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Abstract: Laccases can catalyze the remediation of hazardous synthetic dyes in an eco-friendly
manner, and thermostable laccases are advantageous to treat high-temperature dyeing wastew-
ater. A novel laccase from Geothermobacter hydrogeniphilus (Ghlac) was cloned and expressed in
Escherichia coli. Ghlac containing 263 residues was characterized as a functional laccase of the DUF152
family. By structural and biochemical analyses, the conserved residues H78, C119, and H136 were
identified to bind with one copper atom to fulfill the laccase activity. In order to make it more suitable
for industrial use, Ghlac variant Mut2 with enhanced thermostability was designed. The half-lives of
Mut2 at 50 ◦C and 60 ◦C were 80.6 h and 9.8 h, respectively. Mut2 was stable at pH values ranging
from 4.0 to 8.0 and showed a high tolerance for organic solvents such as ethanol, acetone, and
dimethyl sulfoxide. In addition, Mut2 decolorized approximately 100% of 100 mg/L of malachite
green dye in 3 h at 70 ◦C. Furthermore, Mut2 eliminated the toxicity of malachite green to bacteria and
Zea mays. In summary, the thermostable laccase Ghlac Mut2 could effectively decolorize and detoxify
malachite green at high temperatures, showing great potential to remediate the dyeing wastewater.

Keywords: thermostable laccase; malachite green; decolorization; detoxification

1. Introduction

Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2), a member of polyphe-
nol oxidases, can oxidize a wide range of phenolic and nonphenolic compounds [1].
Laccases typically contain four copper atoms in their active center [1]. Type 1 copper,
which exhibits strong electronic absorbance at 610 nm, can abstract one electron from the
substrate. During the subsequent electron transferring, oxygen is reduced to water at
the trinuclear center formed by Type 2 and 3 copper [2]. Thanks to their broad substrate
specificity and the green reaction only requiring oxygen and releasing water as the sole
by-product, laccases have been applied for industrial use such as delignification to improve
biomass saccharification [3], biobleaching [4], degradation of environmental pollutants [5],
and decolorization and detoxification of dyes [6,7].

Laccases are widely distributed in fungi, plants, insects, and bacteria. Bacterial lac-
cases exhibit rather low redox potential about 400 mV as compared with fungal laccases
with higher redox potential between 470 and 810 mV [8]. Because of the high redox poten-
tial, the laccases from fungi have been the focus of research, and their applications have
been extensively exploited [9]. However, the long production cycle, poor thermostability,
and low tolerance for the alkaline condition hinder the practical application of fungal
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laccases [9]. Recently, bacterial laccases have been found to possess advantageous charac-
teristics, including good stability under high temperature and alkaline conditions [2,5,10].
Besides, with the help of a redox mediator, bacterial laccases could gain the ability to
degrade the recalcitrant substrates with higher redox potential than that of bacterial lac-
cases [11,12]. Therefore, bacterial laccases could be promising alternatives to fungal laccases
for some specific industrial applications.

Malachite green (MG), a triphenylmethane dye, is extensively used in the textile dye-
ing industry [13]. As a recalcitrant chemical with teratogenic, carcinogenic, and mutagenic
effects, the large amount of discharged MG persistently threatens the environment and pub-
lic health [13,14]. The fungal laccases from Trametes sp. 48424, Cerrena sp., and T. asperellum,
as well as bacterial laccases from Bacillus pumilus, Bacillus sp. FNT, and Sulfitobacter indolifex,
were demonstrated to decolorize MG under mesothermal conditions [15–19]. However,
the temperature of wastewater released from the dyeing process is always above 50 ◦C [20],
and a higher temperature usually means higher decolorization velocity [21]. In order to
avoid the extra cooling process to reduce the cost and take full advantage of the high
temperature of the dyeing wastewater to fulfill the maximum decolorization rate in a short
period, laccases with high optimal temperatures and excellent thermostability are required.

The DUF152 laccases, a new subfamily of the bacterial laccases, were characterized
in 2006. The molecular weights (about 30 kDa) and amino acid sequences of the DUF152
laccases are quite different from those of typical laccases (50–130 kDa) [22]. The iso-
lated DUF152 laccases RL5 from a metagenome expression library of the bovine rumen,
Tfu1114 from Thermobifida fusca, and LaclK from Kurthia huakuii had high optimal tem-
peratures (above 60 ◦C) and showed excellent thermostability [22–24]. Their potential to
decolorize different dyes such as poly-R 478, ethyl violet, and methylene blue was demon-
strated [22,24]. Besides, thanks to its good thermostability, Tfu1114 was incorporated into
the cellulosome, significantly enhancing the ability to hydrolyze the unpretreated wheat
straw [25]. Therefore, the DUF152 laccases showed great potential to treat high-temperature
dyeing wastewater. Herein, a novel member of DUF152 laccases, Ghlac, was characterized
from Geothermobacter hydrogeniphilus, and its putative copper binding site was identified.
In addition, Ghlac variant Mut2 with improved thermostability was engineered, and its
capability of decolorizing MG at high temperatures was assessed. After Mut2 treatment,
the toxicity of MG to bacteria and plants was evaluated to promote its practical application.

2. Results and Discussion
2.1. Sequence Analysis, Expression, Purification, and Mutation of Ghlac

The open reading frame of Ghlac encoding an uncharacterized protein containing the
consensus sequences of DUF152 laccases was found in the thermophile G. hydrogeniphilus.
Ghlac contains 263 residues with a theoretical molecular weight of 29.0 kDa. Multiple
sequence alignment showed that Ghlac shares 22.6%, 30.2%, and 34.0% identities to LaclK,
RL5, and Tfu1114, respectively (Figure 1A). The putative copper binding sites (N41, H78,
C119, and H136) were conserved in Ghlac [22]. The structure model indicated that Ghlac
has a similar structural fold to the DUF152 member GsYlmD (Figure 1B).

As aforementioned, we suggested that Ghlac is a putative functional laccase. To verify
this, Ghlac was cloned, expressed, and purified using Ni-NTA chromatography (Figure 1C).
The molecular weight of the purified homogeneous Ghlac corresponded to the predicted
size (Figure 1C). The activity assay showed that Ghlac could oxidize 2,2′-azino-bis(3-
ethylbenzthiazoline)-6-sulfonate (ABTS), the typical substrate of laccases. Km and kcat
of Ghlac were 1.3 mM and 125.7 min−1, respectively (Figure 2A), which are comparable
to those of the DUF152 laccases Tfu1114 and LaclK and the typical laccase pLacSi from
S. indolifex [18,23,24].
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Figure 1. Structure analysis and purification of Ghlac. (A) The sequence alignment of Ghlac WT, 
Mut2, GsYlmD (WP_053413740.1), RL5 (CAK32504.1), Tfu1114 (AAZ55152.1), and LaclK 
(WP_029500662). The identical residues are highlighted in red. The putative residues binding with 
copper ions are labeled with the residue numbers. (B) Structural model of Ghlac based on GsYlmd 
(PDB: 6T0Y, https://www.rcsb.org/structure/6T0Y, accessed on 18 May 2020). The putative residues 
binding with copper ions are labeled. (C) SDS-PAGE analysis of Ghlac purified using Ni-NTA 
chromatography. Lane M: protein marker; lane 1: the supernatant of the homogenized cells ex-
pressing Ghlac WT; lane 2–7: the purified Ghlac WT, Mut2, H78A, C119A, H136A, and 3A, respec-
tively. 

As aforementioned, we suggested that Ghlac is a putative functional laccase. To 
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Figure 1. Structure analysis and purification of Ghlac. (A) The sequence alignment of Ghlac WT, Mut2,
GsYlmD (WP_053413740.1), RL5 (CAK32504.1), Tfu1114 (AAZ55152.1), and LaclK (WP_029500662).
The identical residues are highlighted in red. The putative residues binding with copper ions are
labeled with the residue numbers. (B) Structural model of Ghlac based on GsYlmd (PDB: 6T0Y,
https://www.rcsb.org/structure/6T0Y, accessed on 18 May 2020). The putative residues binding
with copper ions are labeled. (C) SDS-PAGE analysis of Ghlac purified using Ni-NTA chromatography.
Lane M: protein marker; lane 1: the supernatant of the homogenized cells expressing Ghlac WT;
lane 2–7: the purified Ghlac WT, Mut2, H78A, C119A, H136A, and 3A, respectively.
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Figure 2. Kinetic analysis of Ghlac (A) and substrate specificity of Mut2 (B). ABTS, DMP, and SGZ 
were the abbreviations of 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonate, 2,6-dimethoxyphenol, 
and syringaldazine, respectively. Km and kcat of Ghlac WT were 1.3 mM and 125.7 min−1 (4.1 U/mg), 
respectively. Km and kcat of Mut2 were 1.9 mM and 188.9 min−1 (6.2 U/mg), respectively. 

The half-life (t1/2) of Ghlac wild type (WT) at 50 °C was less than 24 h (Figure 3D), 
which could hardly satisfy the requirement for industrial application. In order to im-
prove the thermostability, Ghlac variants Mut1, Mut2, and Mut3 were designed by 
PROSS and characterized (Figure S1) [26]. Among these variants, Mut2 showed increased 
thermostability, whereas Mut1 and Mut3 exhibited decreased activity and thermostabil-
ity (Figures 3 and S2). Therefore, Mut2 was further studied. 
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Figure 2. Kinetic analysis of Ghlac (A) and substrate specificity of Mut2 (B). ABTS, DMP, and SGZ
were the abbreviations of 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonate, 2,6-dimethoxyphenol,
and syringaldazine, respectively. Km and kcat of Ghlac WT were 1.3 mM and 125.7 min−1 (4.1 U/mg),
respectively. Km and kcat of Mut2 were 1.9 mM and 188.9 min−1 (6.2 U/mg), respectively.

The half-life (t1/2) of Ghlac wild type (WT) at 50 ◦C was less than 24 h (Figure 3D),
which could hardly satisfy the requirement for industrial application. In order to im-
prove the thermostability, Ghlac variants Mut1, Mut2, and Mut3 were designed by PROSS
and characterized (Figure S1) [26]. Among these variants, Mut2 showed increased ther-
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mostability, whereas Mut1 and Mut3 exhibited decreased activity and thermostability
(Figures 3 and S2). Therefore, Mut2 was further studied.
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Figure 3. Effects of pH and temperature on the activity and stability of Ghlac. (A) The optimal pH
(A) and temperature (B) for Ghlac. Effect of pH (C) and temperature (D) on the stability of Ghlac.
The t1/2 values of WT and Mut2 at 50 ◦C were 21.9 h and 80.6 h, respectively. The t1/2 values of WT
and Mut2 at 60 ◦C were 3.6 h and 9.8 h, respectively.

2.2. Effects of pH and Temperature on the Activity and Stability of Ghlac

The optimal pH for Ghlac WT and Mut2 against ABTS was 4.0 (Figure 3A), which is in
accordance with the acidic pH preference of fungal and bacterial laccases [9,19]. Ghlac lost
more than 60% of its original activity after incubation at pH 3.0 for 6 h, while Mut2 retained
more than 95% of the original activity over the pH range of 4.0 to 8.0 (Figure 3C), similar to
the characterized DUF152 laccases [22–24]. The bacterial laccases from B. stratosphericus,
γ-proteobacterium, and a marine microbial metagenomic library showed high tolerance for
alkaline conditions, which is an advantageous property of laccases from bacteria [27–29].
By contrast, most of the laccases from fungi are unstable under alkaline conditions [5,30].

Ghlac WT and Mut2 showed their maximal activity at 60 ◦C (Figure 3B). Their ther-
mostability was tested to evaluate the potential for industrial application. Mut2 retained
100% of its original activity after incubation at 50 ◦C for 6 h, whereas Ghlac WT lost 20%
of its activity. Furthermore, t1/2 of Ghlac was calculated (Figure 3D). t1/2 of Mut2 at
50 ◦C was 80.6 h, 3.7 times longer than that of WT. t1/2 of Mut2 at 60 ◦C was increased to
9.6 h, compared with that of WT. Additionally, Tm of Mut2 was 6.9 ◦C higher than that
of WT (Figure 4A), which is consistent with the results of t1/2 measurements. Most of the
fungal laccases could not retain 50% of the original activity after incubation at 60 ◦C for
6 h [30]. rLac from Klebsiella pneumoniae only retained 60% and 50% of the activity for 5 h
at 50 ◦C and 60 ◦C, respectively [31]. The spore-coat laccase FNTL from Bacillus sp. lost
80% of the activity at 60 ◦C for 5 h [19]. Therefore, Mut2 is highly thermostable. Based
on the principle of PROSS and the structural mapping of the mutated residues of Mut2
(Figures S1 and S3), the introduced mutations increased the surface polarity (such as S58E
and G197E) and rigidified the flexible elements (such as A35P and V68P), significantly
enhancing the thermostability of Mut2 [26,32,33].
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Figure 4. Identification of the putative copper binding site. (A) The effect of Cu2+ on the thermostability of Ghlac using the
Thermofluor assay. The Tm values of Ghlac WT, Mut2, 3A, Mut2 with Cu2+ (Mut2+Cu2+), and 3A with Cu2+ (3A+Cu2+)
were 49.5 ± 0.2 ◦C, 56.4 ± 0.2 ◦C, 56.4 ± 0.1 ◦C, 60.9 ± 0.6 ◦C, and 56.2 ± 0.1 ◦C, respectively. (B) The UV/visible spectrum
of Mut2. (C) The effect of Cu2+ on the activity of Mut2. (D) Superposition of the putative copper binding sites of Mut2
and GsYlmd (PDB: 6T0Y). The residues of Mut2 and GsYlmd were labeled in red and grey, respectively. Zn2+ in GsYlmd
was shown as a magenta sphere. (E) The laccase activity of Mut2 and its variants. (F) The copper content of Mut2 and the
variant 3A determined by ICP-MS.

The determined Km and kcat of Mut2 were comparable to those of Ghlac WT (Figure 2A).
Mut2 was able to oxidize ABTS, 2,6-dimethoxyphenol (DMP), and guaiacol, and the sub-
strate preference decreased in the order of DMP > guaiacol > ABTS (Figure 2B). However,
syringaldazine (SGZ) could not be catalyzed by Mut2.

Therefore, Mut2 is a functional polyphenol oxidase of the DUF152 family, although
it was cloned from an anaerobe. Berini et al. also reported a functional laccase from
the anaerobe Geobacter metallireducens and discussed the possible mechanism using small
amounts of oxygen in the environment or other chemical (such as N2O) as the electron
acceptor [34]. The physiological role of Ghlac in G. hydrogeniphilus needs to be further
studied by thorough in vivo experiments. Overall, the excellent thermostability makes
Mut2 a potential catalyst for industrial application.

2.3. Identification of the Putative Copper Binding Site

The typical laccase contains four copper atoms, and the copper is required to transfer
electrons during catalysis [5]. When the concentration of Cu2+ increased, the activity of
Mut2 also increased accordingly, indicating that Mut2 is Cu2+-dependent (Figure 4C).
Moreover, the Thermofluor assay showed that Tm of Mut2 was increased from 56.4 ◦C
to 60.9 ◦C in the presence of Cu2+ (Figure 4A), implying that Cu2+ helps to stabilize
Mut2 by interaction [35]. However, the UV/visible spectra of Mut2 (Figure 4B), Tfu1114,
and LaclK lacked the absorption peak around 610 nm, a characteristic of the typical
laccases [23,24], showing that DUF152 laccases might interact with the copper in a different
way. Furthermore, ICP-MS detected 1.1 ± 0.1 mol/mol of copper in Mut2 (Figure 4F),
which corresponds to the copper content of Tfu1114 and LaclK, but differs from that of RL5
(4.0 ± 0.2 mol/mol) [22–24]. Among the 12 identified residues forming the putative copper
binding sites in RL5 [22], only N41, H78, C119, and H136 are conserved in the characterized
DUF152 laccases (Figure 1A). Thus, could the four conserved residues constitute the
putative copper binding site of Mut2?
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Structural analysis showed that N41 of Mut2 is far from the cluster formed by H78,
C119, and H136 (Figure 1B), and the cluster is bound with one Zn2+ in the crystal structure
of GsYlmd (Figure 4D). Hence, variants H78A, C119A, H136A, and 3A were constructed
to confirm whether the putative binding site is formed by H78, C119, and H136. Variants
H78A, C119A, and H136A showed significantly decreased laccase activity, while variant 3A
almost abolished its activity (Figure 4E). Meanwhile, no significant difference was detected
between the Tm values of Mut2 and the variant 3A (Figure 4A), indicating that the mutation
of H78, C119, and H136 did not change the native structure of Mut2. Furthermore, no
copper was detected in the variant 3A (Figure 4F). Correspondingly, the addition of Cu2+

did not increase Tm of 3A (Figure 4A).
Taken together, the conserved residues H78, C119, and H136 constitute the putative

copper binding site of Mut2 and bind with one copper atom to exert the laccase activity.
However, the substrate binding site and the catalytic mechanism of Mut2 are yet to be
elucidated by crystal structures of Ghlac complexed with substrates.

2.4. Effects of Metal Ions and Organic Solvents on the Activity of Mut2

As shown in Figure 5A, Mut2 maintained over 82% residual activity in the presence
of 10 mM Na+, Mg2+, Ca2+, Mn2+, and Ni2+. Although the activity of Mut2 was not
strongly affected by 1 mM Zn2+ and Ba2+, it was dramatically reduced to 47% and 0,
respectively, when the metal ions concentration increased to 10 mM. This inhibitory effects
of high-concentration Zn2+ or Ba2+ were generally reported in laccases such as BaCotA,
PvL, SN4LAC, and MSKLAC [27,36–38]. As the essential factor for the activity of Mut2,
10 mM Cu2+ did not show any inhibitory effect on Mut2 (Figure 4C). With the addition of 1
mM chelating agent EDTA, Mut2 completely lost its activity, indicating the importance of
Cu2+ during catalysis.
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The effects of organic solvents on the activity of Mut2 were also assessed (Figure 5B).
Mut2 retained more than 90% and 80% of its original activity in the presence of 10% and 20%
methanol, ethanol, acetone, and isopropanol, respectively. In the presence of 10% dimethyl
sulfoxide, the activity of Mut2 was boosted to 120%. This kind of boosted laccase activity
was also reported in laccases from Cerrena sp. RSD1, T. versicolor, and a marine metagenomic
library [39,40], whereas laccases from B. stratosphericus, Ganoderma lucidum, and Sporothrix
carnis were strongly inhibited by 10% dimethyl sulfoxide [27,41,42]. Moreover, Mut2
could retain 90% of its activity in the presence of 10% formaldehyde, which is a powerful
protein denaturant, and could strongly inhibit the laccase from B. amyloliquefaciens [43].
These results indicated that Mut2 is tolerant to the organic solvents.

Overall, Mut2 is quite resistant to common environmental pollutants, including metal
ions and organic solvents.
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2.5. MG Decolorization Catalyzed by Mut2

The dark color and strong toxicity of MG discharged from the dyeing industry severely
threaten the environment and human health [13]. However, conventional physical and
chemical treatment processes usually produce secondary sludge and hazardous byproducts,
resulting in serious environmental pollution [44,45]. Laccase, as a green catalyst, has
drawn increasing attention, being a potential alternative to tackle dye pollution in an
environmentally friendly manner [27,45,46].

Thanks to the reasonably good thermostability of Mut2 and the high temperature of the
dyeing wastewater [47,48], the capability of MG decolorization by Mut2 was investigated
at high temperatures. Mut2 alone decolorized only 10% of 100 mg/L of MG at 60 ◦C in 2 h.
Redox mediators have been used to improve dye decolorization [11]. Among the tested
mediators, ABTS was the most effective one (Figure 6A). With the help of 0.1 mM ABTS, the
MG decolorization rate by Mut2 was improved to 90% (Figure 6B). The improvement by
ABTS is in accordance with the study of laccases BaCotA and rLAC [27,46]. The optimal pH
and temperature for MG decolorization were 3.5–4.0 and 70 ◦C, respectively (Figure 6C,D).
The decolorization rate was more than 90% in the temperature range of 60–75 ◦C, and the
highest rate of 98% was reached at 70 ◦C in 2 h. Decolorization was almost completed by
Mut2 in 3 h, whereas only 78% of MG was decolorized by Ghlac WT, showing the advantage
of thermostable laccases to treat high-temperature dyeing wastewater (Figures 6E and S4).
The disappearance of the absorption peak at 617 nm indicated the destruction of the
conjugated chromophore structure of MG, which showed that Ghlac Mut2 may decolorize
MG by the oxidation and cleavage of the chromophore of MG in a similar way to the typical
laccases [15,16].
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The textile effluent usually has a relatively high temperature, above 50 ◦C and even up
to 70–80 ◦C [20,47], and a high temperature would benefit the decolorization velocity [21].
In order to avoid the extra cooling process and maximize the decolorization rate, more
and more studies focus on MG decolorization by laccases at high temperatures (Table 1).
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LaclK of the DUF152 family was highly thermostable, but its ability to decolorize MG was
poor [24]. Although BaCotA, CueO-p, rLAC, and rLac could effectively decolorize MG,
the relatively low thermostability would result in incomplete decolorization, even with
an extended incubation time [27,31,46,49]. Thus, the remaining MG would still threaten
public health. Compared with these laccases, the identified Mut2 herein is superior in both
thermostability and the completeness of decolorization and, consequently, more suitable
for industrial application.

Table 1. Comparison of the thermostability and MG decolorization ability of bacterial laccases.

Laccase Source
t1/2 MG Decolorization

50 ◦C 60 ◦C MG
(mg/L) Mediator Temperature

(◦C) Time (h) Decolorization
Rate

Ghlac Mut2 G. hydrogeniphilus 80.6 h 9.8 h 100 0.1 mM ABTS
70

3
>99%

60 >90%
CotA WLF [17] B. pumilus 6.5 h ND 50 1 mM ASG 37 10 >95%

pLacSi [18] S. indolifex Unstable a Unstable b 50 1 mM ABTS 30 overnight >80
FNTL [19] Bacillus sp. ND About 2.7 h 50 2 mM ASG 40 0.5 >99%
LaclK [24] K. huakuii ND Highly stable c 9 0.1 mM ABTS 60 1 <40%

BaCotA [27] B. stratosphericus 2 h 1 h 100 0.01 mM ABTS 60 3 82%
rLac [31] K. pneumoniae Stable d 5 h 100 70 1.5 90%

rLAC [46] B. amyloliquefaciens Stable e Stable f 100 0.1 mM ABTS 60 6 95%
CueO-p [49] E. coli Stable g 80 0.1 mM ASG 55 12 98.5%

a and b: pLacSi retained less than 10% of its activity for 6 h at the indicated temperature; c: LaclK retained over 80% of its activity for 144 h
at 60 ◦C. d: rLac retained more about 60% of its activity after 5 h incubation at 50 ◦C and retained about 35% of its activity at 70 ◦C for 1 h.
e and f: rLAC retained 73% and 63% of original activity for 2 h at the indicated temperature, respectively. g: CueO-p retained about 80% of
its activity after 4 h incubation at 55 ◦C. ND: not determined.

2.6. MG Detoxification Catalyzed by Mut2

The toxicity of MG before and after Mut2 treatment was estimated to evaluate whether
Mut2 could detoxify MG.

As Figure 7A,B illustrated, Escherichia coli and B. subtilis did not grow in LB containing
untreated MG, indicating that MG is toxic to bacteria. As expected, in both the control
group and the treated MG group, bacteria grew in almost the same manner, indicating
that the toxicity of MG to bacteria was eliminated by Mut2. A phytotoxicity test of MG
before and after Mut2 treatment was also carried out with Zea mays by recording seed
germination and the elongation of radical and plumule (Figure 7C–E). Compared with the
control group, MG inhibited the germination of Z. mays seeds by 55%, and the length of
radical and plumule was only about 38% of that in the control group. In the treated MG
group, the growth of Z. mays seeds showed no difference from that in the control group
(Figure 7C–E). However, MG treated by the laccase LacA from Cerrena sp. still inhibited
the root elongation of Nicotiana tabacum and Lactuca sativa [15]. These results revealed that
Mut2 could eliminate the toxicity of MG to bacteria and Z. mays.
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3. Materials and Methods
3.1. Materials

The genes encoding Ghlac WT and variants were ordered from Genscript. ABTS, DMP,
guaiacol, SGZ, 1-hydroxybenzotriazole (HBT), acetosyringone (ASG), and Sypro Orange
were obtained from Sigma-Aldrich (Saint Louis, MO, USA). Methyl syringate (MeS) and
violuric acid (VA) were purchased from BioRuler (Danbury, CT, USA). Malachite Green
chloride (>98%) was purchased from Shanghai yuanye Bio-Technology Co., Ltd. (Shanghai,
China). All other chemicals and reagents were of analytical grade.

3.2. Cloning, Expression, and Purification of Ghlac

The gene encoding Ghlac WT (NCBI accession No.: ORJ60343.1, https://www.ncbi.
nlm.nih.gov/protein/ORJ60343.1, accessed on 15 June 2019) was codon-optimized, syn-
thesized, and cloned in the pET-28a (+) vector using the Nco I and Xho I restriction sites.
The obtained recombinant vector pET28a-Ghlac-WT was transformed into E. coli BL21
(DE3). The cells containing the recombinant vector were grown in Luria–Bertani (LB)
medium supplemented with 25 mg/L of kanamycin. When OD600 reached 0.6, 0.5 mM
IPTG and 0.5 mM CuSO4 were added to induce the expression of Ghlac, and then the cells
continued to grow at 16 ◦C for 16 h. The cells were collected by centrifugation at 4000× g
for 30 min and homogenized using a JN-Mini homogenizer (JNBio, Guangzhou, China).
The recombinant Ghlac in the supernatant was purified using Ni-NTA resin according to
the reported method [50]. The purified Ghlac in 20 mM phosphate buffer (pH 7.4) was
stored at −80 ◦C. The purity and molecular mass of Ghlac were assessed by SDS-PAGE.
The UV/visible absorption spectrum of Ghlac was scanned in the range of 200–800 nm
using a SpectraMax M2e Microplate Reader (Molecular Devices, Sunnyvale, CA, USA).
The copper content of Ghlac was analyzed with an iCAP Qc inductively coupled plasma
mass spectrometry (ICP-MS) (ThermoFisher Scientific, Waltham, MA, USA) [22].

3.3. Mutation Design Using PROSS and Site-Directed Mutagenesis

Goldenzweig et al. developed an automated structure- and sequence-based algorithm,
the Protein Repair One Stop Shop (PROSS) webserver, to design protein variants with
enhanced stability requiring minimal experimental testing (accessed on 18 May 2020) [26].

https://www.ncbi.nlm.nih.gov/protein/ORJ60343.1
https://www.ncbi.nlm.nih.gov/protein/ORJ60343.1
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Ghlac sequence was submitted to PROSS with N41, H78, C119, and H136 constrained to
improve the thermostability. The designed variants with 17, 25, and 31 mutated residues
(referred to as Ghlac Mut1, Mut2, and Mut3, respectively; Figure S1) were chosen to test
according to the manual of PROSS.

The variants H78A, C119A, and H136A, as well as the combination of H78A, C119A,
and H136A (referred to as 3A), of Ghlac Mut2 were constructed using the one step site-
directed mutagenesis method. Briefly, the primers with the desired mutation were designed
and synthesized (Table S1). PCR was performed with the plasmid pET28a-Ghlac-Mut2 as
the template. The PCR products were digested with Dpn I at 37 ◦C for 4 h and transformed
into DH5α competent cells. The variants were confirmed by sequencing, expressed, and
purified according to the method described in Section 3.2.

3.4. Enzyme Activity Assay

The activity of Ghlac was determined with ABTS (ε420 = 38,000 M−1 cm−1) as the
substrate. The reaction system contained appropriately diluted purified Ghlac, 1 mM
ABTS, 1 mM CuSO4, and 20 mM acetic acid-sodium acetate buffer (pH 4.0). The reaction
samples were incubated at 50 ◦C for 10 min and then put on ice for 5 min to terminate
the reaction. The absorbance at 420 nm was measured. The laccase activity against 1 mM
DMP (ε468 = 35,640 M−1 cm−1), 1 mM guaiacol (ε470 = 26,600 M−1 cm−1), and 25 µM SGZ
(ε530 = 64,000 M−1 cm−1) was also determined. One unit of enzyme activity (1 U) was
defined as the amount of enzyme required to oxidize 1 µmol of substrate per minute at
50 ◦C. The kinetic parameters (Km and kcat) of Ghlac toward ABTS were determined at
60 ◦C according to the standard laccase assay method.

3.5. Effects of Temperature and pH on the Laccase Activity and Stability

The effect of pH on the laccase activity was determined using 20 mM acetic acid-
sodium acetate (pH 3.0–6.0) and 20 mM Tris-HCl (pH 7.0–8.0). To evaluate its pH stability,
Ghlac was incubated in different pH buffers (3.0–8.0) at 4 ◦C for 6 h, and the residual
activity was measured according to the standard laccase assay method. The effect of
temperature on the laccase activity was analyzed in 20 mM acetic acid-sodium acetate
buffer (pH 4.0) at temperatures ranging from 30 to 80 ◦C. To assess the thermostability,
Ghlac was incubated at 50 ◦C and 60 ◦C in 20 mM phosphate buffer (pH 7.4) for various time
intervals, and the residual activity was measured. The Thermofluor assay was performed
using a 96-well Applied Biosystems QuantStudio7Flex qPCR instrument (ThermoFisher
Scientific, Waltham, MA, USA). The mixture containing 0.3 mg/mL of Ghlac, 5 × Sypro
orange, and 100 mM citrate buffer (pH 4.0) was incubated for 10 min on ice before the
heating process. The temperature was programmed to increase from 25 to 95 ◦C at a rate
of 1 ◦C/min in a step-and-hold manner, and the fluorescence in the x1-m2 channel was
recorded. The melting temperature (Tm) was calculated by fitting the fluorescence data to
the Boltzmann equation. To examine the effect of copper ions on the thermostability of
Ghlac, CuSO4 was added to the mixture, and Tm of Ghlac with Cu2+ was determined.

3.6. Effects of Metal Ions and Organic Solvents on the Activity of Mut2

Different concentrations of metal ions (1 mM and 10 mM) and organic solvents (10%
and 20%, v/v) were added to the reaction system to study their effects on the activity of
Ghlac Mut2. After pre-incubation of Mut2 with metal ions (Na+, Mg2+, Ca2+, Mn2+, Ni2+,
Zn2+, Ba2+, and EDTA) and organic solvents (formaldehyde, methanol, ethanol, acetone,
isopropanol, and dimethyl sulfoxide) at 4 ◦C for 30 min, the laccase activity was determined
according to the standard laccase assay method.

3.7. MG Decolorization Catalyzed by Mut2

The primary decolorization mixture contained 40 U/L of Mut2, 100 mg/L of MG,
1 mM CuSO4, and 20 mM acetic acid-sodium acetate buffer (pH 4.0). Decolorization was
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performed at 60 ◦C for 2 h in the dark without shaking. The absorbance at 617 nm was
measured to detect MG decolorization using Formula (1):

Decolorization rate (%) = (A0 − A)/A0 × 100 (1)

where A0 is the absorbance of untreated MG and A is the absorbance of MG treated
by Mut2.

The optimal condition of MG decolorization catalyzed by Mut2 was determined.
The effect of mediators on MG decolorization was analyzed by adding 0.01 mM of differ-
ent mediators (ABTS, HBT, VA, MeS, and ASG) to the primary decolorization mixture.
The concentration of ABTS (0.01–0.4 mM) was then optimized. The optimal pH was deter-
mined in different pH buffers (pH 3.0–5.5) with 0.1 mM ABTS. The optimal temperature
was determined at 45 to 85 ◦C in the pH 4.0 buffer containing 0.1 mM ABTS. The time
course of MG decolorization catalyzed by Mut2 in the presence of ABTS was recorded in
the pH 4.0 buffer at 70 ◦C for 3 h.

3.8. Toxicity Tests

The bacteria (E. coli and B. subtilis) and plant (Z. mays) seeds were used to evaluate the
toxicity of 100 mg/L of MG before and after treatment by Mut2 at 70 ◦C for 3 h. The pH of
the samples was adjusted to 7.0 to eliminate the effect of pH on the growth of bacteria and
plant seeds.

The toxicity to bacteria was assessed using the gram-negative bacteria E. coli and the
gram-positive bacteria B. subtilis [51]. The samples (4.0 mL) before and after Mut2 treatment
were mixed with 5 × LB medium (1.0 mL). The bacteria were inoculated to the mixed
solution and incubated at 37 ◦C. The bacteria growing in 1 × LB medium diluted from
5 × LB medium with distilled water were set as the control in parallel. The absorbance at
600 nm was measured to detect the growth of bacteria.

The phytotoxicity assay using Z. mays seeds was performed according to the previous
method [52]. The samples before and after Mut2 treatment were added to the Petri dishes
containing the double-layered filter paper. The seeds were placed in the Petri dish and
incubated at 25 ◦C for 4 d in the dark. The seeds growing in distilled water were set as
the control in parallel. The lengths of the plumule and radicle were recorded, and the
germination rate was calculated according to the following Formula (2):

Germination rate (%) = n/N × 100 (2)

where n is the number of germinated seeds and N is the number of total tested seeds.

3.9. Sequence Analysis

The characteristics of Ghlac (molecular weight and pI) were determined using the
ProtParam tool available on the Expasy server (https://web.expasy.org/protparam/,
accessed on 15 June 2019). Multiple sequence alignment was performed using Clustal
Omega (accessed on 18 May 2020) [53]. The structural model of Ghlac was constructed
using SWISS-MODEL (accessed on 18 May 2020) [54] and analyzed using Pymol [55].

3.10. Statistical Analysis

All experiments were performed at least three times, and the data were presented
as mean ± standard deviation (SD). Microsoft Excel version 2016 (Microsoft Corporation,
Redmond, WA, USA) and GraphPad Prism 8.0 (San Diego, CA, USA) were used for all
statistical analysis.

4. Conclusions

Ghlac, a novel member of the DUF152 family, was cloned from G. hydrogeniphilus and
characterized as a functional laccase. By the structural and biochemical analyses, the con-
served residues H78, C119, and H136 were identified to form the putative copper binding

https://web.expasy.org/protparam/
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site. In addition, the thermostable Ghlac variant Mut2 was highly tolerant to alkaline con-
ditions and organic solvents. Furthermore, Mut2 could efficiently decolorize MG and thor-
oughly eliminate the toxicity of MG in the presence of ABTS at high temperatures, showing
great potential to remediate MG effluent immediately discharged from the dyeing process.
However, further studies on the catalytic mechanism of Mut2 and co-immobilization of
laccase and mediator need to be done to facilitate its industrial application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111755/s1, Table S1: Primers for site-directed mutagenesis of Mut2; Figure S1: Sequence
alignment of Ghlac WT, Mut1, Mut2, and Mut3; Figure S2: Thermostability at 50 ◦C and activity
against ABTS of Mut1 and Mut3; Figure S3: Structural mapping of the mutated residues of Ghlac
Mut2; Figure S4: MG decolorization catalyzed by Ghlac WT.
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