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Abstract: Clinical trials show that insulin administered intranasally is a promising drug to treat
neurodegenerative diseases, but at high doses its use may result in cerebral insulin resistance.
Identifying compounds which could enhance the protective effects of insulin, may be helpful to
reduce its effective dose. Our aim was thus to study the efficiency of combined use of insulin
and α-tocopherol (α-T) to increase the viability of cultured cortical neurons under oxidative stress
conditions and to normalize the metabolic disturbances caused by free radical reaction activation in
brain cortex of rats with two-vessel forebrain ischemia/reperfusion injury. Immunoblotting, flow
cytometry, colorimetric, and fluorometric techniques were used. α-T enhanced the protective and
antioxidative effects of insulin on neurons in oxidative stress, their effects were additive. At the
late stages of oxidative stress, the combined action of insulin and α-T increased Akt-kinase activity,
inactivated GSK-3beta and normalized ERK1/2 activity in cortical neurons, it was more effective
than either drug action. In the brain cortex, ischemia/reperfusion increased the lipid peroxidation
product content and caused Na+,K+-ATPase oxidative inactivation. Co-administration of insulin
(intranasally, 0.25 IU/rat) and α-T (orally, 50 mg/kg) led to a more pronounced normalization of the
levels of Schiff bases, conjugated dienes and trienes and Na+,K+-ATPase activity than administration
of each drug alone. Thus, α-T enhances the protective effects of insulin on cultured cortical neurons
in oxidative stress and in the brain cortex of rats with cerebral ischemia/reperfusion injury.

Keywords: insulin; α-tocopherol; protection; cortical neurons; oxidative stress; brain cortex; forebrain
ischemia; reperfusion

1. Introduction

Co-administration of various neuroprotective agents that are capable of enhancing
each other’s protective effects by modulating intracellular signaling pathways can sig-
nificantly increase the ability of organisms to prevent the development of neuropathies
in neurodegenerative, ischemic, or diabetic brain lesions. This is especially important
in the case of insulin, since long-term exposure to high concentrations of this hormone
leads to insulin resistance, it was shown to be characteristic for type 2 diabetes mellitus,
Alzheimer’s and Parkinson’s diseases and other endocrine pathologies [1–3]. In accordance
with the above, an urgent task for neurochemistry and neuroendocrinology is the search for
endogenous regulators and natural substances, which could make it possible to reduce the
pharmacological doses of insulin without causing a decrease in its neuroprotective effect.

Insulin is currently one of the most promising neuroprotective agents that are widely
used in clinical trials. In pathological conditions such as type 2 diabetes mellitus, metabolic
syndrome, Alzheimer’s and Parkinson’s diseases, the insulin level is increased markedly in
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blood, while in the brain, on the contrary, it is markedly diminished, which leads to disrup-
tion of insulin signaling in the hypothalamus and other regions of the brain [4–7]. Decreased
levels of insulin in the brain and central insulin resistance lead to impaired metabolism
and functional activity of neurons, as well as to the changes in hypothalamic regulation of
carbohydrate and lipid metabolism, food intake and endocrine functions [8–10].

One of the most promising ways to correct insulin deficiency in the brain is its in-
tranasal administration, since in this case the hormone enters the brain directly with the
participation of cells of the olfactory and trigeminal nerves, bypassing the blood-brain
barrier [11,12]. The neuroprotective effect of intranasally administered insulin is supported
by numerous studies on the prevention of neurodegenerative brain damage in experi-
mental animals [1,13,14]. The use of intranasally administered insulin for the treatment
of patients with Alzheimer’s disease and mild cognitive deficits leads to a significant
improvement in their cognitive functions (see, for example, [15–19]). The clinical trials of
intranasally administered insulin as a drug for the treatment of Parkinson’s disease are
also in progress [20].

There is reason to believe that intranasally administered insulin can have a neuropro-
tective effect in the case of cerebral ischemia, but information on this is extremely scarce.
There are only our previous works on the ability of intranasally administered insulin to
normalize metabolism and redox processes in the ischemic and reperfused brain [21,22].
Recently, a protective effect of intracerebroventricularly administered insulin on the via-
bility of brain neurons in gerbils with global ischemia followed by reperfusion has been
shown [23]. Ischemic brain damage is much more pronounced in rats with diabetes mel-
litus than in healthy animals, as a result of which systemic treatment of diabetic animals
with insulin weakened the severity of ischemic lesions [24,25]. There are numerous stud-
ies, the authors of which have shown the protective effect of intranasally administered
insulin-like growth factor-1 (IGF-1) in animals with focal and global ischemia (see, for
example [26–28]). At the same time, in their review article, Lioutas and coauthors [29]
noted that intranasally administered insulin is a more promising neuroprotector than IGF-1
as a drug for preventing severe consequences of ischemic brain damage, including acute
ischemic stroke.

Among the compounds that may enhance the neuroprotective effect of insulin, α-
tocopherol (α-T), the main and most active component of vitamin E, one of the natural
components of various brain cells, is of particular interest (see, for example, [30–32]). In
one of the recent mini-reviews [32] it is emphasized that targeting insulin resistance may
be a breakthrough strategy to treat Alzheimer’s disease. It is of interest that vitamin E
and C are considered to be able to decrease insulin resistance due to their antioxidant
effects [32]. High doses of α-T or vitamin E are usually used in clinical trials to improve
cognitive function in Alzheimer’s patients. It is important to note that peripheral α-T
levels in patients with Alzheimer’s disease and mild cognitive impairment were lower
than in healthy people, with the difference being quite significant [33]. These data suggest
a relationship between vitamin E and α-T content in diet and the risk of developing
Alzheimer’s disease and age-related cognitive deficit.

The aim of our work is to test the hypothesis that insulin and α-T can significantly
enhance the neuroprotective effects of each other in the in vitro and in vivo experiments.
We studied the neuroprotective, antiapoptotic and antioxidant effects of insulin and α-T
on brain cortical neurons under conditions of oxidative stress, comparing the effects of
individual drugs with the effects of their combined use. To elucidate the possible molecular
mechanism of the additive neuroprotective action of insulin and α-T, the individual and
joint effects of these neuroprotectors on the activity of protein kinase B (Akt), glycogen
synthase kinase-3beta (GSK-3beta) and extracellular signal-regulated kinase 1/2 (ERK1/2)
were studied. In the in vivo experiments, the ability of intranasally administered insulin
and orally administered α-T to prevent or reduce the increased accumulation of different
lipid peroxidation (LPO) products as well as oxidative inactivation of Na+,K+-ATPase in
the cerebral cortex of rats with two-vessel forebrain ischemia and subsequent reperfusion
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was investigated. In this case, a comparative study of monotherapy and combined therapy
with these drugs was carried out. Our data indicate that insulin and α-T are able to enhance
the protective effects of each other on cortical neurons under conditions of oxidative stress
and on the cells of the cerebral cortex of rats with ischemia/reperfusion injury.

2. Results
2.1. Additivity of Protective Effects of Insulin and α-Tocopherol on Viability of Rat Brain Cortical
Neurons Exposed to Hydrogen Peroxide

The treatment of cultured brain cortical neurons with 1 µM insulin and 50 µM α-T led
to an increase in their viability under the conditions of oxidative stress induced by 100 µM
hydrogen peroxide. The protective effects of insulin and α-T on neurons were found to
be additive. The viability of neurons in the presence of both protectors was significantly
higher than their viability in the presence of either insulin or α-T alone (Figure 1).

Figure 1. The additive protective effect of insulin and α-tocopherol (α-T) on the viability of rat brain
cortical neurons exposed to hydrogen peroxide. The data of 5–7 experiments are presented as the
means± SEM. The neuronal viability was determined using 3-(4,5-dimethy-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT) method. Abbreviations used: α-tocopherol (α-T). Cortical neurons
were pre-incubated for 1 h with 1 µM insulin or for 18 h with 50 µM α-T or with both compounds or
without them. Then the neurons were exposed to 100 µM hydrogen peroxide for 6 h. The differences
are significant according to one-way analysis of variance (ANOVA) followed by Tukey’s test for
multiple comparisons as compared: *—to control, x—to the effect of hydrogen peroxide alone, #—to
the effect of either insulin, or α-T alone, * p < 0.05, ** p < 0.01. in all other cases p < 0.01.

Thus, the data obtained provide evidence that insulin and α-T enhance the protective
effect of each other on brain cortical neurons under oxidative stress conditions, increasing
the viability of these cells.
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2.2. Antiapoptotic Effect of Insulin Plus α-T on Rat Brain Cortical Neurons Exposed to Hydrogen
Peroxide Is Higher than the Effects of Each Drug

Apoptosis and necrosis are the most common neuronal death pathways under ox-
idative stress conditions. In order to show that apoptotic death occurred as a result of
cortical neuron exposure to 100 µM hydrogen peroxide, the level of 17–19 kDa fragment
of caspase-3 was analyzed. Its accumulation shows the cleavage and activation of this
enzyme. In brain cortical neurons, the pronounced increase of cleaved caspase-3 level and
hence of caspase-3 activation was observed 6 h after the initiation of oxidative stress by
100 µM hydrogen peroxide (Figure 2A,B). Pre-incubation with 1 µM insulin decreased the
level of cleaved caspase-3, while the effect of 50 µM α-T was not observed. In the case of
pre-incubation with both insulin and α-T, the decrease of cleaved caspase-3 level (and hence
of neuronal apoptotic death) was more pronounced than in the case of pre-incubation with
each of the protectors 6 h after application of hydrogen peroxide to the neurons (p < 0.01 by
paired Student’s t-test). Even 15 min after the addition of pro-oxidant to cortical neurons,
their pre-incubation with insulin plus α-T resulted in a significant decrease in cleaved
caspase-3 level and hence of neuronal apoptotic death, while the addition of insulin or α-T
alone had no effect on the neuronal apoptotic death (Figure 2B).

Figure 2. The antiapoptotic effect of insulin plus α-T on rat brain cortical neurons exposed to
hydrogen peroxide is more pronounced than the effect of each drug. (A) immunoblots of cleaved
caspase-3 are shown. (B) the data of 10 experiments are presented as the means± SEM. Abbreviations
used: Casp3–caspase-3. Cortical neurons were pre-incubated for 1 h with 1 µM insulin or for 18 h
with 50 µM α-T or with both drugs or without them. Then the neurons were exposed to 100 µM
hydrogen peroxide for 0, 15 min and 6 h. The differences are significant according to Student’s paired
t-test as compared: *—to control, x—to the effect of hydrogen peroxide alone, #—to the effect of
either insulin or α-T alone, p < 0.01 in all cases.

2.3. Antioxidative Effect of Insulin Plus α-T on Rat Brain Cortical Neurons Exposed to Hydrogen
Peroxide Is Higher than the Effects of Each Drug

Pre-incubation of brain cortical neurons with 50 µM α-T or 1 µM insulin diminished
the formation of reactive oxygen species (ROS) in these cells induced by hydrogen peroxide
exposition. The results of a typical experiment are shown in Figure 3. The use of insulin
plus α-T was more effective than insulin or α-T alone (p < 0.05).

2.4. Effect of Insulin and α-T on Activity of Protein Kinase B (Akt) in Control and Hydrogen
Peroxide-Exposed Brain Cortical Neurons

To assess the mechanisms of α-T-enhancing effect on insulin-induced neuroprotection
in cortical neurons, we compared the combined and separate effects of these drugs on
the activity of the protein kinases Akt, GSK-3beta and ERK1/2. The activity of Akt was
assessed using Western blotting, for which the level of Ser473- and Thr308-phosphorylated
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forms of Akt kinase was measured using monoclonal antibodies specific for pAkt (Ser473)
and pAkt (Thr308), respectively. The data obtained showed that insulin and hydrogen
peroxide increased the phosphorylation of both residues. Nevertheless, the intensity of
Thr308-phosphorylation was less pronounced than the intensity of Ser473-phosphorylation,
so further experiments were carried out mainly using antibodies against pAkt (Ser473).

Figure 3. The pre-incubation with insulin or α-T or with both drugs diminishes the formation of ROS
in brain cortical neurons exposed to hydrogen peroxide. The data of one typical experiment from five
experiments made are given as the means ± SEM. Cortical neurons were pre-incubated for 1 h with
1 µM insulin or for 18 h with 50 µM α-T or with both drugs or without them. Then the neurons were
exposed to 100 µM hydrogen peroxide for 1 h. The differences are significant according to Student’s
t-test as compared to: *—control, x—the effect of hydrogen peroxide alone, #—the effect of either
insulin or α-T alone, p < 0.05 in all cases.

Hydrogen peroxide increased Akt activity 15 min after its addition to neurons but had
no effect on Akt activity 6 h after its addition to these cells. At the same time, pre-incubation
with insulin led to activation of Akt kinase both in control neurons and in neurons exposed
to hydrogen peroxide for 15 min and 6 h. It was shown that 1 µM insulin increased the
basal Akt activity more than four times. The effect of insulin plus α-T was significantly
higher than the effect of each of the drugs 6 h after pro-oxidant addition to the samples
(p < 0.01 by paired Student’s t-test) (Figure 4). It is of importance that insulin alone and to
a greater extent in combination with α-T could still increase the Akt activity when the Akt
activating effect of hydrogen peroxide had already disappeared (Figure 4).

2.5. Effect of Insulin and α-T on pGSK-3beta (Ser9) Level in Control and Exposed to Hydrogen
Peroxide Brain Cortical Neurons

Akt activation by the drugs or pro-oxidants may lead to phosphorylation of GSK-3beta
at the Ser9 and, as a result, inactivates this enzyme. 15 min after its addition to brain cortical
neurons, hydrogen peroxide induced the activation of Akt kinase and increased the ratio
pGSK-3beta (Ser9)/GSK-3beta. But had no effect (p > 0.05) on these enzymes 6 h after the
induction of oxidative stress (Figures 4 and 5), The effect of insulin on both the pGSK-3beta
level, and the Akt activity was much more pronounced and prolonged as compared to
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the effect of hydrogen peroxide (Figures 4 and 5). Insulin increased the ratio pGSK-3beta
(Ser9)/GSK-3beta in control neurons from 1.0 to 1.43± 0.09 (p < 0.01). Under the conditions
of oxidative stress, its ability to increase this ratio and hence to inactivate GSK-3beta was
significant and pronounced (n = 10, p < 0.01, paired Student’s t-test, Figure 5B). In contrast
to insulin, the ability of α-T to inactivate GSK-3beta in control neurons and in neurons
15 min and 6 h after the application of pro-oxidant was not detected.

Figure 4. The effect of hydrogen peroxide, insulin and α-T on the activity of Akt (pAkt (Ser473)/Akt)
in brain cortical neurons. (A) immunoblots of pAkt (Ser473) and total Akt are shown; (B) the data of
6 experiments are presented as the means ± SEM. The brain cortical neurons were pre-incubated
for 1 h with 1 µM insulin or for 18 h with 50 µM α-T or with both drugs or without them. Then
the neurons were exposed to 100 µM hydrogen peroxide for 0, 15 and 360 min. The differences
are significant according to Student’s paired t-test as compared: * and **—to the control, * p < 0.02,
** p < 0.05; x—to the effect of hydrogen peroxide alone, p < 0.01, #—to the effect of insulin or α-T
alone, p < 0.01.

α-T was found to enhance the effect of insulin 6 h after the induction of oxidative
stress by hydrogen peroxide, the increase in pGSK-3beta (Ser9) levels in cortical neurons
was significantly higher when cells were incubated with insulin plus α-T, as compared to
incubation with insulin or α-T alone (n = 10, p < 0.01, paired Student’s t-test). It means that
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insulin is able to inactivate GSK-3beta in the course of oxidative stress development, while
alpha-T is able to enhance its effect at late stages of oxidative stress development. The
activation of GSK-3beta negatively affects the function of mitochondria in cells, including
neurons, which leads to a decrease in the mitochondrial membrane potential and the open-
ing of the mitochondrial permeability transition pore (mPTP). Thus, the above-mentioned
inhibitory effects of insulin on GSK-3beta activity and the ability of α-T to enhance this
effect appear to be of importance to provide their protective effects.

Figure 5. The effect of hydrogen peroxide, insulin and α-T on the activity of protein kinase GSK-3beta
[pGSK-3beta (Ser9)/GSK-3beta] in brain cortical neurons. (A) immunoblots of pGSK-3beta (Ser9) and
total GSK-3beta are shown; (B) the data of 10 experiments are presented as the means ± SEM. The
brain cortical neurons were pre-incubated for 1 h with 1 µM insulin or for 18 h with 50 µM α-T or
with both drugs or without them. Then the neurons were exposed to 100 µM hydrogen peroxide for
0, 15 and 360 min. The differences are significant according to Student’s paired t-test as compared:
* and **—to the control, * p < 0.02, ** p < 0.05; x—to the effect of hydrogen peroxide alone, p < 0.01,
#—to the effect of insulin or α-T alone, p < 0.01.

2.6. Effect of Insulin and α-T on ERK1/2 Activity (pERK1/2/ERK1/2 Ratio) in Control and
Hydrogen Peroxide-Exposed Brain Cortical Neurons

The modulation of ERK1/2 activity may be of importance for the ability of insulin
and α-T to increase the viability of cortical neurons. It was shown previously that short
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activation of ERK1/2 by the protectors increased the viability of nerve cells [34–37], but
activation of ERK1/2 for long time promoted nerve cells death [36–38].

In the present study, hydrogen peroxide increased the ERK1/2 phosphorylation
15 min after its application to the neurons (Figure 6). Insulin increased the basal ERK1/2
activity and its activity 15 min after the application of hydrogen peroxide (Figure 6). At
this point, α-T effect was not detected. It was previously shown [39] that α-T increased
the ERK1/2 activity only 5 min after hydrogen peroxide addition to cortical neurons.
Hydrogen peroxide caused a pronounced increase of ERK1/2 activity at late stages of
oxidative stress development—6 h after its application to the neurons (Figure 6). At this
point, insulin and α-T decreased the ERK1/2 activity (n = 10, p < 0.05 by paired Student’s
t-test). A decrease in the ERK1/2 activity was more pronounced in the case of insulin and
α-T combination, and the difference between the effect of insulin plus α-T and the effects
of insulin or α-T alone was significant (n = 10, p < 0.02 by paired Student’s t-test).

Figure 6. The effect of hydrogen peroxide, insulin and α-T on the activity of ERK1/2
(pERK1/2/ERK1/2 ratio) in brain cortical neurons. (A)—immunoblots of pERK1/2 and total ERK1/2
are shown; (B)—the data of 6 experiments are presented as the means ± SEM. The brain cortical
neurons were pre-incubated for 1 h with 1 µM insulin or for 18 h with 50 µM α-T, with both drugs or
without them. Then the neurons were exposed to 100 µM hydrogen peroxide for 0, 15 and 360 min.
The differences are significant according to Student’s paired t-test as compared: * and **—to the
control, * p < 0.02, ** p < 0.05; x—to the effect of hydrogen peroxide alone, p < 0.01, #—to the effect of
insulin or α-T alone, p < 0.01.
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2.7. Effect of Insulin and α-T on Mitochondrial Membrane Potential in Control and Hydrogen
Peroxide-Exposed Brain Cortical Neurons

The exposure of brain cortical neurons to hydrogen peroxide markedly diminished
the mitochondrial membrane potential [∆ψ(m)] in brain cortical neurons—from
70.4 ± 2.09 arbitrary units in control neurons to 55.9 ± 4.64 arbitrary units in hydro-
gen peroxide-treated neurons (p < 0.05) (Table 1). It was shown by flow cytometry that
the pre-incubation of neurons with 50 µM α-T or 1 µM insulin or with both drugs for 20 h
resulted in the marked and significant (p < 0.02) increase of mitochondrial membrane po-
tential of brain cortical neurons (see Table 1). The increase of ∆ψ(m) was more pronounced
if neurons were pre-incubated with insulin+ α-T than in the case of their pre-incubation
with one of these protectors, the differences being significant (p < 0.01) (Table 1). Thus,
α-T was found to enhance the ability of insulin to increase ∆ψ(m) in neurons which was
markedly diminished under conditions of oxidative stress.

Table 1. The effect of pre-incubation with insulin and α-tocopherol (α-T) on mitochondrial membrane
potential in brain cortical neurons exposed to hydrogen peroxide.

Sample Mean ± SEM

Control 71.1 ± 2.88

Control+Insulin 67.5 ± 0.15

Control+ α-T 68.3 ± 0.25

Hydrogen peroxide (HP) 55.9 ± 4.64 a

HP+ Insulin 78.3 ± 0.72 b

HP+ α-T 68.0 ± 0.36 b

HP+Insulin+ α-T 89.0 ± 2.36 b,c

Abbreviations used: α-tocopherol (α-T). Brain cortical neurons in culture were pre-incubated with 1 µM insulin
or with 50 µM α-T or with both protectors or without them for 20 h and then exposed for 1 h to 100 µM hydrogen
peroxide. The data are given as the means ± SEM of 4–5 determinations. The mitochondrial membrane potential
was measured using TMRM on a Beckman Coulter Epics XL flow cytometer. The data obtained were expressed in
arbitrary units. The differences are significant according to Student’s t-test: a—as compared to control values,
p < 0.05, b—as compared to the effect of hydrogen peroxide alone, p < 0.02, c—as compared to the effect of
hydrogen peroxide+insulin and hydrogen peroxide+ α-T, p < 0.01.

The histograms showing the control samples and the effect of hydrogen peroxide on
cortical neurons in the absence of the protectors and after the pre-incubation with 1 µM
insulin or with 50 µM α-T or with both compounds are given in Figure 7.

2.8. The Combination of Intranasally Administered Insulin Together with Orally Administered α-T
Diminished the Accumulation of Schiff Bases in the Brain Cortex of Rats with
Ischemia/Reperfusion to Higher Extent than Monotherapy with These Drugs

We studied the ability of insulin, α-T and their combinations to prevent or reduce
metabolic disorders caused by the activation of free radical reactions in the cerebral cortex of
rats with two-vessel forebrain ischemia and subsequent reperfusion. Two-vessel forebrain
ischemia together with hypotension and subsequent reperfusion, led to a pronounced
and significant increase in LPO products such as Schiff bases and conjugated dienes
and trienes, and partially inactivated Na+,K+-ATPase in the cerebral cortex of rats. The
ability of intranasally administered insulin and orally administered α-T to normalize the
accumulation of lipid peroxidation products (LPO) and prevent oxidative inactivation of
Na+,K+-ATPase in the cerebral cortex during ischemia and reperfusion was investigated.

The content of Schiff bases increased more than two times in the brain cortex of
rats with ischemia/reperfusion injury (Figure 8). The intranasally administered insulin
(0.25 IU/rat) or orally administered α-T (50 mg/kg) decreased the content of Schiff bases
(p < 0.01) (Figure 8). The administration of insulin plus α-T to rats decreased the level of
Schiff bases in brain cortex to a higher extent than administration of insulin or α-T alone
(p < 0.01) (Figure 8).
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Figure 7. The effect of hydrogen peroxide, insulin, α-T and insulin plus α-T on the mitochondrial
membrane potential in cortical neurons (histograms obtained by flow cytometry). Cortical neurons
were pre-incubated with 1 µM insulin, 50 µM α-T or with both compounds. Then neurons were
exposed to 100 µM hydrogen peroxide for 1 h. A1, A2, A3—controls, B1, B2, B3—the effect of
hydrogen peroxide alone, C1, C2, C3—the effect of hydrogen peroxide after pre-incubation of
neurons with: C1—1 µM insulin and 50 µM α-T, C2—1 µM insulin, C3—50 µM α-T, D1, D2, D3—the
overlay of the histograms presented in A, B and C.

2.9. The Combination of Intranasally Administered Insulin Together with Orally Administered α-T
Normalizes the Level of Conjugated Dienes and Trienes in the Brain Cortex of Rats with
Ischemia/Reperfusion to a Greater Extent than Monotherapy with These Drugs

The level of conjugated dienes was markedly higher (by 36.8%) in the brain cortex of
rats after ischemia and reperfusion as compared to sham-operated rats (p < 0.01). In the
brain cortex of ischemic and reperfused rats which received either insulin (intranasally,
0.25 IU/rat) or α-T (orally, 50 mg/kg), the level of conjugated dienes was higher by 21.3%
and 23.1%, respectively, as compared to sham-operated rats (p < 0.01) (Figure 9). At the
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same time, if both insulin and α-T were administered to rats with ischemic and reperfused
forebrain in the above-mentioned doses, the level of conjugated dienes was not different
from that in brain cortex of sham-operated rats (Figure 9). The additive effect of insulin
and α-T was observed, as the total effect of both protectors administered to ischemic and
reperfused rats was approximately equal to the sum of insulin ad α-T effects (Figure 9).

Figure 8. The effect of intranasally administered insulin and orally administered α-T on the content
of Schiff bases in the brain cortex of rats after two-vessel forebrain ischemia followed by reperfusion.
The data of 5–7 experiments are presented as the means± SEM. The two-vessel ischemia was induced
by ligation of carotid arteries for 20 min and hypotension, it was followed by reperfusion for 1 h.
Insulin was administered intranasally at a dose of 0.25 IU/rat, while α-T was given orally at a dose
of 50 mg/kg. The differences are significant according to Student’s t-test as compared: *—to the
control, x—to the effect of ischemia and reperfusion, #—to the effect of insulin and α-T alone, p < 0.01
in all cases.

The similar data were obtained when studying the level of conjugated trienes (Figure 10).
The level of conjugated trienes was markedly increased (by 30.6%) in ischemic and reper-
fused rat brain cortex as compared to sham-operated rats (p < 0.01). In the brain cortex of
ischemic and reperfused rats which received either insulin (intranasally, 0.25 IU/rat) or
α-T (orally, 50 mg/kg), the level of conjugated dienes was higher by 24.3% and 27.2% as
compared to sham-operated rats (Figure 10). In the brain cortex of rats with ischemic and
reperfused forebrain treated with insulin plus α-T, the levels of conjugated trienes did not
differ from those in sham-operated rats (Figure 10).
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Figure 9. The effect of intranasally administered insulin and orally administered α-T on the level of
conjugated dienes in the brain cortex of rats with two-vessel forebrain ischemia followed by reperfu-
sion. The data of 5–7 experiments are shown as the means ± SEM. The two-vessel forebrain ischemia
was induced by ligation of carotid arteries for 20 min and hypotension followed by reperfusion for
1 h. Insulin was administered intranasally at a dose of 0.25 IU/rat, while α-T was given orally at a
dose of 50 mg/kg. *—The differences are significant according to Student’s t-test as compared to
control values in the brain cortex of sham-operated rats, p < 0.01.

Thus, the combined use of insulin and α-T prevented an increase in the levels
of such LPO products as the conjugated dienes and trienes in brain of rats with is-
chemia/reperfusion. At the same time, the use of insulin or α-T monotherapy was not
effective. These data provide evidence that α-T markedly increases the ability of insulin to
normalize the metabolic disturbances in brain, which are induced by the activation of free
radical reactions.

2.10. Additive Activating Effect of the Intranasally Administered Insulin and Orally Administered
α-T on Na+,K+-ATPase Partially Inactivated in Brain Cortex of Rats with Two-Vessel Ischemia and
Subsequent Reperfusion

We studied the ability of intranasally administered insulin (0.25 IU/rat) and of orally
administered α-T (50 mg/kg) to normalize the Na+,K+-ATPase activity which is markedly
decreased in the brain cortex of rats with two-vessel forebrain ischemia and subsequent
reperfusion. The Na+,K+-ATPase activity was found to be 24.6 ± 1.27 µmol Pi/mg of
protein/h in control sham-operated rats, but it decreased (approximately by 35%) to
15.95 ± 0.82 µmol Pi/mg of protein/h in ischemic and reperfused rats. Both insulin and α-
T administration significantly increased the activity of Na+,K+-ATPase in the brain cortex of
rats with brain ischemia and subsequent reperfusion, their effects were found to be additive.
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The most pronounced increase of enzyme activity to 23.1 ± 0.83 µmol Pi/mg of protein/h
was reached if both protectors were administered to such rats (insulin intranasally and
α-T orally). The increase of the enzyme activity was in this case approximately equal to
the sum of the increase caused by insulin and α-T action (Table 2). Thus, when adding
the effects of insulin and α-T, acting separately, the increase in the Na+,K+-ATPase activity
will be 7.9 µmol Pi/mg of protein/h (2.55 + 5.35 µmol Pi/mg of protein/h). It is in a
good agreement with the increase in enzyme activity obtained in experiments with co-
administration of both drugs to rats with ischemic/reperfused forebrain injury (7.15 µmol
Pi/mg of protein/h) (Table 2).

Figure 10. The effect of intranasally administered insulin and orally administered α-T on the level
of conjugated trienes in the brain cortex of rats with two-vessel forebrain ischemia followed by
reperfusion. The data of 5–7 experiments are presented as the means ± SEM. The two-vessel
forebrain ischemia was induced by ligation of carotid arteries for 20 min and hypotension followed
by reperfusion for 1 h. Insulin was administered intranasally at a dose of 0.25 IU/rat, while α-T was
given orally at a dose of 50 mg/kg. *—The differences are significant according to Student’s t-test as
compared to control values in the brain cortex of sham-operated rats, p < 0.01.

Then, by immunoblotting, the levels of α-2 and α-3 subunits of Na+,K+-ATPase in
the cerebral cortex of ischemic and sham-operated rats and the effect of treatment with
insulin and α-T on it were investigated. It was shown that in ischemic rats the level of α-2
and α-3 subunits of Na+,K+-ATPase did not change (Supplementary Material Figures S1
and S2). Insulin, α-T and their combination significantly increased the α-2 subunit level
in ischemic/reperfused rats (Supplementary Material Figure S1). In sham-operated rats,
only α-T increased the α-2 subunit level (Supplementary Material Figure S1). In the case
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of the α-3 subunit of Na+,K+-ATPase, administration of α-T and both drugs significantly
increased the level of this subunit in the cerebral cortex of both ischemic and sham-operated
rats (Supplementary Material Figure S2).

Table 2. The effect of intranasally administered insulin and per-orally administered α-T on Na+,K+-ATPase activity in brain
cortex of rats with two-vessel ischemia followed by reperfusion (µmol Pi/mg of protein/h).

Sham-Operated or Ischemic and
Reperfused Rats Administration to Rats Na+,K+-ATPase Activity (µmol Pi/mg

of Protein/h)

Sham-operated rats - 24.6 ± 1.27

Sham-operated rats 0.25 IU insulin 22.7 ± 0.48

Sham-operated rats 50 mg α-T per kg 24.2 ± 0.51

Sham-operated rats 0.25 IU insulin and 50 mg α-T per kg 24.4 ± 0.74

Ischemic and reperfused rats - 15.95 ± 0.82 a

Ischemic and reperfused rats 0.25 IU insulin 18.5 ± 0.82 a,b

Ischemic and reperfused rats 50 mg α-T per kg 21.3 ± 0.83 c

Ischemic and reperfused rats 0.25 IU insulin and 50 mg α-T per kg 23.1 ± 0.83 c,d

The data of 6–8 experiments are given as the means ± SEM. The two-vessel ischemia was induced by ligation of carotid arteries for 20 min
and hypotension followed by reperfusion for 1 h. Insulin was administered intranasally in a dose of 0.25 IU, while α-T was given per-orally
in a dose of 50 mg per kg of rat body weight. The differences are significant according to Students’ t-test as compared: a—with control
values in sham-operated rats, p < 0.01, b,c with the effect of ischemia and reperfusion, b p < 0.05, c p < 0.001, d with the effect of insulin alone,
p < 0.01.

3. Discussion

A decrease of insulin content and insulin signaling in the brain is characteristic of
Alzheimer’s and Parkinson’s diseases and diabetes mellitus. The deficit of insulin signaling
leads to the impairment of metabolic processes in brain neurons and their function. It is one
of the main causes of the disturbances in learning and memory. The most effective way of
insulin delivery to the brain is its intranasal administration, in which insulin enters directly
to the brain, bypassing the blood-brain barrier [11,12]. In clinical trials, the intranasal ad-
ministration of insulin to patients with Alzheimer’s and other neurodegenerative diseases
was shown to improve the cognitive functions (see, for example, [15–19]). Meanwhile, in
the course of these trials, the first evidence of the development of central insulin resistance
appeared. The long-acting insulin analogue Detemir (21 days, 40 IU/patient/day) signifi-
cantly improved memory in patients with Alzheimer’s disease and moderate cognitive
deficits [15], but its improving effect with prolonged use (2–4 months) at the same daily
dose disappeared [16]. These data suggest that long-acting insulin Detemir induces the
chronic brain hyperinsulinemia, which leads to the insulin resistance of brain cells. Taking
into account the possibility of the development of central insulin resistance as a result
of prolonged intranasal administration of high-dose insulin, it is important to identify
biologically active substances that can enhance the protective effect of insulin and increase
its effectiveness at lower doses used for treatment. This can help to prevent a decrease in
the insulin sensitivity of neurons with prolonged intranasal administration of this hormone
to patients.

As far as the clinical trials of α-T or vitamin E administration to patients are con-
cerned, the data obtained are to a certain extent contradictory (see, for example, [30,31,40]).
According to the data obtained by Dysken and co-authors [30], in the trials performed
from 2007 to 2012, it was shown that prolonged (more than for two years) administration
of vitamin E at a daily dose of 2000 IU to patients with mild to moderate Alzheimer’s
disease resulted in slower decline in cognitive functions as compared to placebo group.
α-T administration improved the activities of daily living and decreased the caregiver
burden [30]. The treatment with α-T of the patients with Alzheimer’s disease having
moderately severe impairment slowed the progression of the disease [40]. In this case,
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the clinical trials also took place for 2 years, and the patients received 2000 IU of α-T
daily. At the same time, in this work the beneficial effect of α-T administration for long
time to patients with mild cognitive impairment was not revealed [40]. In the Cochrane
Review of the clinical trials performed before 2000 year [31], no evidence was revealed that
vitamin E or α-T improved cognitive function in patients with mild cognitive impairment
or dementia, characteristic to Alzheimer’s disease. Meanwhile, the authors indicated
that there was moderate quality evidence from a single study that α-T administration
could slow functional decline in patients with Alzheimer’s disease. Vitamin E or α-T was
not associated with an increased risk of serious adverse events or mortality in various
trials [30,31,40]. If patients with Alzheimer’s disease received every day a mixture of
folate, α-T, vitamin B12, S-adenosyl methionine, N-acetylcysteine and acetyl-L-carnitine,
it prevented the decline of their cognitive performance for a period over 12 months and
improved the behavioral and psychological symptoms of dementia [41]. All these data
suggest that α-T treatment of humans appears to be safe and may have a positive effect on
patients with neurodegenerative diseases.

We have shown that pre-incubation of brain cortex neurons in culture with 1 µM
insulin and 50 µM α-T prior to application of hydrogen peroxide markedly increased the
viability of these cells (Figure 1). The protective effect of the combination of these drugs
was additive, it was significantly higher than the effect of each drug alone (p < 0.01). We
used long (18 h) pre-incubation with α-T, as in this case its neuroprotective effect is due to
modulation of signaling pathways and not to its scavenging effect as in the case of short
pre-incubation of neurons with this antioxidant [39,42]. α-T was found to enhance the
antiapoptotic effect of insulin as well (Figure 2).

Pre-incubation with either insulin or α-T was found to decrease the formation of
ROS in brain cortical neurons induced by hydrogen peroxide. The effect of insulin plus
α-T was more pronounced (Figure 3) than the effect of each of them, and the difference
was significant (p < 0.05). Hydrogen peroxide-induced oxidative stress in brain cortical
neuron resulted in the pronounced decrease in mitochondrial membrane potential. The
pre-incubation of the neurons with insulin plus α-T or with either insulin or α-T alone led
to the significant increase in ∆ψ(m), the effect of insulin plus α-T being more pronounced
(Figure 7) than the effect of each compound used separately (p < 0.01).

The enhancement of the protective effect of insulin by α-T was not shown before
our study. So, the mechanism of this effect is not known yet. In order to obtain the first
data for understanding of this mechanism we studied the effect of insulin, α-T and their
combination on the activity of Akt-kinase, GSK-3beta and ERK1/2. We estimated the ratio
pAkt (Ser473)/Akt to show the activation of Akt. Insulin activated Akt-kinase both in
control cortical neurons and in the neurons 15 min and 6 h after application of hydrogen
peroxide (Figure 4). Meanwhile, we did not reveal the significant activating effect of α-T
on Akt at the same time points. In our previous studies we have found that not only
insulin [43], but α-T as well is able to activate Akt-kinase in brain cortical neurons under
oxidative stress conditions [39], but the effect of these two drugs was detected at different
time points after pro-oxidant addition [39,43]. In the present work it was shown that Akt
activity in brain cortical neurons 6 h after the application of pro-oxidant is significantly
higher in the case of application of insulin plus α-T (Figure 4) as compared to application
of insulin or α-T alone (p < 0.01 by paired Student’s t-test in both cases).

Activation of Akt has a protective effect as it increases the synthesis of the antiapoptotic
protein Bcl-2 and the ratio Bcl-2/Bax, and inactivates kinase GSK-3beta, phosphorylating
it at the Ser9 residue. The activation of GSK-3beta leads to the decrease in mitochondrial
membrane potential, to the opening of mitochondrial permeability transition pores (mPTP)
and to the increase in ROS formation in various cells, including neurons [44–46]. The
inhibition of GSK-3beta improves the mitochondrial function. In the present study, we have
shown that pre-incubation of brain cortical neurons with insulin significantly increased the
phosphorylation of GSK-3beta at the Ser9 in control neurons and in the neurons 15 min and
6 h after the application of hydrogen peroxide to the cells (Figure 5). It means that insulin
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inactivated GSK-3beta. We have not revealed the effect of α-T on the phosphorylation of
GSK-3beta in control cells and 15 min after addition of prooxidant. At the same time in
neurons 6 h after the application of hydrogen peroxide, the use of α-T in the combination
with insulin increased the phosphorylation of GSK-3beta and hence enhanced the insulin-
induced inactivation of this enzyme (Figure 5). The difference between the effect of insulin
plus α-T and the effects of each of them was significant (p < 0.01 by paired Student’s t-test).
The ability of α-T to enhance the Akt activation and GSK-3beta inactivation, induced by
insulin, explains to a certain extent its ability to increase the protective effect of insulin on
brain cortical neurons observed in our study.

The modulation of ERK1/2 activity by insulin and α-T may also contribute to the
ability of these drugs to enhance the protective effect of each other on the nerve cells.
Previously, short activation of ERK1/2 by various compounds was shown to increase
the viability of neurons [34–37], but long-term activation of ERK1/2 promoted nerve
cells death [35,38]. In ischemic brain, the persistent activation of ERK1/2 occurs, and the
ERK1/2 inhibitors were found to improve the brain metabolism and functional state of
animals [47–50]. In the present study, we showed that in cultured brain cortical neurons, 6 h
after the addition of hydrogen peroxide the ERK1/2 activity was increased. Pre-incubation
of the neurons with insulin or α-T decreased the activity of ERK1/2, and the combination
of insulin and α-T resulted in a more pronounced decrease in ERK1/2 activity, normalizing
it in cortical neurons.

Thus, according to the data obtained in the present study, in brain cortical neurons, α-T
is able to increase the insulin-induced activation of Akt-kinase and to intensify the insulin-
induced inactivation of GSK-3beta and ERK1/2 at late stages of oxidative stress, thereby
increasing the neuroprotective effects of insulin. Most probably, the ability of insulin and
α-T to increase the neuroprotective effects of each other depends on modulation of other
signaling pathways and protein kinases as well, which requires further investigations.

One of the main causes of neuronal damage and death during brain ischemia and
subsequent reperfusion is activation of free radical reactions. An important task was to
find out whether insulin and α-T are capable of enhancing each other’s effects on metabolic
abnormalities caused by the activation of free radical reactions, which are characteristic of
two-vessel forebrain ischemia with hypotension and subsequent reperfusion.

It may be emphasized that in order to reveal the additive effect of insulin and α-T,
we applied much lower doses of these drugs than are usually used when studying their
protective effects in vivo. Effects of insulin administered intranasally to rats are usually
studied using its dose of 0.5 IU/rat [51,52]. As far as α-T is concerned, administration of
125 or even 250 mg/kg of this compound to rats orally is used frequently when studying
the protection elicited by a single or multiple administration of this drug [53,54]. In
our experiments, we administered to rats once 0.25 IU of insulin intranasally and twice
50 mg/kg of α-T orally.

Levels of LPO products such as Schiff bases increased markedly in the brain cortex
of rats with two-vessel forebrain ischemia/reperfusion injury. Both intranasal administra-
tion of insulin (0.25 IU/rat) and oral administration of α-T (50 mg/kg) to ischemic rats
significantly diminished the accumulation of Schiff bases in the brain cortex. The most
pronounced diminution of Schiff bases took place at co-administration of these drugs.
In this case, the decrease of Schiff bases content was more pronounced as compared to
administration of either insulin, or α-T alone, the difference was significant (p < 0.01)
(Figure 8).

The content of conjugated dienes and trienes also increased markedly in the brain
cortex of rats subjected to two-vessel ischemia, hypotension and subsequent reperfusion.
Neither intranasally administered insulin, nor orally administered α-T could normalize
the content of conjugated dienes or trienes in ischemic rats, as their level remained sig-
nificantly higher as compared to their level in sham-operated rats. At the same time,
co-administration of insulin and α-T led to normalization of the levels of conjugated dienes
and trienes in the brain cortex of rats with forebrain ischemia, they became practically
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equal to control values in the brain cortex of sham-operated rats, the difference was quite
small and not significant (Figures 9 and 10). Thus, insulin and α-T enhance the restoration
effect of each other on brain metabolic processes under the conditions of activation of free
radical reactions, and their combined use more effectively restored redox status of ischemic
brain than monotherapy with these drugs.

The enzyme Na+,K+-ATPase is an important component of all animal cells, and its
main function is the maintenance of resting potential of the cells and the regulation of cell
volume. In the neurons, the difference in the concentrations of sodium and potassium
ions in the cells and in the extracellular space, is a result of Na+,K+-ATPase activity and
is used for propagation of the nerve impulses [55,56]. The decrease in the activity of
Na+,K+-ATPase may be considered as an integral indicator of metabolic and functional
impairments in the brain. The normalization of the activity of this enzyme may be an evi-
dence of improvement of brain metabolism and functions. The decrease of Na+,K+-ATPase
activity in ischemic and reperfused brain cortex may be a result of oxidative inactivation of
this enzyme due to the decrease of the reduced SH groups and of the inhibitory effect of
such LPO products as 4-hydroxynonenal [57–59]. The antioxidant effect of α-T and insulin
and their ability to reduce accumulation of LPO products contribute to their normalizing
effect on Na+,K+-ATPase activity in the brain cortex of rats with two-vessel forebrain
ischemia and subsequent reperfusion.

As we have shown, in the brain cortex of ischemic rats, the Na+,K+-ATPase activity was
decreased significantly as compared to sham-operated rats, and the treatment with insulin
or α-T led to an increase in the enzyme activity (p < 0.05 and p < 0.01, respectively). The
co-administration of insulin and α-T used at relatively low doses in the in vivo experiments
appears to be effective, and their action was shown to be additive. These drugs enhance
the ability of each other to reduce the ROS-induced metabolic disturbances and thereby
prevent neurodegenerative processes in the ischemic and reperfused brain.

4. Materials and Methods
4.1. Materials

Poly-D-lysine, sodium dodecyl sulfate, 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT), 2′,7′-dichlorofluorescein diacetate, hydrogen peroxide,
NADH and insulin were obtained from Sigma-Aldrich (St. Louis, MO, USA). The neu-
robasal medium, B27 Supplement, B27 supplement without insulin, penicillin/streptomycin
solution and glutamax were obtained from Gibco (Paisley, UK). Hanks buffered salt solu-
tion and trypsin/versen (1:1) solution were purchased from the Biolot Company (Saint-
Petersburg, Russia), and dimethylformamide was obtained from Vecton (Saint-Petersburg,
Russia). The primary and secondary antibodies and other reagents used for immunoblot-
ting are described in Section 4.6.

4.2. Brain Cortical Neurons in Culture

Immature brain cortical neurons were isolated from embryonic day 17–18 Wistar rat
fetuses as previously described [60]. All procedures of using animals were performed
in accordance with the European Community Council Directive 1986 (2010/63/EEC)
and “Guide for the care and use of laboratory animals”. They were approved by the
Bioethics committee of the Institute of Evolutionary Physiology and Biochemistry of
Russian Ac. Sci. In order to prepare primary cultures of immature brain cortical neurons the
isolated cells were seeded on poly-D-lysine-coated 24-well and 12-well plates at a density
of 5 × 105 and 1 × 106 cells per well, respectively. Cells were cultured in neurobasal
medium containing 2% of B27 supplement, 2 mM glutamax, 100 U/mL of penicillin and
100 µg/mL of streptomycin (growth medium). Every three days half of the culture medium
was replaced. The beginning of the experiments took place on the 5th–6th day in vitro
of neuron cultivation in the growth medium. Before the start of the experimental work
the growth medium was replaced by neurobasal medium containing 1% B27 supplement
without insulin, the neurons were left in it overnight.
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4.3. Determination of the Viability of Brain Cortical Neurons by MTT Method and of Activation of
Caspoase-3 Measuring the Level of Its 17–19 kDa Fragment

Brain cortical neurons were preincubated with 50 µM α-T for 18 h or with 1 µM insulin
for 1 h or with both protectors or without them in the neurobasal medium containing 1%
B27 without insulin. Then the cells were exposed to 100 µM hydrogen peroxide for 6 h.
The viability of brain cortical neurons in culture was evaluated by means of colorimetric
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The MTT
assay which is based on the ability of mitochondria of viable cells to reduce MTT to purple-
colored MTT-formazan was conducted as previously described [61]. A microplate reader
“Anthos” was used to measure the absorbance of MTT-formazan at 575 nm. The extinction
of the samples was expressed as percent of the extinction of control samples, which was
taken for 100%.

The caspase-3 activity in brain cortical neurons and hence the apoptotic death of
the cells was estimated measuring the level of cleaved caspase-3, that is the level of its
17–19 kDa fragment in control neurons and in neurons 15 min and 6 h after the initiation
of the oxidative stress in the cells by application of 100 µM hydrogen peroxide. The level of
this fragment shows the degree of cleavage and activation of caspase-3. It was measured
using immunoblotting technique.

4.4. Determination of ROS Formation in Brain Cortical Neurons

Brain cortical neurons were preincubated with 50 µM α-T for 18 h or with 1 µM insulin
for 1 h or with both protectors or without them in the neurobasal medium containing 1%
of B27 Supplement without insulin. Then the cells were switched to Hanks’ balanced
salt solution (HBSS) to start loading of 10 µM dye 2′,7′-dichlorofluorescein diacetate for
40 min at 37 ◦C in the dark. After washing twice with HBSS, the neurons were exposed
to 100 µM hydrogen peroxide for 1 h. The fluorescence of the reaction product of 2′,7′-
dichlorofluorescein with ROS was determined using a Fluoroscan Ascent FL (Thermo
Fisher Scientific, Helsinki, Finland) fluorimeter for plates (excitation at λ = 485 nm, emis-
sion measured at λ = 538 nm). The ROS levels in the samples were determined using
arbitrary units.

4.5. Evaluation of Insulin, α-T and Hydrogen Peroxide Effects on Akt, GSK-3beta and ERK1/2
Activities and Expression of These Protein Kinases and of Cleaved Caspase-3 Using Western
Blot Analysis

After pre-incubation with 50 µM α-T for 18 h or 1 µM insulin for 1 h or with both
protectors or without them hydrogen peroxide was added to the samples to the final
concentration of 100 µM for 6 h. The cortical neurons were washed twice with ice-cold
phosphate buffer solution (PBS). Then they were harvested in 60 µL of lysis buffer. The
lysis of cortical neurons and determination of protein concentrations were performed as
previously described [39].

The equal amounts of lysates (20–25 µg of protein) were loaded into each lane on 10%
sodium dodecyl sulfate polyacrylamide gel. The electrophoresis of the samples was made
at constant voltage. Afterwards, the proteins were transferred to 0.45 µm Protran nitro-
cellulose membranes (Amersham, GE Healthcare, Little Chalfont, Buckinghamshire, UK).
The nonspecific binding sites of the membranes were blocked as it was previously de-
scribed [39]. Monoclonal antibodies specific for pAkt (Ser473) (1:1000, #4058, Cell Signaling
Technology, Danvers, MA, USA), for pGSK-3beta (Ser9) (1:1000, #9322, Cell Signaling
Technology), for pERK1 (pThr202/pTyr204) and pERK2 (pThr185/pTyr187) (1:2000, #E7028,
Sigma-Aldrich), and for cleaved caspase-3 (Asp175) (1:1000, #9664, Cell Signaling Technol-
ogy) were used to probe the blots overnight at +4 ◦C. The specific antibodies to total Akt
(1:1000, #4691, Cell Signaling Technology), ERK1/2 (1:1000, #9102, Cell Signaling Technol-
ogy) and GSK-3beta (1:1000, #9315, Cell Signaling Technology) were used to determine the
level of these enzymes and the possible changes in their expression. After incubation with
primary antibodies the blots were washed three times with 0.1% Tween 20 in Tris-buffered
saline (50 mM Tris (pH 7,5), 150 mM NaCl) and incubated with either anti-mouse (#7076) or
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anti-rabbit (#7074) HRP-IgG secondary antibody (Cell Signaling Technology) diluted in 5%
nonfat milk with TBST buffer for 1 h at room temperature. The ratios pAkt (Ser473)/Akt,
pERK1/2/Total ERK1/2, pGSK-3beta (Ser9)/GSK-3beta were determined and taken as 1.0
in control cells. In order to normalize the data, membranes after stripping were re-probed
for α-tubulin (1:2000, #T6074, Sigma-Aldrich). To check the changes of the expression of
total ERK1/2, Akt and GSK-3beta, their ratio to α-tubulin was determined and taken as 1.0
in control neurons. The stripping procedure was previously described [39]. The ratios of
cleaved caspase-3 (17–19 kDa fragment)/α-tubulin were also determined. These ratio in
control cells was taken as 1.00. Blots were developed with an Novex ECL HRP enhanced
chemiluminescence detection reagent Kit (Invitrogen, Waltham, MA, USA). The films were
scanned on a CanoScan 8800F scanner (Canon, Tokyo, Japan). Bio7 was used to quantify
the optical densities of the positive bands.

4.6. Determination of the Effects of Hydrogen Peroxide Application and of Pre-Incubation with
Insulin and α-Tocopherol on Mitochondrial Membrane Potentials in Brain Cortical Neurons
in Culture

Evaluation of mitochondrial membrane potentials (∆ψ(m)) in brain cortical neurons
was performed by the flow cytometry method using the fluorescent dye tetramethylrho-
damine (TMRM) [62]. Prior to the beginning of the experiments the growth medium was
changed to neurobasal medium containing 1% of B27 supplement without insulin and brain
cortical neurons were incubated in it for 6 h. Then the neurons were pre-incubated with
insulin and/or α-T for 20 h in this medium, afterward hydrogen peroxide was added to the
samples to the final concentration of 100 µM and the neurons were incubated for 1 h. The
cells were taken off the wells by trypsin–versen (1:1) and washed by HBSS. The residue was
resuspended in HBSS containing 100 nM TMRM. Then the incubation with it for 30–40 min
at 37 ◦C in the dark was performed. The samples were analyzed by flow-cytometry method
using an Epics XL cytometer (Beckman Coulter, Brea, CA, USA. Fluorescence was mea-
sured at 575 nm in an F2 channel. At least 10,000 events were recorded in each sample.
The intensity of fluorescence was shown on logarithmic scale, it was expressed in arbitrary
units as the mean intensity of fluorescence. The program WinMDI, version 2.9 was used in
order to analyze the cytofluorometric data.

4.7. Two-Vessel Forebrain Ischemia in Wistar Rats

The experiments were performed using Wistar rats kept in standard vivarium con-
ditions and weighing 270–330 g. All procedures of using animals were performed in
accordance with the European Community Council Directive 1986 (2010/63/EEC) and
“Guide for the care and use of laboratory animals”. They were approved by the Bioethics
committee of the Institute of Evolutionary Physiology and Biochemistry of Russian Ac.
Sci. Chloral hydrate (400 mg/kg body weight) was used for anesthesia. Two-vessel fore-
brain ischemia was induced by 20-min occlusion of carotid arteries in combination with
hypotension. Hypotension was induced by blood sampling until reaching arterial pressure
of 50 mm Hg as it was described previously [63]. Before blood sampling rats were injected
with 0.2 mL 0.9% NaCl containing 10 IU of heparin, then blood was taken in the same
syringe. Upon cessation of 20-min occlusion, the carotid arteries were unclamped and
heparinized blood withdrawn at the ischemic stage was returned back to the cerebral circu-
lation. The brain was reperfused for 1 h. The data obtained for sham-operated rats were
used as controls. Intranasal administration of insulin was performed 1 h before occlusion
of carotid arteries by putting 10 µL of citrate buffer solution containing insulin into each
nostril. Citrate buffer was prepared from equal volumes of 100 mM citric acid and 100 mM
sodium citrate, pH 4.4. The solution of citrate buffer contained 0.5 mg insulin in 1 mL. It
corresponds to insulin dose of 0.25 IU in 20 µL of the solution, which was administered
to rats intranasally in our experiments. α-T was given to rats per-orally (50 mg per kg
of rat body weight in the evening a day before operation and 1 h before the beginning
of operation.
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4.8. Determination of Lipid Peroxidation Products, Na+,K+-ATPase Activity and Na+,K+-ATPase
subunits expression in Brain Cortex of Rats after Two-Vessel Ischemia and Reperfusion

Upon cessation of reperfusion, animals were decapitated, with the brain cortex with-
drawn thereafter. The level of various lipid peroxidation products was studied in lipid
extracts of the rat brain cortex. Lipids were extracted with chloroform-methanol (2:1),
as previously described [64]. In order to get rid from nonlipid admixtures the extracts
were washed with cooled 0.9% NaCl solution in water (0.2 volumes of the lipid extract) as
recommended by Folch and co-authors. Then the surface of the lower phase was washed
twice with a “theoretical upper layer”–chloroform:methanol:H2O mixture (3:48:47). Then
the lipid extract was evaporated and dissolved in chloroform. The fluorescent intensity
of Schiff bases was measured on a RF 1501 spectrofluorometer (Shimadzu, Kyoto, Japan)
(excitation at λ = 370 nm, emission measured at λ = 450 nm [65]. The results were ex-
pressed as relative units (fluorescence units) per 1 mg of lipids. To determine the level
of conjugated diene and triene, the evaporated lipid extract was dissolved in a mixture
of methanol and hexane (5:1). Ultraviolet absorbance, measured at 232 and 274 nm, was
employed to monitor the formation of conjugated dienes and trienes, respectively, and the
measurement was performed on spectrophotometer UV-2401 (Shimadzu). The increasing
absorption values are an indication that lipid peroxidation is proceeding [66]. The content
of conjugated dienes and trienes was expressed in arbitrary units per 1 mg of lipids.

Na+,K+-ATPase activity was determined in the crude synaptosome fraction (P2-
fraction) from the rat brain cortex by a coupled reaction in the presence of excess pyruvate
kinase, lactate dehydrogenase and phosphoenolpyruvate as reported previously [67].
Na+,K+-ATPase activity was expressed in µmoles of inorganic phosphate (Pi) per 1 mg
protein for 1 h.

The level of α-2 and α-3 subunit of Na+,K+-ATPase in the rat brain cortex was mea-
sured by means of Western blot analysis. The dissected brain cortex tissues were homoge-
nized in the ratio 1:20 in the lysis buffer. This buffer contained 20 mM Tris-HCl (pH 7.5),
150 mM NaCl, 2 mM EGTA, 2 mM EDTA, 0.5% sodium deoxycholate, 0.5% Triton X-100,
15 mM NaF, 10 mM sodium glycerophosphate, 10 mM sodium pyrophosphate, 1 mM
Na3VO4, 1 mM phenylmethylsulfonyl fluoride (PMSF), 0.02% NaN3, and the protease
inhibitor cocktail (Roche, Switzerland). The cell fragments and the undamaged cells were
separated by centrifugation at 500× g for 10 min (4 ◦C). The protein concentration was
measured by the Lowry method with BSA as a standard. Twenty micrograms of protein per
sample were run on 9% SDS-polyacrylamide gel. Specific antibodies raised against Sodium
Pump subunit α-2 (1:1000, #LS-C368564, LifeSpan BioSciences Inc., Seattle, WA, USA) and
Sodium Potassium ATPase α3 subunit (1:1000, #NB300-540, Novus Biologicals, Centennial,
CO, USA) were applied for immunostaining in Western Blot Analysis. To normalize the
data, the membranes were treated with the antibodies against glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (1:5000, #NB600-502, Novus Biologicals).

4.9. Statistical Analysis

Data are presented as mean ± SEM. The statistical significance of the differences
between three or more groups of data was assessed by one-way analysis of variance
(ANOVA) followed by Tukey’s test for multiple comparisons. Statistical significance of
differences between two groups of data was determined using the Student’s t-test or
Student’s paired t-test. Student’s paired t test was used in the case of immunoblotting
experiments performed on primary cultures of brain cortex neurons. Differences were
considered significant at p < 0.05.

5. Conclusions

Clinical trials show that insulin administered intranasally is promising as a drug for
neurodegenerative and, probably. other diseases associated with brain damage. However,
long-term systemic or intranasal administration of high-dose insulin can lead to insulin
resistance, including the brain insulin resistance. It seems of importance to reveal endoge-
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nous or exogenous substances that can enhance the neuroprotective effect of insulin, and
these substances may include α-T, the main and most active component of vitamin E. The
aim of our work was to study the effectiveness of the insulin plus α-T combination to
prevent the death of cultured brain cortical neurons under conditions of oxidative stress
and to normalize ROS-induced metabolic dysfunctions in the cerebral cortex of rats with
two-vessel forebrain ischemia/reperfusion injury.

In our study, it was for the first time shown that α-T significantly enhanced the
protective, antiapoptotic, and antioxidative effects of insulin on cortical neurons under
conditions of oxidative stress. The protective and antioxidative effects of these drugs
were additive. Pre-incubation of neurons with 1 µM insulin plus 50 µM α-T increased
the viability of brain cortical neurons more than pre-incubation with either of these drugs.
The pronounced increase of cleaved caspase-3 level (17–19 kDa) and hence of caspase-3
activation was observed 6 h after the beginning of the exposure of neurons to 100 µM
hydrogen peroxide. The combined use of insulin and α-T decreased the level of cleaved
caspase-3 (and, consequently, the apoptotic death of neurons) to a greater extent than
pre-incubation with each of these drugs. In cortical neurons, the antioxidant effect of
insulin plus α-T was more pronounced than in the case of the application of insulin or
α-T alone.

As the enhancement of neuroprotective effect of insulin by α-T was first shown in
our study, the mechanisms of this effect were not known. In order to decipher them, we
studied the modulation of the activity of various protein kinases by insulin, α-T and insulin
plus α-T in cultured brain cortical neurons under conditions of oxidative stress, induced by
hydrogen peroxide. At the later stages of oxidative stress, the combined action of insulin
and α-T led to an increase in Akt activity, inactivation of GSK 3beta and normalization of
ERK1/2 activity, and these effects were more pronounced than those of either drug.

In rats, forebrain ischemia and subsequent reperfusion increased the content of LPO
products and caused oxidative inactivation of Na+,K+-ATPase in the cerebral cortex. Co-
administration of insulin and α-T resulted in a more pronounced normalization of the
levels of Schiff bases, conjugated dienes and trienes and the activity of Na+,K+-ATPase
than the administration of one of these drugs. As activation of free radical reactions is
one of the main causes of nerve cell damage and death in the ischemic and reperfused
brain, these data suggest that α-T is able to enhance the neuroprotective effect of insulin in
ischemic conditions followed by reperfusion. Further experiments will show whether the
combined use of insulin and α-T is able to prevent effectively neuropathies characteristic
of neurodegenerative, ischemic and other brain injuries.
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Abbreviations

α-T α-Tocopherol
Akt Protein kinase B
ERK1/2 Extracellular signal-regulated protein kinase
GSK-3beta Glycogen synthase kinase-3beta
IGF-1 Insulin-like growth factor-1
LPO Lipid peroxidation
MTT 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
ROS Reactive oxygen species
TMRM Tetramethylrhodamine methyl ester
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