fluid pressure, determining the EPR effect [27]. This effect enables the extravasation and
retention of macromolecules in tumors, allowing nanocarriers with an appropriate particle
size to enter the brain neoplasms via the endothelial gaps on the microvessels.

3. Drug Delivery Strategies for Brain Tumors

The effective treatment of brain diseases is one of the most complex challenges in on-
cology due to the many hurdles related to the transport of drugs to the brain. Conventional
anticancer treatments are moderately successful in reducing tumor volume and metastases,
due to the low permeability and high selectivity of the BBB and BBTB.

Recently, significant efforts have been made to overcome current brain cancer treat-
ment limitations and develop novel drug delivery strategies, e.g., using nanocarriers to
deliver drugs across the BBB. These include natural carriers, vesicles/liposomes, nanopar-
ticles, and exosomes loaded with anticancer payloads [28,29].

3.1. Physical Drug Delivery Strategies

Treatments based on the delivery of drugs through the cardiovascular system of-
ten need high systemic drug loads to reach appropriate drug levels at the treatment site.
Physical approaches have, thus, been devised to reduce the systemic toxicity ensuing
from drug delivery through systemic circulation. Often, these methods involve the direct
delivery of the drug into the brain interstitium or tumor parenchyma, also making use
of catheter/pump systems or drug-loaded biodegradable implants, and result in the dif-
fusion of the therapeutic agents from sites with a high drug concentration to the tumor
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periphery [22,30,31]. However, these are fairly invasive treatments that cause a breach in
the integrity of the BBB and involve the risks of infection or brain trauma. One method
that focuses on the temporary disruption of the BBB to enable the delivery of circulating
agents is based on the intra-arterial injection of hyperosmotic solutions (e.g., 25% mannitol
in water), but ca. 6% of the treatments still result in focal seizures [32]. A less-invasive
approach to achieving temporary BBB disruption makes use of focused ultrasounds. Their
effect is enhanced by injecting preformed microbubbles, commercially available as ultra-
sound imaging contrast agents: the gas particles concentrate the sonication effect on the
brain microvasculature, causing a temporary widening of tight junctions and activating
transcellular mechanisms, thus allowing CNS drug delivery [33].

3.2. Chemical Drug Delivery Strategies

Concerning the chemical approaches for brain tumor-targeted drug delivery, it should
be noted that only small, mildly lipophilic molecules can cross the BBB spontaneously [34],
whereas hydrophilic molecules need strategies to be devised that overcome their poor
cerebrovascular permeability. Straightforward approaches still exploit passive brain uptake,
after a drug is converted into either its lipophilic analog or a prodrug through covalent
chemistry (Figure 1). Employing a prodrug requires the molecule to be metabolized
after its administration to bring about the desired anticancer activity [22]. Most recent
strategies regarding prodrugs are based on dynamic covalent chemistry or supramolecular
chemistry, where the prodrug is formed through reversible covalent bonds or non-covalent
host-guest interactions, respectively [35,36]. These approaches are novel and exciting
alternatives to their covalent counterparts, for example via more accessible synthetic
protocols, while keeping the capability to protect the active species and sensitive response
to biological environments, providing a high-fidelity release of drugs [36]. Nevertheless,
while approaches leading to increased lipophilicity may boost drug permeation across the
BBB, they also lead to enhanced drug association with plasma proteins, increased uptake
into other tissues, and lower solubility into body fluids, resulting in a reduction of the
available concentration of the drug and of its activity against the brain tumor [37].

Figure 1. Figurative representation of chemical-, vector-, or nanomaterial-based drug delivery
systems.

3.3. Vector-Based Drug Delivery Strategies

Carrier-mediated drug delivery and receptor-mediated endocytosis are two strategies
that exploit the endogenous BBB transport system to overcome the CNS’s natural inacces-
sibility to drugs. They use the transport systems within the brain capillary endothelium,
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most of which are passive, that take care of the brain’s uptake of nutrients, metal ions, pep-
tides, and hormones [38]. Receptor-mediated endocytosis is activated by specific ligands
that end up being transported into the CNS. Thus, these transporter ligands are covalently
linked to the drug of interest to trick the molecular machinery and enable drug uptake. The
type of covalent bond is conveniently selected to allow the later detachment of the drug
to restore its pharmacological activity [39]. For example, transferrin receptor- and insulin
receptor-mediated endocytosis systems have been used for small molecules and therapeutic
protein delivery [40–42]. Several polar drugs can rapidly and selectively cross the BBB via
carrier-mediated transport, including carriers for glucose (GLUT1), monocarboxylic acids
(MCT1), large neutral amino acids (LAT1), cationic amino acids (CAT1), and nucleosides
(ENT 1-2, CNT1-2) and choline [43].

Another family of CNS transporters includes the ATP-binding cassette (ABC) forms.
These consist of 48 transporting proteins, classified in subfamilies from A to G, that regulate
the influx of nutrients and small molecules and the activity of the intracellular organelles.
They are also involved in multidrug resistance, given their activity as drug effluxers, i.e.,
they reject the permeated drugs from intracellular compartments or, in the case of the
CNS, from the internal compartment to the systemic blood circulation. Targeting ABC
transporters involved in drug efflux could, in principle, constitute a valuable strategy to
enhance drug activity in the CNS [44,45].

Vesicles, particularly liposomes and polymersomes, have also been employed as a DDS
targeting brain tumors (Figure 1). These nano- or micro-sized self-assembled structures
are synthetic models for cell membranes and consist of natural or synthetic surfactants,
lipids, or amphiphilic block copolymers [46]. These molecular components share the same
structure: they all present a polar head and a hydrophobic tail, assembled into single- or
double-layered supramolecular membranes. The vesicles are, thus, capable of incorporating
hydrophilic, lipophilic, and hydrophobic drugs in their different compartments and present
many advantages as a DDS, e.g., biocompatibility, low toxicity, and controlled release of the
therapeutic agents. Additionally, their surface can be modified via the inclusion of peptides,
polysaccharides, or antibodies, to name a few macromolecules, to improve brain-specific
delivery and act as efficient diagnostic or therapeutic tools against brain tumors [47]. Still,
their effectiveness is limited: among the most known and used vesicles for drug delivery,
pegylated liposomes accumulated into the CNS in a low amount [48] and exhibited limited
clinical efficacy against high-grade gliomas [49–51].

Exosomes are small extracellular vesicles secreted by cells exhibiting exciting features,
including stability, biocompatibility, permeability, low toxicity, low immunogenicity, and
an almost endless variation in loading and homing abilities, representing a promising DDS
for brain tumors. Traditional chemotherapeutics, natural drugs, as well as nucleic acid
have been encapsulated in exosomes aiming at the treatment of glioblastoma. However, to
date, examples of clinical trials addressing the use of exosomes as a drug carrier for solid
tumors are still limited, primarily because of problems in large-scale production, quality
control, and storage of these vectors [52].

3.4. Nanomaterial-Based Drug Delivery Strategies

In the last years, the advent of nanomedicine has diffusely presented NPs as fas-
cinating tools able, among other things, to improve drug transport across the BBB [53].
Thanks to their structural and physicochemical characteristics, these nanomaterials present
several advantages as a DDS, including ease of transporting drug payloads, ability to
control drug release (fast or sustained) and pharmacokinetics, as well as good tolerability.
Their high chemical and biological stability, the ability to incorporate hydrophilic and
hydrophobic pharmaceuticals, and the possibility of being administered by different routes
(oral, parenteral, inhalation) have made NPs ever more attractive for medical applications.
Furthermore, simple methods are available to engineer the surface of these nanostruc-
tures through covalent/non-covalent (multi)functionalization, providing tissue-specific
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targeting capabilities after conjugation with the appropriate ligands, including antibodies,
proteins, or aptamers [54].

As already mentioned, NPs can penetrate the tumor tissue and deliver their cargoes to
neoplasms, thanks to the EPR effect [55], taking full advantage of the differences between
normal and tumor environments to deliver therapeutics to cells [56]. As normal tissues are
less inclined to grant NPs access due to their healthy vasculature, the microarchitecture of
the BBB is characterized by the loss of endothelial cell tight-junction in high-grade gliomas
while it is preserved in low-grade ones [57–59]. Therefore, NPs can accumulate in the
tumor microenvironment and perform their designed cytotoxic and delivery tasks. The
employment of these nanomaterials as drug delivery systems has also led to an increase of
drug concentration at the surface of the BBB, offering further chances to cross it by increas-
ing drug circulation time in the blood, compared to more conventional approaches. Still,
despite the promising application of nanoparticles in anticancer drug delivery, given their
theoretical ability to accumulate within tumoral sites via the EPR effect, many experiments
have resulted in a poor outcome when this concept has been translated to brain tumors [44].

Notwithstanding these initial drawbacks, research has never stopped designing better
pharmaceutical nanotechnologies to target the CNS and allow crossing the BBB through
modification in NP size, shape, or surface functionalization [44,60]. Carbon dots are
indeed among the newest, most encouraging systems that meet the targeted drug delivery
requirements. They also open the way to simultaneous bio-imaging applications, thanks to
their tunable luminescence that allows real-time identification of their tissue distribution.

4. Carbon Dots for Drug Delivery in Brain Tumors
4.1. Carbon Dots

Since their accidental discovery during the electrophoretic purification of arc-discharged
single-walled carbon nanotubes [61], carbon dots (C-dots) [62] have gained significant in-
terest in biomedical applications thanks to their physicochemical properties. C-dots exhibit
size tuneability in the nanometer range, size-dependent photoluminescence, excellent pho-
tostability, and exceptional biocompatibility [63]. These carbon nanoallotropes consist of
nearly isotropic nanoparticles having sizes below 10 nm, a nanocrystalline graphitic core
with great sp2 character, and high oxygen content at their surface [64]. They differ no-
tably from nanodiamond particles, which are produced under hard-to-obtain conditions
and constitute a diamond (sp3) core with a sp2 carbon shell. The difference between C-dots
and graphene quantum dots is, instead, mainly linked to their morphology, the first be-
ing spherical particles, while the second are better described as zero-dimensional graphene
disks [65]. The synthetic strategies leading to the production of C-dots can be broadly
divided into top-down and bottom-up approaches (Table 1) [66,67]: the former includes
the fragmentation of starting carbonaceous materials using physical or chemical methods
(e.g., electrochemical synthesis [68–73], chemical oxidation [74–79], arc discharge [61,80–82],
and laser ablation [62,83–86]); the latter starts from molecular precursors and consists, among
others, of ultrasound [87–89] and hydrothermal [90–95] treatments, microwave-assisted syn-
thesis [96–101], and pyrolysis or carbonization of the reactants [102–106]. The surface of
C-dots typically presents functional groups like carboxyl, hydroxyl, or amino groups, and
their composition heavily depends on the nature of the precursors or the reaction con-
ditions, often leading to significant differences in the nanoparticles’ properties [107,108]
(Figure 2). The intrinsic presence of polar residues on the C-dots’ surface endows them
with good solubility in water, which is very convenient for developing applications in
nanobiology or nanomedicine [109]. Although this eliminates the need for additives to
provide the NPs with an affinity for the aqueous environment, it is still desirable to modify
the functional moieties at the surface of the original carbon nanomaterials, e.g., to increase
their biocompatibility or impart the C-dots with new chemical functions. The natural
occurrence of accessible and reactive functional groups is largely exploited both in covalent
and non-covalent surface treatments [66,107,109], providing C-dots with new (bio)sensing
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capabilities, improved photoluminescence, broader in vitro and in vivo bioimaging, as
well as drug-delivery and theranostic capabilities [13,110–113].

Table 1. Synthetic approaches to the production of C-dots.

Strategy Synthetic Method Refs

top-down

electrochemical synthesis [68–73]
chemical oxidation [74–79]

arc discharge [61,80–82]
laser ablation [62,83–86]

bottom-up

ultrasound treatment [87–89,114,115]
hydrothermal treatment [90–95]

microwave-assisted synthesis [96–101]
pyrolysis [102–106]

Figure 2. (a) General approaches for the synthesis of C-dots. In a top-down approach, C-dots are synthesized by transforming
bulk carbon material into ultra-small powders via oxidation, laser ablation, ultrasounds, or electrochemical methods. In
a bottom-up approach, C-dots are synthesized via physical or chemical treatments of molecular precursors that may get
ionized, dissociated, evaporated, or sublimated and then condense/react to form C-dots, or via hydrothermal, sonochemical,
pyrolitic treatments. (b) Reactions schemes for covalent strategies to C-dots functionalization: amide coupling (1,2),
esterification (3), sulfonamide formation (4); tosylate-leaving group in nucleophilic substitution (5), sylilation (6).
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As briefly stated above, C-dots can be easily engineered by exploiting the covalent
chemistry of all the functional groups present at their surface.

Since carboxyls are among the most abundant moieties available, the amide coupling
reaction is an obvious and advantageous choice to change the surface characteristics of these
NPs. This approach could be employed both to enhance their photophysical properties,
which could be negatively affected by the electronic effects exerted by too many oxygen-rich
groups [107], and to attach the appropriate bio-label to the C-dots. One of the most common
methods makes use of the standard EDC/NHS-catalyzed reaction, yielding the coupling
of surface carboxyl moieties with amine groups into an amide bond (Figure 2(b1)) [116].
Notably, the same approach may be used when starting with N-doped C-dots, whose sur-
faces are usually decorated by amino groups and react with carboxyl-containing targets
(Figure 2(b2)) [117].

A different strategy employs esterification reactions by coupling complementary
hydroxyl and carboxyl groups, one present at the C-dots’ surface and the other onto the
target to be bound to the NPs (Figure 2(b3)) [118,119].

In addition, amino-functionalized C-dots can be coupled to functional moieties of
interest through sulfonylation reaction, attaching the proper sulfonyl chloride compounds
on their surface, via the direct formation of sulfonamide bonds (Figure 2(b4)) or by forming
intermediates containing better leaving groups in SN2 reactions (Figure 2(b5)) [120–122].

Silylation reactions are also of great interest since they can lead to C-dot/silica nanohy-
brids. In these reactions, the alkoxy groups of the appropriate organo-functional tri-alkoxysilane
may react with the surface hydroxyls of the C-dots and form Si-O-C bonds, resulting in the
NPs being decorated with the organic function of interest (Figure 2(b6)) [123,124].

Non-covalent strategies for engineering the C-dots’ surface properties are based on the
formation of multiple supramolecular interactions, such as electrostatic, coordination, or π
bonds [107]. Electrostatic interactions may involve positively or negatively charged C-dots
and small molecules, polymers, or other species having an opposite charge [125–127].
Exploiting complexation for the surface modification of the carbon nanoparticles starts
from having functional groups capable of coordination interactions on the surface of the
NPs, such as amino or carboxyl moieties. These can then bind the metal ion of interest,
leading to new luminescent features in case of binding to rare-earth atoms or to sensoristic
applications, to name a few [122,128,129]. Finally, the exposed aromatic portions of the
C-dots surface can be involved in π interactions with small aromatic molecules, allowing
them to be tuned for their photophysical properties or to act as a delivery system for
aromatic drugs [130,131].

4.2. Carbon Dots Crossing the BBB

The BBB remains an important obstacle between the brain and compounds circulating
in the blood. It functions as a blockade, avoiding the arrival of toxins and cells into the brain.
Therefore, its integrity is one of the main factors necessary to maintain homeostasis and
to protect this organ [132]. Notwithstanding these important functions, the BBB notably
reduces drug transport into the brain via blood circulation [133]. Hence, developing a
system able to cross it when necessary to deliver therapeutic and diagnostic drugs to the
brain is a major challenge. In this context, recently, C-dots attracted great attention as
a promising tool for drug delivery thanks to their relevant properties, including ultra-
small size, low toxicity, high drug-loading capacity, long-term stability, and controlled
drug release capabilities [134]. C-dots-based therapeutic approaches have shown greater
facility to cross the BBB and transport and deliver neurological drugs into the CNS. In
an in vivo study, Li et al. demonstrated that C-dots functionalized with transferrin could
enter the CNS by crossing the BBB, indicating that they can be used to treat neurological
diseases [135]. In another study, Seven et al. reported that C-dots prepared from glucose
and conjugated to fluorescein cross the BBB in zebrafish and rats without needing an
additional targeting ligand, pointing out their potential as a drug delivery system for the
CNS [136]. Zhou et al. showed that amphiphilic, yellow-emissive C-dots could cross
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the BBB of 5-day-old wild-type zebrafish. These NPs could enter the cells to inhibit the
overexpression of human amyloid precursor protein (APP) and β-amyloid (Aβ), which
are among the main factors responsible for Alzheimer’s disease. Their results hint at these
C-dots’ great potential as nontoxic nanocarriers for drug delivery toward the CNS, as well
as promising inhibiting agents for Aβ-related pathologies.

4.3. Carbon Dots as Drug Delivery Systems in Brain Tumors Treatment

In the last few years, C-dots have been broadly synthesized, characterized, and used as
promising nanocarriers for drug delivery [137], taking full advantage of favorable features
such as their small size (<5 nm) and a rich surface chemistry that allows the binding
of receptors and chemotherapy drugs (Figure 3) [138,139]. C-dots are reported to have
increased the solubility in water, bioavailability, half-life, and tumor accumulation of drugs
as part of a nano-formulation by exploiting the EPR effect [140,141]. Besides this, their
localization can be easily detected thanks to their brilliant fluorescence, paving the way to
theranostic applications.

Figure 3. Schematic representation of C-dots as drug delivery systems in brain tumors in vivo. The image compares the
efficacy of C-dots/drugs conjugates to free-drug approaches. The first system has a better therapeutic effect because of its
ability to cross the BBB and inhibit tumor growth, thus enhancing survivability.

Several in vitro and in vivo studies regarding the ability of C-dots and their conjugates
to overcome the BBB have been reported in the literature (Table 2), garnering much interest
from the scientific community [142–144].
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Table 2. Summary of C-dots-based drug delivery systems reported as being capable of crossing the BBB. Polyethyleneimine
(PEI); Transferrin (Trans); Doxorubicin (Dox); Dextrose (Dex); L-aspartic acid (L-Asp); Temozolomide (Temo); Epirubicin (Epi);
Glycine (Gly); Fluorescein (Fluo); Tryptophan (Try); 1,2-ethylenediamine (EDA); Large Amino Acid-Mimicking (LAAM).

C-Dots Size (nm) Drug Loaded Ligand
Attached In Vitro/In Vivo Administration

Mode Refs.

C-dot/PEI 2.6 None None

Primary rat
microvascular

endothelial cells
and astrocytes

Medium [145]

C-dot/Trans-Dox 2–6 doxorubicin transferrin
SJGBM2 and

CHLA266 (pediatric
brain tumor cells)

Medium [146]

C-dot/Dex-Asp 2.3–2.5 None None C6 glioma
cells/mouse

Medium/i.v. in
tail vein [147,148]

C-dot/Trans 5 transferrin Zebrafish [135]

C-dot/Trans-
Temo-Epi 2.6–3.5 Temozolomide

epirubicin transferrin

SJGBM2, CHLA266,
CHLA200 (pediatric

brain tumor cells)
and U87 (adult

glioblastoma cells)

Medium [141]

C-dot/Gly <5 None None C6 glioma
cells/mouse

Medium/Medium/i.v.
in tail vein [149]

C-dot/Dex-Fluo 2.4–2.5 None None Zebrafish and rat i.v. into the heart
and i.v. in tail vein [136]

C-dot/Try-ureaC-
dot/Try-EDA 9.0–10.8 None None Zebrafish i.v. into the heart [150]

LAAMC-dots 2.5 None None Mouse i.v. in tail vein [151]

Lu et al. [145] synthesized nitrogen-doped C-dots (C-dot/PEI) using a one-pot hy-
drothermal treatment with citric acid in the presence of Polyethyleneimine (PEI), obtaining
particles with an average size of ~2.6 nm and strong blue luminescence. Upon evaluating
their ability to cross the BBB by means of an in vitro model of rat microvascular endothelial
cells and astrocytes, C-dot/PEI exhibited excellent photostability and low cytotoxicity.
Furthermore, they showed that these NPs could overcome the BBB, probably thanks to
their small size and the positive surface charge imparted by PEI. All the above allowed the
author to propose C-dot/PEI as promising optical nanoprobes for live-cell imaging and as
a good tool for drug delivery in brain diseases.

Li et al. [146] demonstrated that covalent conjugates of C-dots, Transferrin, and
Doxorubicin (C-dot/Trans-Dox) exhibit a greater drug uptake than Doxorubicin (Dox)
alone in several pediatric brain tumor cell lines, probably due to the high number of
transferrin receptors on these tumor cells. Furthermore, they showed that C-dot/Trans-Dox
were more cytotoxic than Dox alone, pointing to higher efficacy of the drug as conjugate.

Zheng et al. [147] synthesized a new type of C-dot (C-dot/Dex-Asp) targeting brain
cancer gliomas via the direct pyrolysis of a mixture of Dextrose (Dex) and L-aspartic acid
(L-Asp). The authors reported that C-dot/Dex-Asp exhibits excellent biocompatibility and
tunable full-color emission, together with the significant capability of targeting C6 glioma
cells without needing any extra targeting molecule. Moreover, after C-dot/Dex-Asp are
injected through the mouse tail vein, the fluorescent signal detected at the glioma site is
stronger than that recorded in the normal brain tissue. All the above confirms the ability
of C-dot/Dex-Asp to penetrate the BBB freely and target the glioma tissue precisely, in
contrast to the other C-dots synthesized from pure Dex, pure L-Asp, or a mixture of Dex
and L-glutamic acid (L-Glu), which exhibited no or low selectivity for glioma.
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Following these findings, Qiao et al. [148] optimized the ratio of Dex to L-Asp to
improve the targeting properties of C-dot/Dex-Asp, their results indicating that C-dots
prepared using a 7:3 molar ratio between Dex and L-Asp exhibit the greatest targeting
ability toward C6 glioma cells.

Li et al. [135] developed C-dots that were covalently conjugated to Transferrin (Trans)
or dye-labeled Trans (C-dot/Trans and C-dot/DyeTrans, respectively) to examine the
potential of crossing the BBB via the Trans receptor-mediated delivery in the zebrafish
model. In vivo results suggest that the Trans-conjugated C-dots can enter the CNS by
overcoming the BBB, but C-dots alone cannot.

Hettiarachchi et al. [141] developed a triply-conjugated C-dots system (C-dot/Trans-
Temo-Epi) for targeting glioblastoma, containing Trans and two anticancer drugs, i.e.,
Temozolomide (Temo) and Epirubicin (Epi). The authors compared its efficacy to the
related doubly conjugated systems (C-dot/Trans-Epi, C-dot/Trans-Temo, C-dot/Temo-
Epi) and the free-drug combinations against several glioblastoma cell lines. The obtained
in vitro results indicated that the Trans-conjugated C-dots are able to reduce the cell viability
considerably, compared to nanoparticles without Trans, and that C-dot/Trans-Temo-Epi
possesses the greatest cytotoxicity.

Ruan et al. [149] employed a thermal treatment on Glycine (Gly) as the only starting
material to produce C-dots (C-dot/Gly) and evaluated in vitro their cytotoxicity and
cellular uptake and, in vivo, their tissue distribution and imaging properties. In vitro
results obtained on C6 glioma cells demonstrated that C-dot/Gly possess low cytotoxicity
and that their uptake is time- and concentration-dependent. In addition, the in vivo
findings revealed a high accumulation of C-dots in the glioma tissue, which exhibited a
stronger fluorescence intensity than normal brain one, indicating that these C-dots are
indeed able to target glioma specifically.

Seven and co-workers [136] reported that C-dots (C-dot/Dex-Fluo) prepared from Dex
and conjugated to Fluorescein (Fluo) are able to cross the BBB and carry a small molecular
cargo to the CNS in two in vivo models, namely, zebrafish and rats, without the need for
an additional targeting ligand.

Mintz et al. [150] developed two types of C-dots (C-dot/Try-urea and C-dot/Try-EDA)
using Tryptophan (Try) and two different nitrogen dopants, e.g., urea and
1,2-ethylenediamine (EDA). The authors showed that these nanoparticles have low toxicity
and can access the central nervous system of zebrafish, bypassing the blood-brain barrier
via transporter-mediated endocytosis, exploiting the large neutral amino acid transporter
1 (LAT1). For the first time, this study demonstrates that tryptophan can be used as a
precursor to yield self-targeting C-dots that do not need conjugation to other ligands.

In another study [151], Li et al. synthesized Large Amino Acid-Mimicking (LAAM)
C-dots, bearing multiple paired α-carboxyl and amino groups, starting from 1,4,5,8-
tetraminoanthraquinone and citric acid. The authors showed that LAAM C-dots are
able to bind to the LAT1 and may be used for (i) near-infrared (NIR) fluorescence and
photoacoustic imaging, (ii) targeted drug delivery to tumors with a high degree of speci-
ficity and efficiency, (iii) selectively imaging brain tumors, and (iv) the development of
LAT1-utilizing prodrugs.

5. Conclusions

In the framework of brain tumors, with a particular focus on the open challenge on
the delivery of drugs across to the blood-brain barrier, this review explores the recent
advances in the use of drug delivery systems based on carbon dots. After a brief survey
of the peculiarities of brain tumors and their current therapeutic management, the many
exciting features of these recently discovered nanoparticles, leading to their applications
as theranostic agents in cancer treatment, have been summarized. We have shown how
their brightness and size-/composition-dependent photoluminescence, combined with
their chemical stability and biocompatibility, have allowed their employment as fluorescent
diagnostic tools. Various examples of the exploitation of the rich surface chemistry of C-dots
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have been illustrated, showing that their surface functional groups allow building on the
anticancer and tumor-targeting features of these functional nanomaterials, also improving
their ability to cross the BBB and reach the targeted neoplasms. The reported in vitro and
in vivo studies strongly point out the bright potential of carbon dots as theranostic tools in
future clinical strategies and could bring the development of more targeted therapies for
brain tumor treatments.
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