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Abstract: Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of
nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities,
the characterization of NKs is essential for drug design and nucleotide analogue production in an
in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of
great importance. Here, we report on the validation of a well-known luciferase-based assay for the
detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid
handling robot. Good linearity was demonstrated (r2 > 0.98) in the range of 0–500 µM ATP, and it
was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase.
The developed high-throughput assay revealed comparable results to HPLC analysis. The assay
was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural,
12 modified) substrates. The screening results correlated well with literature data, and additionally,
previously unknown substrates were identified for three of the NKs studied. Our results demonstrate
that the developed semi-automated high-throughput assay is suitable to identify best performing
NKs for a wide range of substrates.

Keywords: nucleoside kinase; nucleoside analogues; nucleotide; screening; high throughput; lumi-
nescent assay; HPLC; robot; biocatalysis; luciferase assay

1. Introduction

Nucleotides are essential biomolecules involved in all cellular processes as building
blocks of nucleic acids, energy storage, cellular communication mediators, and cofactors for
many enzymatic reactions. Furthermore, nucleotide analogues have a broad range of appli-
cations in molecular biology and medicine. For example, modified nucleotides are used to
label nucleic acids in PCR [1], for fluorescent in situ hybridization (FISH) [2], or microar-
ray [3] applications. In addition, they improve nuclease stability of aptamers [4] and small
interfering RNAs [5,6]. The relevance of nucleoside 5′-triphosphates (NTPs) is also evident
in mRNA vaccines, which have become increasingly important in the current COVID-19
pandemic [7]. By incorporating modified NTPs such as N1-methylpseudouridine triphos-
phates or pseudouridine triphosphates into therapeutic mRNAs, significantly less activa-
tion of the innate immune response compared to uridine is induced [8]. In addition, there
is evidence that modified mRNA is translated more efficiently than unmodified mRNA.

Nucleoside analogues are widely used to treat cancer [9], viral [9], and bacterial [10]
infections. However, nucleoside analogue drugs are usually active only in the nucleotide
form. Therefore, the therapeutic efficacy largely depends on the intracellular phosphoryla-
tion of the nucleoside analogue to a 5′-triphosphate. In three consecutive steps, nucleoside
analogues are phosphorylated by (deoxy)nucleoside kinases ((d)NKs), (deoxy)nucleoside
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monophosphate kinases, and nucleoside diphosphate kinases [11]. Thus, to assess the ther-
apeutic potential of new compounds in advance, a high-throughput assay for nucleoside
and nucleotide kinases would be of great value.

Besides the importance in drug design, recombinant nucleoside and nucleotide ki-
nases are valuable biocatalysts to produce modified nucleotides in enzymatic in vitro
processes [12]. Enzymatic approaches offer an interesting alternative to the chemical syn-
thesis by the use of mild reaction conditions, having a high regio- and stereoselectivity, and
avoiding protection and deprotection steps [13,14].

Due to the importance of nucleoside and nucleotide kinases, the characterization of
their substrate spectra and the identification of the most efficient phosphate donor is highly
relevant. Therefore, different methods were developed to determine kinase activity [15].
Assays applicable towards a wide range of natural and modified substrates and phosphate
donors include radiometric and chromatographic (TLC, HPLC) methods. However, these
assays are time-consuming and hardly suitable for high-throughput applications. In
addition, they would have to be optimized for some substrates. Other assays focus on
the detection of adenosine 5′-triphosphate (ATP) consumption or production since ATP
is the most commonly used phosphate donor for various kinases [16]. Assays based on
lactate dehydrogenase, pyruvate oxidase, malachite green, pyruvate kinase, fluorescence
polarization, FRET, or ELISA use the principle of measuring colorimetric or fluorometric
changes [17,18]. Although these assays offer the opportunity to be used in high throughput,
they are often expensive (especially if an antibody is involved) and require multi-step
enzyme cascades. While the latter is not a concern when studying protein kinases, it is
challenging for reactions catalyzed by nucleoside or nucleotide kinases because there is a
higher risk that the non-natural nucleotides interfere with ATP detection [17,18].

In contrast, bioluminescence-based assays using a luciferase to detect ATP are fast,
high-throughput compatible, and based on only one enzyme [17,19]. In these assays, kinase
activity is determined in two successive reactions. First, the kinase of interest catalyzes the
transfer of a phosphate from a phosphate donor (mainly ATP) to the respective substrate.
Afterwards, the residual phosphate donor is converted into a luminescence signal by
a luciferase (Scheme 1). Thus, the kinase activity inversely corresponds to the residual
phosphate donor concentration. Due to the advantages, bioluminescence-based assays have
already been applied successfully for the activity detection as well as for inhibition and
kinetic studies of many kinases [16,20], including nucleoside/nucleotide kinases [19,21–24].
We recently demonstrated the use of a bioluminescence-based assay for the identification
of substrates and kinetics for the human deoxycytidine kinase (HsdCK) [19]. However, so
far, this was a manual assay.
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Here, we adapt this assay to be used on a robotic platform, so it can be applied as
a fast, quantitative, and reliable semi-automated assay to analyze the phosphorylation
of natural and modified nucleosides by nucleoside kinases using luciferase-based ATP
detection. The accuracy of the assay was comparable to HPLC analytics. The advantage
of this assay is demonstrated for the characterization of the substrate spectrum of four
(d)NKs towards 20 nucleosides in a 96-well plate format. Autoluminescence or luciferase
inhibition by the natural and modified nucleosides were not observed.

2. Results and Discussion
2.1. Establishment of the Luminescent Assay with (Deoxy)NTP Standards

To develop a high-throughput assay for the evaluation of the substrate spectrum
of (d)NKs, the commercially available Kinase-Glo Max Luminescent Kinase Assay was
chosen because it is described to exhibit high linearity up to an ATP concentration of
500 µM. The assay composition recommended by the manufacturer was slightly adjusted
to reach volumes suitable for the 96-well plate format as previously described (for further
information, see the materials and methods section) [19].

Initially, we were interested in whether the Ultra-Glo luciferase accepts other (de-
oxy)NTPs next to ATP since a wide range of phosphate donors are accepted by
(d)NKs [19,25,26]. For that, standards of 500 µM ATP, 2′-deoxyadenosine 5′-triphosphate
(dATP), GTP, 2′-deoxyguanosine 5′-triphosphate (dGTP), cytidine 5′-triphosphate (CTP),
2′-deoxycytidine 5′-triphosphate (dCTP), uridine 5′-triphosphate (UTP), and thymidine
5′-triphosphate (TTP) were tested as substrates for the recombinant Ultra-Glo luciferase
(Figure 1A). The highest luminescence signals were detected for ATP with values of up to
57.892 relative light units (RLU) (Figure 1B). This observation is in good accordance with
literature data where a high specificity of luciferases towards ATP was described [27]. How-
ever, we also observed the acceptance of additional (deoxy)NTPs as substrates of the Ultra-
Glo luciferase. The luminescence signal decreased in the order ATP >> dATP (1128 RLU) >
GTP (504 RLU) > UTP (220 RLU) > CTP (161 RLU) > dGTP, dCTP, TTP (< 30 RLU). Except
for dATP, the Ultra-Glo luciferase showed a lower preference for dNTPs and pyrimidine nu-
cleotides compared to NTPs and purine nucleotides, respectively. To study the applicability
of ATP, dATP, GTP, CTP, and UTP in the luminescent assay in more detail, standard curves
in the range of 0–500 µM were prepared and revealed high accuracy with r2 values > 0.98
(Figure 1C). Hence, except for dGTP, dCTP, and TTP, all natural (deoxy)NTPs are suit-
able substrates for the recombinant Ultra-Glo luciferase. This observation widens the
applicability of the luminescence-based assay to study nucleoside and nucleotide kinases.

2.2. Establishment of the Luciferase-Based (d)NK Activity Assay Using Natural
(Deoxy)Nucleosides as Substrates

In a first attempt to establish the NK activity assay, the influence of the nucleo-
side substrates on the luminescence signal was analyzed since it could not be excluded
that certain nucleosides or nucleoside 5′-monophosphates (NMP) would affect the ac-
tivity of the Ultra-Glo luciferase or show autoluminescence themselves. Therefore, we
measured the luminescence of 400 µM ATP alone or together with 400 µM standards of
eight natural (deoxy)nucleosides (adenosine (Ado), 2′-deoxyadenosine (dAdo), guanosine
(Guo), 2′-deoxyguanosine (dGuo), cytidine (Cyd), 2′-deoxycytidine (dCyd), uridine (Urd),
and thymidine (Thd)) and the respective NMPs (2′-deoxyadenosine 5′-monophosphate
(dAMP), guanosine 5′-monophosphate (GMP), 2′-deoxyguanosine 5′-monophosphate
(dGMP), cytidine 5′-monophosphate (CMP), 2′-deoxycytidine 5′-monophosphate (dCMP),
uridine 5′-monophosphate (UMP), and thymidine 5′-monophosphate (TMP)) in NK re-
action buffer (Table S1). The impact of adenosine 5′-monophosphate (AMP) was studied
in more detail, as inhibitory effects on luciferases were described before [28]. To mimic
the conditions of the activity assay, mixtures consisting of different AMP–ATP ratios were
analyzed with a total concentration of 400 µM (Figure S1). For all combinations, no sig-
nificant influence on the luminescence signal was observed (Table S1, Figure S1). Hence,
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autoluminescence and luciferase inhibition were excluded for all tested (deoxy)nucleosides
and (deoxy)NMPs.
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Figure 1. Validation of the acceptance of all natural (deoxy)NTPs as substrates for the Ultra-Glo luciferase using the
luminescence-based assay. (A) Scheme of the luciferase reaction and structures of the applied nucleoside 5′-triphosphate
substrates. (B) The acceptance of (deoxy)NTPs as substrates for the Ultra-Glo luciferase was analyzed with 500 µM
(deoxy)NTP in NK reaction buffer. Mean of the duplicates and standard deviation are indicated. (C) The linearity of the
assay was evaluated with standards containing 0–500 µM ATP, dATP, GTP, CTP, or UTP. For the luminescent assay, 10 µL
phosphate donor standard was mixed with 80 µL deionized water before adding 10 µL of Kinase-Glo reagent. −: negative
control (0 mM (deoxy)NTP).

To validate the accuracy of the assay, NK reactions were performed with human de-
oxycytidine kinase (HsdCK), ATP as phosphate donor and eight natural (deoxy)nucleosides
(Ado, dAdo, Guo, dGuo, Cyd, dCyd, Urd, Thd, Figure 2A) at 37 ◦C for 19 h. Afterwards,
ATP consumption and NMP formation were analyzed using the luminescence-based assay
and data were compared to standard HPLC analytics. Using the luminescence-based assay,
NMP formation was calculated based on ATP consumption. The determined NMP forma-
tion (Figures 2B and S2) and ATP consumption (Figures 2C and S2) were very comparable
for both methods used. The deviations between both methods were between 0.49 and
7.53% (Table S2), with the difference being highest at low (deoxy)NMP formation. For Ado,
Guo, and Urd, there was up to 9% ATP consumption detected by the luminescent assay,
while no or only very little NMP formation was observed by HPLC. The susceptibility
of the assay to error has been observed previously [16]. In order to avoid false-positive
results at conversions < 10%, it is therefore advisable to either (i) check product formation
via HPLC or (ii) repeat the reaction with increased enzyme concentration to verify the
substrate’s acceptance. In general, the assay should be used preferentially to find the best
performing NK showing significant substrate conversion > 50%.
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In the next step, the substrate spectrum of HsdCK was evaluated and compared to
literature data. HsdCK well accepted dAdo, dCyd, dGuo, and Cyd with (deoxy)NMP
formation being above 80% (Figure 2B, Table S2). While the acceptance of dAdo, dCyd,
and dGuo has already been described several times in the literature [19,29], reports on the
acceptance of ribonucleotides are rare. Yet, the use of cytidine as substrates for human
T-lymphoblast deoxycytidine kinase has been described before [30].
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Figure 2. Validation of the luminescent assay for NK-catalyzed reactions. Natural nucleosides (A) were tested as substrates
for HsdCK. HPLC analysis and the luminescent assay were used for the determination of (deoxy)NMP formation (B) and
determination of ATP consumption (C). Reactions were performed with 0.33 mM substrate and 0.4 mM ATP in 70 mM
Tris-HCl [pH 7.6] supplemented with 5 mM DTT, 10 mM MgCl2, and 0.0002 U HsdCK at 37 ◦C for 19 h. Mean of the
duplicates and standard deviation are indicated. For the luminescent assay, the (deoxy)NMP formation was calculated from
the detected ATP consumption.

In this study, we also observed a minor accumulation of TMP (~13%, HPLC analysis)
and AMP (~1%, HPLC analysis) with HsdCK as biocatalyst (Figure 2). There have been
many reports that HsdCK does not accept thymidine, and it is believed that phosphory-
lation of this nucleoside in vivo is carried out by human thymidine kinase 1 (TK1) [31].
However, kinetic studies on wild-type and mutant HsdCK revealed that thymidine is
accepted with low-rate constants [32], which correlates well with observations made in this
study. The acceptance of adenosine as a substrate, however, has not been described so far.
Although binding of adenosine to HsdCK was shown [33], AMP-forming activity has never
been reported. Most probably, AMP appears due to minor degradation of ATP during the
kinase reaction, as low AMP formation was also observed in controls lacking enzymes [34].

2.3. Development of a High-Throughput Semi-Automated Activity Assay for Nucleoside Kinases

A semi-automated approach using a liquid handling robot was developed to apply
the luciferase-based assay in a highly accurate substrate screening for nucleoside kinases
(Figure 3A, Scheme S1). Scripts were written to pipette the kinase reaction by the robot into
96-well PCR plates. Afterwards, the plates were manually transferred to an incubator. After
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completion of the reaction, plates were manually transferred back to the deck of the robot,
and the luciferase reaction was pipetted. Subsequently, the assay plate was automatically
transported to the plate reader to measure luminescence after 10 min incubation in the
dark. Please see Table S3 and the externally hosted Supporting Information [34] for more
detailed information on the approach.

To assess the accuracy of both the kinase reaction and the luminescent assay indepen-
dently, the pipetting steps performed by the robot were evaluated by using dyes. The dyes
were chosen to allow for a differentiation of the influence of the individual components on
the overall reaction accuracy (for more information, see the Materials and Methods section).
Robot pipetting accuracy was very high for both the kinase and the luciferase-catalyzed
reaction (Figure S3).
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HsdCK was chosen as a biocatalyst to validate the established approach in comparison
to reactions that were pipetted manually. Kinase reactions were performed with natural
(deoxy)nucleosides that were well accepted by HsdCK before (Figure 2B, dAdo, dGuo,
Cyd, dCyd, and Thd). The results of the semi-automated assay were in good accordance
with manually pipetted reactions for all substrates tested (Figure 3B).
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2.4. Application of the High-Throughput Semi-Automated Luminescent Assay to Compare the
Substrate Spectra of Four NKs

With the semi-automated high throughput screening assay in hand, the substrate spec-
tra of three commercially available (d)NKs (HsdCK, human adenosine kinase (HsAK),
and a viral thymidine kinase (TK)) were compared to the wide-spectrum Drosophila
melanogaster dNK (DmdNK). In addition to eight natural nucleosides, 12 non-natural deriva-
tives were included in the substrate screening assay. A set of sugar-modified (vidarabine
(AraA), gemcitabine (dFdC), ganciclovir (GCV), acyclovir (ACV), 1-(2′-deoxy-2′-fluoro-β-
D-arabinofuranosyl) uracil (FanaU)), base-modified (cladribine (CldA), 2-fluoroadenosine
(FAdo), 5-fluorocytidine (FCyd), 5-ethynyl-2′-deoxyuridine (EdU)) as well as sugar- and
base-modified nucleoside substrates (clofarabine (ClFanaA), fludarabine (FAraA), lamivu-
dine (3TC)) were chosen (Figure 4A). To avoid false-positive results, activities < 10% were
verified via HPLC, or the reactions were repeated with higher enzyme concentrations.
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Figure 4. Semi-automated substrate screening for DmdNK, HsdCK, HsAK, and TK. The substrate spectra of the four
(deoxy)nucleoside kinases were tested with 20 nucleosides (A). Activities with purine (B) and pyrimidine (C) nucleoside
substrates were determined for the chosen NKs using standard screening conditions. If a discrepancy to literature data
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reactions including 50 mM KCl and 0.004 U enzyme (see also Figure 5). Substrates were only presented if conversions >10%
were observed. Please see Table S4 for the conversions.
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In literature, DmdNK and HsdCK were described as wide-spectrum enzymes [19,35–39].
Indeed, both enzymes showed a very comparable broad substrate spectrum with the
compounds tested. Next to dAdo, dGuo, and Thd, both enzymes accepted diverse base-
and sugar-modified nucleosides such as AraA, CldA, ClFanaA, FAraA, FAdo, dFdC,
FanaU, FCyd, and 3TC (Figure 4B,C). Both DmdNK and HsdCK preferred deoxy- and
arabinonucleosides over ribonucleosides. Open-ring derivatives GCV and ACV were
accepted by neither DmdNK nor HsdCK. One difference between the two enzymes is the
acceptance of uridine and its derivatives. While DmdNK accepted uridine and EdU, this
was not the case for HsdCK. Whereas most observations correspond well with literature
data available for HsdCK [11,37,40,41] or DmdNK [12,35–37,42], an activity towards a few
substrates was not known before. This concerns the acceptance of FAdo, FanaU, and FCyd
by HsdCK and activities towards ClFanaA, FanaU, EdU, and 3TC by DmdNK.

Although viral thymidine kinases are known to accept a broad spectrum of nucleo-
side analogues [11], the tested TK displayed a narrower substrate spectrum compared to
DmdNK or HsdCK (Figure 4B,C). The screening mainly revealed activities towards deoxy-
or arabino-nucleoside substrates. Not only pyrimidines but also some purine nucleoside
analogues were converted by TK, although to a much lower extent than by DmdNK and
HsdCK. Interestingly, unlike DmdNK and HsdCK, TK phosphorylates the open-ring guano-
sine analogues GCV and ACV, which is in good agreement with literature data on viral
TKs [11]. The ability of a viral TK to phosphorylate CldA and FanaU was shown for the
first time in this study.

Compared to the other three analyzed enzymes, HsAK appears to be the most specific
kinase. Here, this enzyme only showed activity for the natural purine nucleoside Ado.
However, HsAK seems to be more promiscuous. Previous studies by Yamada et al. showed
phosphorylation of dAdo and AraA with AK from the human liver [25], and we showed
the conversion of FAdo before [12]. Both studies relied on optimized conditions to reach
significant conversions, e.g., the addition of potassium chloride (KCl) was described to
be beneficial for HsAK activity [25], something which could be analyzed with the here
described assay.

2.5. Application of the High-Throughput Semi-Automated Assay to Optimize Reaction Conditions
for HsAK

To validate the impact of optimized reaction conditions on the activity of HsAK,
the semi-automated assay was applied. Reactions with potassium addition and/or an
increased enzyme concentration were analyzed and compared to the standard conditions.

While the addition of 50 mM KCl, did not improve NMP formation, a 20-fold increase
in HsAK led to an increased substrate conversion of dAdo, AraA, and FAdo (Figure 5). A
combination of KCl addition and increased enzyme concentration further improved NMP
formation for dAdo and FAdo. In accordance with literature data, no significant conversion
of AraA was observed, which confirms the results by Yamada et al., who showed HsAK
activity towards AraA to be max. 7% compared to Ado under optimized conditions [25].

Higher enzyme concentrations might be applied in future screenings to avoid over-
looking small activities towards single nucleoside analogues. In this context, the example of
HsAK revealed that variations in reaction conditions might be necessary to ensure optimal
conditions for each enzyme.
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Figure 5. HsAK activity for Ado, dAdo, AraA, and FAdo. Standard screening conditions are
compared to optimized conditions (KCl addition and/or 20-fold increase of enzyme concentration).
Reactions were performed with 0.33 mM substrate and 0.4 mM ATP in 70 mM Tris-HCl [pH 7.6]
supplemented with 5 mM DTT, 10 mM MgCl2, 0/50 mM KCl, and 0.0002/0.004 U HsdCK at 37 ◦C
for 19 h. Mean of the duplicates and standard deviations are indicated. The NMP formation was
calculated from the detected ATP consumption.

3. Materials and Methods
3.1. General Remarks

All chemicals and solvents were of analytical grade or higher and purchased, if
not stated otherwise, from Sigma-Aldrich (Steinheim, Germany), Carl Roth (Karlsruhe,
Germany), Fluka Chemie GmbH (Buchs, Switzerland), PanReac AppliChem (Darmstadt,
Germany), or VWR (Darmstadt, Germany). Nucleosides and nucleotides were acquired
from Alfa Aesar (Kandel, Germany), Carl Roth (Karlsruhe, Germany), Sigma-Aldrich
(Steinheim, Germany), Carbosynth Limited (Berkshire, United Kingdom), and TCI (Es-
chborn, Germany). Stock solutions with concentrations of 100, 10, or 1 mM were prepared
in deionized water, and aliquots were stored at −20 ◦C.

The human adenosine kinase (HsAK, NK14), human deoxycytidine kinase (HsdCK,
NK13), and viral thymidine kinase (TK, NK16) were obtained from BioNukleo GmbH
(Berlin, Germany) and stored at −20 ◦C.

The Drosophila melanogaster deoxynucleoside kinase (DmdNK) plasmid was kindly
provided by Prof. Birgitte Munch-Petersen (Roskilde University).

3.2. Expression of DmdNK

DmdNK was produced as described before [36]. Briefly, it was expressed as a GST-
fusion protein in Escherichia coli BL21 and purified using glutathione sepharose. The GST
tag was cleaved off using thrombin, and the enzyme was stored in aliquots at −20 ◦C,
including 50% glycerol, 1% Triton X-100, and 1 mM dithiothreitol (DTT).

3.3. The Luminescent Assay

The Kinase-Glo Max assay (Promega, Madison/Wisconsin, USA) was used to detect
(deoxy)NTPs in 96-well white assay plates (Costar 655094, Greiner Bio-One, Kremsmün-
ster, Austria) as previously described [19]. Briefly, the assay was performed with 10 µL
sample/standard and 10 µL Kinase-Glo reagent following the 1:1 ratio suggested by the
manufacturer. The total assay volume was adapted for the use in 96-well plate format
to 100 µL by adding 80 µL deionized water. Luminescence was measured in a Synergy®
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Mx Multi-Mode Microplate Reader (Bio Tek Instruments, Winooski, VT, USA) for 1 s and
extended dynamic range after 10 min incubation in the dark.

Unless otherwise stated, each standard was tested twice and each sample three times.

3.4. Detection of (Deoxy)NTP and Mixed ATP Standards

The acceptance of (deoxy)NTPs as substrates for the Ultra-Glo luciferase was analyzed
by the preparation of standards ranging from 0 to 500 µM of ATP, UTP, GTP, CTP, dATP, TTP,
dGTP, and dCTP in NK reaction buffer (70 mM Tris [pH 7.6], 10 mM MgCl2, 5 mM DTT).

Autoluminescence and possible luciferase inhibition were tested with 400 µM ATP
alone or together with 400 µM of Ado, dAdo, Guo, dGuo, Cyd, dCyd, Urd, or Thd in NK
reaction buffer, respectively.

To analyze the impact of AMP, standards in NK buffer with 0.4 mM ATP, 0.3 mM
ATP/0.1 mM AMP, 0.2 mM ATP/0.2mM AMP, 0.1 mM ATP/0.3 mM AMP, and 0.4 mM
AMP were used.

3.5. Nucleoside Kinase Reactions

The NK reactions were performed in a total volume of 150 µL consisting of 0.4 mM
ATP, 0.33 mM nucleoside and 0.0002 U enzyme in NK reaction buffer (70 mM Tris [pH 7.6],
10 mM MgCl2, 5 mM DTT). Reaction mixtures were incubated at 37 ◦C for 19 h and stopped
by a heating step at 75 ◦C for 10 min.

Optimized reaction conditions included 6× (0.0012 U for TK) or 20× (0.004 U for
DmdNK and HsAK) increased enzyme concentration and/or the addition of 50 mM
KCl (HsAK).

The following controls were prepared on the same assay plate as the reactions to
ensure the same incubation conditions: (a) negative control without enzyme, (b) substrate
control without ATP, and (c) basal activity control without substrate.

To calculate the consumed ATP in the kinase reaction, the following Equation (1)
was used, whereby R is the average luminescence signal of the kinase reaction, B is the
difference of the negative control and the basal activity, S is the substrate control, and N is
the average luminescence signal of the negative control:

Consumed ATPLum [%] = 100−
(

100× R + B + S
N + S

)
(1)

Due to the molar ratio of ATP and substrate of 1.2:1, the (deoxy)NMP product formation
was calculated by multiplying the consumed ATP with the factor 1.2 (Equation (2)).

ProductLum [%] = Consumed ATPLum × 1.2 (2)

Values were restricted to 0–100%.

3.6. Semi-Automated Assay to Determine the Activity of Nucleoside Kinases

Pipetting steps were performed by the liquid handling robot Microlab Star (Hamilton
Bonaduz AG, Bonaduz, Switzerland). The reaction mixture was incubated for 19 h at 37 ◦C
in 96-well PCR plates (Greiner Bio-One 652290, Kremsmünster, Austria). The PCR plates
were closed with EASYseal™ sealing film (Greiner Bio-One A5596) and arched auto-sealing
lids (Bio-Rad, Hercules, CA, USA) preheated to 50 ◦C. The reaction was stopped by heating
to 75 ◦C for 10 min with lid heat set to 85 ◦C in a Primus 96 plus (MWG Biotech Inc,
Ebersberg, Germany) PCR cycler. All kinases’ reactions were performed in duplicates, and
the luciferase assay was performed in triplicates.

3.7. Accuracy of the Assay

The accuracy of the assay was analyzed with colored solutions. For that, the kinase
reaction PCR plate and the assay plate were prepared independently by the liquid handling
robot. Then, the absorbance between 300 and 700 nm was recorded, and the differences
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in the spectra were evaluated. For the kinase reaction plate, the dyes blue (water), pink
(buffer), green (substrate), and black (enzyme) were used. From the PCR plate, 100 µL were
manually transferred to an assay plate for analysis. For the assay plate, blue (water), pink
(kinase reaction), and black (Kinase-Glo reagent) were applied.

The Z’-value for each plate was calculated according to Equation (3) [16], whereby
SDnegative and SDsubstrate are the standard deviations, and Averagenegative and Averagesubstrate
are the means for the negative and the substrate controls, respectively.

Z′ value = 1−
3× SDnegative + 3× SDsubstrate

Averagenegative − Averagesubstrate
(3)

3.8. High-Performance Liquid Chromatography (HPLC)

For HPLC analysis, 100 µL of the kinase reaction was mixed with 100 µL MeOH and
centrifuged at 4 ◦C and 21.500× g for 20 min. Then, 75 µL of the supernatant were added to
25 µL deionized water, and the mixture was transferred to an HPLC vial with inlet. Samples
were analyzed by HPLC-DAD (Agilent 1200 series, Santa Clara/California, USA) at 260 nm
using a Kinetex Evo column (C18, 100 A, 250 × 4.6 mm, Phenomenex, Aschaffenburg,
Germany) as described previously [12]. Briefly, a flow rate of 1 mL min−1, a separation
temperature of 34 ◦C, and a gradient of A (KH2PO4/K2HPO4: 0.1 M, tetrabutylammonium
bisulfate: 8 mM, pH 5.4) and B (70% A, 30% methanol) was applied: 0 min—80% A,
4 min—80% A, 14 min—40% A, 35 min—36.5% A, 35.5 min—80% A, and 38 min—80% A.

Typical retention times [min] were for AMP—8.2, ADP—15.4, and ATP—22.9. The
retention times of the (deoxy)nucleosides and (deoxy)nucleoside monophosphates are
given in Table S5.

The consumed ATP and formed product in the kinase reaction mix were calculated
using the following Equations (4) and (5), whereby AX is the peak area of ATP, Atotal is the
sum of all adenosine nucleotides (ATP, ADP, AMP), PX is the peak area of the produced
NMP, and Ptotal is the sum of the substrate and product(s):

Consumed ATPHPLC [%] =

(
1− AX

ATotal

)
× 100 (4)

ProductHPLC [%] =
PX

Ptotal
× 100 (5)

4. Conclusions

The luciferase-based assay is very suitable to screen the activity of (d)NKs towards
a wide range of nucleoside substrates. Interference of the nucleoside substrates or the
NMP products with the luminescent assay was not observed. The results obtained in this
study correlated very well with literature data. In addition, further previously unknown
substrates were identified for HsdCK, DmdNK, and the viral TK. By automation, a non-
radiometric, fast, inexpensive, reliable, and simple method was established, which shows
comparable accuracy as standard HPLC analytics. In contrast to HPLC analytics, this assay
allows the rapid and parallel analysis of large sample numbers. Additionally, the lower
substrate and enzyme volumes required and the avoidance of solvents lead to reduced
costs and improved sustainability.

The automated luciferase-based assay has great potential to be used to screen the
substrate spectrum of other kinases involved in nucleotide metabolism such as NMP and
NDP kinases or in inhibition/kinetic studies of nucleoside kinase-catalyzed reactions.
Furthermore, the impact of varying phosphate donors on the activity of nucleoside or
nucleotide kinases can be evaluated as the Ultra-Glo luciferase also accepts dATP, GTP,
CTP, and UTP next to ATP. Future research will include the full automatization of the assay.
Furthermore, it will be evaluated if the assay can be applied for enzyme cascade reactions
to form NTPs from nucleosides.
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