
 International Journal of 

Molecular Sciences

Review

Mechanism of Antimicrobial Peptides: Antimicrobial,
Anti-Inflammatory and Antibiofilm Activities

Ying Luo 1 and Yuzhu Song 1,2,*

����������
�������

Citation: Luo, Y.; Song, Y.

Mechanism of Antimicrobial Peptides:

Antimicrobial, Anti-Inflammatory

and Antibiofilm Activities. Int. J. Mol.

Sci. 2021, 22, 11401. https://doi.org/

10.3390/ijms222111401

Academic Editors: Henrik Franzyk

and Rustam I. Aminov

Received: 24 August 2021

Accepted: 20 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Life Science and Technology, Kunming University of Science and Technology,
Kunming 650500, China; luoying@stu.kust.edu.cn

2 Medical College, Kunming University of Science and Technology, Kunming 650500, China
* Correspondence: yuzhusong@kust.edu.cn; Tel.: +86-871-65939528

Abstract: Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides
antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring
the mechanism of action of AMPs may help in the modification and development of AMPs. Many
studies were conducted on the mechanism of AMPs. The present review mainly summarizes the
research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This
study not only describes the mechanism of cell wall action and membrane-targeting action but also
includes the transmembrane mechanism of intracellular action and intracellular action targets. It also
discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and
anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation.
This study aims to provide a comprehensive review of the multiple activities and coordination of
AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
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1. Introduction

Since their discovery, antibiotics have been widely used in medicine, food, agriculture,
and other fields [1]. Moreover, bacteria have developed antibiotic resistance precisely
because of the large-scale use of antibiotics. There are multidrug-resistant bacteria and
extensively drug-resistant bacteria [2]. Pathogens causing hospital-acquired infections
have become a major challenge to human health with the emergence of drug-resistant
bacteria and the expansion of their population [3,4]. The era of “antibiotics” has come to
an end, gradually entering the era of “post-antibiotics,” leading to the situation in which
drug-resistant bacteria will have no drug exposure [5]. The development of new antibiotics
is facing a bottleneck at present [6]. In the last two decades, a few new antibiotics, such as
linezolid, baptomycin, and bedaquiline, have been introduced into the market for clinical
application [7]. Therefore, new antibiotics or antibiotic substitutes need to be urgently
developed [8–11].

Antimicrobial peptides (AMPs) are a class of small-molecule peptides, usually com-
posed of 12–50 amino acid residues [12–14]. At present, more than 3100 natural AMPs
have been found [15]. AMPs exist widely in nature and are obtained from bacteria, plants,
insects, fish, birds, and other animals [16–18]. They are important effectors in the innate
immune system and the first line of defense to protect against pathogen infection [19–21].
They have no highly conserved sequence, but most of them are short, amphiphilic, and
highly cationic molecules [5,22]. They have strong antimicrobial activity against a vari-
ety of bacteria, fungi, and viruses [23,24]. They have the advantages of low toxicity to
eukaryotic cells, strong thermal stability, high solubility, low molecular weight, and lack
of resistance [25]. Therefore, they have potential application in medicine, and several
antimicrobial agents are already in clinical trials [15,26].
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Natural AMPs are produced by the immune system and participate in regulating the
immune system against a wide range of invasive pathogens [27,28]. They are considered to
have the potential to replace antibiotics because of their broad-spectrum bactericidal effect.
However, in the last decade or so, we have begun to recognize that AMPs, as amphiphilic
cations, have biological functions such as immunomodulatory, antimicrobial, anticancer,
and wound healing activities [29–31]. It is also because these additional functions that
AMPs are also known as host defense peptides (HDPs) [30].

Each activity of AMPs has a different mechanism of action [32]. The antimicrobial
mechanism of AMPs has been studied, but the findings are not satisfactory because the
antimicrobial mechanisms of AMPs are extremely diverse, and recent studies have technical
limitations [33,34]. Besides the mechanism of antimicrobial activity, researchers have also
focused on anti-inflammatory, anticancer, and other biological activities. To put AMPs into
use, we must solve the problem of safety and effectiveness. Therefore, obtaining AMPs
with low toxicity and strong activity has always been the pursuit of scientific researchers.
However, neither the antimicrobial mechanism of AMPs nor other active mechanisms are
fully understood, which limits the development of antimicrobial drugs. In this study, the
antimicrobial, antibiofilm, and anti-inflammatory mechanisms of AMPs were reviewed.

2. Antimicrobial Mechanism of AMPs

This study mainly introduced two models of pore formation: barrel-stave model and
toroidal-pore model [31,33,35]; moreover, the carpet model and detergent-like model exist,
with no formation of pores [31,33]. For intracellular effects, the entry into the cell and the
target points in the cell are of great research value. AMPs can enter the cytoplasm through
direct penetration and endocytosis of the plasma membrane [36–38]. The intracellular
activities of AMPs are varied, such as binding to nucleic acids, inhibiting the synthesis of
nucleic acids and proteins, and affecting the cell cycle [39–41]. The intracellular targeting
position and the transmembrane method need further exploration. AMPs regulate immune
response and play a defensive role in the infected site. In addition, they can also induce
the synthesis of pro-inflammatory factors, reduce the inflammatory reaction caused by
endotoxins, regulate adaptive immunity, and maintain stability in the body [42,43]. This
part is covered in Section 3.2 on anti-inflammatory mechanisms.

2.1. Mechanism of Cell Wall Targeting

Peptidoglycan is the main component of the bacterial cell wall, and lipid II is an
important part of peptidoglycan synthesis [44]. The peptidoglycan layer is essential for the
integrity and survival of bacteria [45]. AMPs (bacitracin and vancomycin) can selectively
bind to lipid II, a cell wall synthesis precursor molecule, and inhibit the synthesis of the cell
wall (Figure 1) [46,47]. Tanja Schneider et al. performed genetic and biochemical in vitro
experiments and found that plectasin used lipid II as its cell target and worked by directly
binding to lipid II [48]. AMPs not only inhibited the synthesis of the cell wall but also
destroyed the formed cell wall structure, as shown in Figure 1. For example, derivative
peptide RWRWRW-NH2 destroyed the integrity of the cell wall by affecting respiration
and delocalized the cell wall biosynthesis protein MurG [49].

2.2. Mechanism of Membrane Targeting

The net charge of cation is an important factor in the early interaction with the neg-
atively charged membrane [50]. Most AMPs are cationic peptides, while G+ and G−
surfaces contain teichoic acid and lipopolysaccharides, respectively. Therefore, a net nega-
tive charge is generated on the membrane surface. Consequently, the cationic AMPs have
initial electrostatic attraction, providing the basis for the next step to destroy the membrane
structure or enter the cell to play a role [5]. With the increase in the peptide molecular
content, the electrostatic attraction and the penetration of AMPs binding to the cell mem-
brane are strengthened, and then peptide molecules diffuse and pre-assemble freely on the
membrane surface [31,33,51]. The transmembrane pore model and the nonmembrane pore
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model were proposed based on the presence of holes in the membrane structure of AMPs.
Each model used different modes of action, but they were related to each other.
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2.2.1. Transmembrane Pore Model

The typical transmembrane pore models are the barrel-stave model and toroidal-
pore model.

Barrel-stave model: Initially, monomer peptide molecules may undergo conforma-
tional changes and be limited to insert into the hydrophobic core of the membrane. When
the peptide reaches a certain threshold concentration, oligomers are formed between
monomer AMP molecules and further inserted into the hydrophobic core. This process
should protect the hydrophilic surface of AMPs from coming in contact with the hydropho-
bic part of the intima. The hydrophobic region of the peptide chain is toward the membrane
and interacts with the membrane lipid, while the hydrophilic region is toward the inner
side of the barrel wall to form a channel lumen (Table 1) [52–54].

Toroidal-pore model: AMPs were adsorbed to the bilayer at a low concentration. At a
high concentration, AMPs vertically inserted into the lipid bilayer induced the membrane
phospholipid molecules to bend inward and form pores. The peptide chain is embedded
in the hydrophilic and hydrophobic interface and arranged in the inner side of the pore
with the lipid bilayer head (Table 1) [52–54].

2.2.2. Non-Membrane Pore Model

Carpet model and detergent-like mode: AMPs interacted with negatively charged
phospholipids in the outer layer of the membrane and were arranged parallel on the
membrane surface to form a “carpet”-like structure. When the AMP concentration exceeds
the threshold, peptide molecules automatically rotate and destroy the direction of phos-
pholipid molecules, resulting in enhanced membrane fluidity. The cell membrane is split
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inward in a way similar to the detergent and the bilayer structure of the membrane finally
disintegrates into micelles. This is also known as the detergent-like model (Table 1) [52–54].

Besides several common models, many models are used to describe the mechanism
of AMPs. For example, the agglutination model is a micellar complex formed by the
combination of cationic peptides and outer membrane lipopolysaccharides of G− or cell
wall peptidoglycan of G+ (Table 1 and Figure 1). Peptide molecules do not penetrate the
cell membrane, induce bacterial cell agglutination, and agglutinate cells, which are then
easily phagocytized [55].

Table 1. Action model of antimicrobial peptides (AMPs) on the membrane, characteristics of each model, and typical AMPs.

Action Model Mode of Action Represents AMPs

Transmembrane pore model Barrel-stave model Holes Alamethicin, pardaxin, and
protegrins [56–58]

Toroidal-pore model Holes Lacticin Q and melittin [59,60]

Nonmembrane pore model Carpet model/Detergent-like mode Splitting Cecropin P1 and aurein 1.2 [61,62]
Agglutination model Devour Thanatin [55]

2.3. Intracellular Targeting Mechanism of Action
2.3.1. Mechanism of Translocation

Many recent studies have shown that AMPs not only are a mode of membrane
action but also have intracellular targets. They are also known as nonlytic antimicrobial
peptides. The mechanism of intracellular action is still under investigation [63]. When
we talk about the intracellular targeting mechanism of AMPs, we should first introduce
cell-penetrating peptides (CPPs), which include all peptides with transmembrane transport
capacity, whether natural peptides, synthetic peptides, or chimeric peptides [63,64]. AMPs
and CPPs are very similar in structure, sequence, and membrane activity [63]. Moreover,
some studies have evaluated the antimicrobial activity of CPPs and showed that AMPs
could also reach the cytoplasmic target through nonmembrane permeability [40,65,66].
CPPs mainly focus on mammalian cells and are used as cell delivery tools for drugs and
biomolecules [67,68]. AMPs are mainly considered as a tool against bacterial infection,
which makes similar molecules exist as an independent type. The different effects of CPPs
and AMPs may be due to the difference in membrane composition. In addition, the two
groups of peptides have large differences in some biological activities, such as different
activities for cancer cells. They also have specificity for the selection of action sites [63].
Although they are different, the similarities in their effects on the translocation mechanism
are mainly discussed in this manuscript.

Energy-Independent Direct Permeation of the Plasma Membrane

1. Formation of instantaneous pores.
Some AMPs (such as proline-rich AMPs) can first gather on the membrane surface

and combine with lipids. The transient destruction of the membrane barrier results in
the loss of transmembrane potential and the formation of a transient toroidal gap [37].
Consequently, AMPs are transferred to cells and finally act on the target site. In the Shai–
Matsuzaki–Huang model, amphiphilic AMPs are initially parallel to the membrane plane
and bound on the membrane surface (Figure 1) [69–71]. The hydrophobic amino acids
of AMPs are inserted into the bilayer membrane, the cationic part of AMPs is combined
with the phosphate of the lipid bilayer, and the peptide direction changes from transverse
to vertical, forming instantaneous toroidal holes. The model has certain requirements
for peptide concentration, which is related to membrane components. If the peptide
concentration is too high, the membrane is destroyed or dissolved in a detergent-like
manner. When the peptide/lipid ratio is low, AMPs can disturb the membrane structure
and reach the cell interior in a transient and nonlethal manner [72]. The disordered toroidal-
pore model allows the single peptide to cross the lipid bilayer horizontally under the action
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of mechanical stress or electric field force (Figure 1). The other peptides maintain the pore
structure near the edge of the pores [60,73].

Due to the instability of pores, the permeability of peptides can be increased by
increasing the frequency of pore formation and the transfer rate [74]. The pore formation
of AMPs is strictly controlled by their size/conformation and specificity [37,75]. Buforin 2
is a typical antimicrobial peptide that enters the cell through transient pore formation. For
Buforin 2, the anionic lipid reduces the repulsive force between peptide molecules, leading
to the aggregation of peptide molecules so that pores can be maintained at the level that
allows peptide molecules to penetrate and flip (Shai–Matsuzaki–Huang model) [74,76].
Indolicidin is a typical nonmembrane targeting peptide, but it has strong antimicrobial
activity. It passes through the outer membrane and the inner membrane and binds to DNA
via “boat” (disordered toroidal-pore model) or transmembrane (Shai–Matsuzaki–Huang)
arrangements [77].

CPPs can form “toroidal pores” or “barrel pores.” The process of the formation of
toroidal pores is as follows [78]: CPPs first gather on the inner lobule of the lipid bilayer
after entering the cell. They combine with fatty acids in the plasma membrane to form a
transient annular pore. Consequently, CPPs cross the plasma membrane and enter the cell.
Due to the change in the environment, fatty acids release CPPs and the pores close. For
the barrel-pore model, similar to the barrel-stave pore model of AMPs, holes are formed
through the molecular structure of the amphoteric peptide, but the gap formed is not
stable [79].

2. Direct translocation through membrane instability.
The lipid-phase boundary defect model consists of flat aggregates formed by peptides

on the surface of a negatively charged bacterial membrane. The peptide aggregates form
rigid and thick lipid regions with the membrane due to the insertion of aromatic residues
into the membrane core. The difference in hardness and thickness between the films
leads to space defects, leading to the passage of AMPs through the bacterial membrane
(Figure 1) [38,80]. Cateslytin, an Arg-rich AMP, aggregates on the membrane surface,
leading to membrane boundary defects [38].

For the “carpet” model, some peptides enter the cell because the combination of
peptide and membrane accelerates the fluidity of the membrane [78,81]. The direct translo-
cation mechanism through membrane instability requires not only high membrane affinity
but also pH gradient and transmembrane potential [82,83]. Although AMPs and CPPs
have similar mechanisms of action, they can complement each other in different ways.

Energy-Dependent Endocytosis

Endocytosis is a natural and energy-consuming process in all cells. The endocytosis of
AMPs is mainly through receptor-mediated transport pathways. Macromolecules enter
cells through membrane proteins; studies have shown that the entry of AMPs into cells
is also receptor-mediated [36]. Antimicrobial peptide transporter SbmA is a known trans-
porter that mediates the entry of AMPs into cells (Figure 1) [64,84]. Both PR-39 and Bac7
enter cells through SbmA, but the transporter of Drosocin and Apidaecin into the cyto-
plasm is unknown (Figure 1) [85–89]. The endocytosis of CPPs includes macropinocytosis,
clathrin-/caveolin-mediated endocytosis, and clathrin-/caveolin-independent endocyto-
sis [78]. The detailed mechanism of CPP endocytosis is introduced in reference [78].

Besides the mechanism of action of the aforementioned three AMPs, CPPs can be
localized through transmembrane localization after internalization, that is “reverse micelle”
mechanism. When CPPs come into contact with lipid bilayers, the conformation of peptides
changes for incorporation into lipid bilayers, resulting in the invagination of phospholipid
bilayers and the formation of reverse micelles. After entering the cell, phospholipid
bilayers release peptides into the cytoplasm [78,90]. The binding of basic amino acids to
the membrane is the first step of endocytosis [64]. The internalization of CPPs is affected by
guanidine, fatty acids, and plasma membrane pH gradient [78]. After the CPPs internalize
into the cytoplasm, they are protected by membrane components to ensure that they are not
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degraded before they reach the target site and exert their biological activity. However, the
escape of CPPs from intracellular vesicles is the main limiting factor for their activity [91].
At present, the mechanism of action of AMPs has not been reported. This mechanism can
be used as a reference model for similar phenomena in the future.

2.3.2. Intracellular Mechanism of Action

After the AMPs enter the cell membrane and accumulate, they can target intracellular
macromolecules and biological processes for further activity [25,39,92,93]. Nonmembrane-
targeting AMPs can bind to nucleic acids and proteins; inhibit the process of replication,
transcription, and translation; destroy organelles; or affect the enzyme system to disturb
the cell cycle and energy metabolism (Table 2 and Figure 1) [37,39,40,42,94–101].

Table 2. Summary of the targets, typical AMPs, and specific action modes of AMPs.

Specific Mechanism of Action AMPs Action Site References

Induce degradation of genomic DNA
and total RNA TO17 Nucleic acid [96]

Bind with nucleic acids and finally
inhibit the synthesis of DNA, RNA,

and proteins
Buforin-2 and indolicidin Nucleic acid [100,101]

Bind with nucleic acids
A series of derived peptides,

such as HPA3NT3-A2, MBP-1,
IARR-Anal10, and KW4

Nucleic acid [40,94,102,103]

Bind to RNA polymerase and inhibit
the activity of RNA polymerase Microcin J25 and capistruin Nucleic acid synthetases [95]

Act on the termination process of
translation. Inhibit protein synthesis
by capturing the release factor on the
70S ribosome after hydrolysis of the

new polypeptide chain

Apidaecin 1b and Api137 Ribosome [39]

Transfer of aa-tRNA from EF-Tu to
ribosome; a site blocked to inhibit

protein synthesis

Bac7, Onc112, pyrrhocoricin,
and metalnikowin Ribosome [39]

Inhibit the protein synthesis of 70S
ribosome and interact with DnaK to
inhibit the necessary ATPase activity

or protein folding activity

Bac7 Molecular chaperone DnaK [77]

Inhibit DnaK activity Abaecin Molecular chaperone DnaK [97]

Affect cell cycle, inhibit DNA
synthesis, and prevent cell division Indolicidin Nucleic acid; cell division [101]

Affect cell cycle and inhibit
cell division HD5ox Cell division [98]

Destruct organelles and inhibit
mitochondrial respiration to

destroy mitochondria
His-rich AMPs Mitochondria [42]

Inhibit the activity of energy
metabolism proteins to affect

energy metabolism
Magainin 1 Energy metabolism protein [99]

2.3.3. Development and Significance of Intracellular Targeted AMPs

The mechanism of antimicrobial activity of AMPs has been extensively studied, but
only a few AMPs are in the advanced clinical antimicrobial stage [30]. Nonlytic AMPs have
certain advantages in the clinic. First, AMPs have specific and diverse intracellular targets,
which can effectively organize bacterial resistance. Second, AMPs can be used to carry
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drugs to target cells for targeted therapy [34]. In recent years, thanks to the development
of synthetic biology, a large number of modified AMPs have the advantage of becoming
clinical drugs. The modified AMPs with low toxicity and strong activity can be carried into
cells and are expected to become a new class of potential CPPs.

2.4. Dual or Multiple Mechanisms of Action

With the further development of research, many studies have shown that some AMPs
have not only a single mode of action but also have multiple mechanisms. A large number
of AMPs, whether natural or derived, have been found to have more than membrane-
targeting or intracellular effects. They can act on both the membrane and intracellular
substances [41,104–108].

The bacterial membrane is destroyed, and the growth of bacteria is inhibited. Hence,
whether AMPs still combine with intracellular substances needs to be clarified. Two
possible explanations exist for this phenomenon.

The first explanation: The AMPs destroy the bacterial membrane, leading to the
leakage of intracellular substances; the leaked intracellular substances absorb the AMPs
to protect the undamaged bacterial cells [5,109–111]. Recent studies used mathematical
models with population and single-cell experiments on LL-37 to prove the formation of a
population combined with LL-37 and a growing population that survived because AMPs
were isolated by other substances [110,111]. Zhu and others showed that the diffusion
coefficient of DNA-binding protein HU and nonendogenous protein Kaede decreased by
super-resolution and single-particle tracking method, which finally showed that a close
network was formed between high-concentration AMPs, DNA, and 70S polysomes [109].
The experimental results of the PMAP23 peptide showed that the affinity between PMAP23
peptide and dead bacteria was higher than that of living cells. This effect caused dead
bacteria to protect living cells by isolating a large number of peptide molecules [5].

Another possible reason is the research on intracellular effects is basically based on
independent in vitro studies, and the biggest shortcoming of in vitro studies is that they
cannot fully explain the precise mechanism in vivo [25,94,104,112]. In vitro experiments
cannot timely simulate changes in the real pH value, salt concentration difference, and
other components of the immune system in vivo [15,113]. The types of AMPs are also
diverse in complex organisms. In the internal environment, AMPs may need to cooperate
with other AMPs, or coordinate with various factors in the body, or face different internal
environments to choose different mechanisms to exert their biological activities [114,115].
The organisms are sophisticated and highly coordinated. Every biological pathway in the
organism is restricted by each other. Some studies have shown that the levels of AMPs
secreted by frogs are different under the stimulation of different external microorganisms,
indicating that the production of AMPs in the body is strictly regulated [116,117]. In
addition, many AMPs have variable regions, which make AMPs regulate translocation
behavior and target specificity through operating sequences [118,119]. Therefore, AMPs can
respond to the external environment and maintain the stability of the internal environment
by manipulating variable regions or coordinate with other factors to maintain the internal
balance of the body in the face of different external environments.

3. Other Mechanisms
3.1. Antibiofilm Mechanism
3.1.1. Biofilm Formation Process

Biofilms are composed of complex microbial communities attached to biological
or abiotic surfaces and embedded in the matrix produced by proteins and polysaccha-
rides [120,121]. Extracellular polymeric substances (EPSs) contain extracellular polysaccha-
rides, proteins, nucleic acids, and other small cellular molecules [122,123]. The formation
and development of biofilm include four stages:

(a) The aggregation or attachment of microorganisms. In this stage, microorganisms
continuously gather on the surface of target cells and establish weak interaction with
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molecules on the surface through van der Waals force, electrostatic force, and hydrophobic
interaction. This process is reversible (Figure 2) [124,125].

(b) Microbial adhesion. In this stage, strong and irreversible connections are formed
through covalent interaction, and exopolysaccharides are produced. The accumulated
microbial colonies are protected by organelles such as extracellular polysaccharides and
pili, which enhance the resistance and growth of the community (Figure 2) [124,125].

(c) Development and maturation of a biofilm. In this stage, a stable film structure is
formed, and the colonies further adapt to the growth environment under the protection of
the biofilm (Figure 2) [124,125].

(d) Biofilm aging. Biofilm depolymerization enables bacteria to scatter on the surface
of other cells to enter the next biofilm cycle (Figure 2) [124,125].
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indicated by ↑ and ↓. The AMPs in brackets correspond to the corresponding mechanism types.

3.1.2. Main Mechanism of AMPs against Biofilms

According to the four processes of biofilm formation, the ways to inhibit the formation
of biofilms are as follows:

(I) Disruption of the cell signaling system. LL-37 can reduce the attachment of bacterial
cells, stimulate twitch movement, and affect the two main quorum-sensing systems of Las
and Rhl to influence the formation of biofilms (Table 3 and Figure 2) [126].

(II) Suppression of the alarm system to avoid excessive reactions of bacteria. The
exposure of bacteria to amino acid starvation, fatty acid restriction, and other stress environ-
ments triggers the upregulation of guanosine tetraphosphate (ppGpp) and pentaphosphate
(pppGpp) signal nucleotides and inhibits RNA synthesis [127–129]. PpGpp and pppGpp
are combined into (p) ppGpp. The bacterial growth and decomposition are suspended,
nutrients are transferred to maintain bacterial capacity requirements, and finally, a biofilm
is formed [127–129]. Peptide 1018 inhibits biofilm formation by blocking the synthesis of
(p)ppGpp through enzymes RelA and SpoT (Table 3 and Figure 2) [130]. DJK5 and DJK6
deplete (p)ppGpp from cells to inhibit biofilm formation (Table 3 and Figure 2) [131,132].
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(III) Downregulation of the expression of binding protein transport genes responsible
for biofilm formation. AMPs can target the severe stress response in Gram-negative and
Gram-positive bacteria, or downregulate the genes involved in biofilm formation and
binding protein transport [124]. Human β-defensin 3 significantly reduces the expression
of icaA and icaD genes (genes responsible for biofilm production) of Staphylococcus epi-
dermidis ATCC 35984 and increases the regulation of icaR expression (genes that inhibit
the production of biofilms) (Table 3 and Figure 2). The production of biofilm decreases
significantly [133,134]. AMP 1037 can reduce group movement, stimulate convulsive move-
ment, and inhibit the expression of many genes related to biofilm formation, thus directly
inhibiting biofilm formation (Table 3 and Figure 2) [135]. In addition, some AMPs, such as
Nal-P-113 and KW4, can inhibit the formation of biofilms, but the specific mechanism is
not clear [94,136].

The way to destroy the formed biofilm is to interfere with the bacterial membrane
potential in the biofilm. This can destroy the bacterial membrane to degrade EPSs. Nisin
A can affect the membrane potential of methicillin-resistant S. aureus biofilm cells, form
stable pores, and lead to ATP leakage (Table 3 and Figure 2) [125]. Esculentin-1a destroys
the biofilm of Pseudomonas aeruginosa through membrane perturbation, that is, it breaks
down the extracellular matrix by destroying the cell membrane (Table 3 and Figure 2) [137].
Peptide P1 acts on Streptococcus mutans to form irregular biofilms, which can separate cells
and extracellular polymeric matrix (Table 3 and Figure 2) [138]. AMPs, such as Temporin-l,
CPF-2, and Kassinatuerin-3, were also found to destroy the biofilm. However, the specific
mechanism needs further investigation [120,139,140].

In different biofilm stages, the same antimicrobial peptide can exert its biological
activity in a corresponding way. For example, peptide G3 can inhibit bacterial adhesion by
reducing surface charge, hydrophobicity, membrane integrity, and adhesion-related gene
transcription in the initial stage. In the subsequent stage, G3 interacts with extracellular
DNA, destroying the 3D structure of mature biofilms and dispersing them (Table 3 and
Figure 2) [141].

Table 3. AMPs with antibiofilm activity, including the strains and modes of action.

AMPs Microorganisms Mechanism of Action References

LL-37 Pseudomonas aeruginosa Inhibit bacterial adhesion; disruption
of cell signaling system [126]

DJK5 and DJK6 Pseudomonas aeruginosa Suppress the alarm system [131,132]

1081
A series of G+ and G−

(Pseudomonas aeruginosa,
Escherichia coli, etc.)

Suppress the alarm system;
eradication of mature biofilms [130]

Human β-defensin 3 Staphylococcus epidermidis
Downregulate the expression of
binding protein transport genes

responsible for biofilm formation
[133,134]

1037 Pseudomonas aeruginosa
Downregulate the expression of
binding protein transport genes

responsible for biofilm formation
[135]

Nisin A MRSA Interfere with the bacterial membrane
potential in the biofilm [125]

Esculentin (1–21) Pseudomonas aeruginosa Interfere with the bacterial membrane
potential in the biofilm [137]

G3 Streptococcus mutans Inhibit bacterial adhesion;
degrade EPSs [141]

P1 Streptococcus mutans Degrade EPSs [138]
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3.2. Anti-Inflammatory Mechanism
3.2.1. Mechanism of Inflammation

Inflammation is a defensive reaction caused by harmful stimulation (chemical and
physical factors), inflammatory factors (pathogens), or body damage [142,143]. Inflamma-
tory response, including various physiological and pathological processes, is a mechanism
to maintain body balance at the cost of a transient decline in tissue function [144].

The study of the anti-inflammatory mechanism of AMPs mainly focuses on the infec-
tion by Gram-negative bacteria. Lipopolysaccharide (LPS) is the main component of the
outer membrane of G−, which can be used as a protective barrier against the damage of
the external environment. LPS consists of three parts: lipid A is composed of glucosamine,
phosphate, and fatty acids; o-specific forms of the oligosaccharide polymer chain, and
the polysaccharide core connects the first two parts [145]. The chemical structure of LPS
can be found in reference [145]. In treating a bacterial infection with conventional an-
tibiotics, the main mechanism is to destroy the structure of the bacterial cell membrane.
This leads to bacterial lysis, releases a large amount of LPS, results in the release of pro-
inflammatory factors such as TNF-α, triggers local inflammation, and causes diseases such
as sepsis [146,147]. Therefore, LPS is considered to be an effective therapeutic target for
bacterial infection [148].

An acute inflammatory reaction is caused by pathogen infection and tissue damage in
three ways:

(a) Pathogens invade host cells and proliferate in the host body [144,149].
(b) Inflammatory inducers bind to their sensors. Microbial inducers mainly include

pathogen-associated molecular patterns (PAMPs) and virulence factors. Virulence factors
bind to their specific sensors or PAMPs bind to Toll-like receptors (TLRs) [144,149].

(c) The signaling pathways are activated in vivo and inflammatory factors are re-
leased, leading to an inflammatory reaction in target tissues affected by inflammatory
mediators [144,149].

3.2.2. Anti-Inflammatory Mechanism of AMPs

The anti-inflammatory mechanisms of AMPs may be as follows:
1. Preventing inflammatory inducers from binding to their sensors (Figure 3).
LPS binding to TLR4 is co-catalyzed by lipopolysaccharide-binding protein (LBP)

and CD14 [150]. After LPS is released, it first binds to LBP to form an LPS–LBP com-
plex [150–152]. LBP is a serum protein that can stimulate and amplify LPS-induced in-
flammation [153]. The complex targets the CD14 receptor on macrophages. LBP catalyzes
multiple rounds of LPS transfer to CD14, and finally, LPS combines with CD14, while the
LPS–LBP complex depolymerizes. CD14 transfers LPS to TLR4, activates the TLR pathway,
leads to the expression of inflammatory factors, and induces inflammation [150–152]. LPS is
a pathogen-associated molecular model of Toll-like receptor, and the lipid A component of
LPS can activate TLR4 [154]. Lipid A is the conserved structure and active site of LPS [145].

AMPs can exert anti-inflammatory activity in the following three ways:
(a) Neutralizing LPS. Since the polysaccharide core and the phosphate group of LPS

are negatively charged, they can be strongly combined with cationic AMPs [155]. Therefore,
the alkyl chains of LPS and the nonpolar side chains of AMPs interact through hydrophobic
interactions [156]. After binding with LPS, AMPs can neutralize LPS and inhibit the
release of inflammatory factors by directly interacting with LPS [157]. Gutsmann et al.
showed through biophysical technology that AMPs could transform lipid A from active
conformation to inactive a multilamellar structure, so as to neutralize LPS [158]. In addition,
Kaconis et al. used a variety of biophysical technologies such as Fourier transform infrared
spectroscopy, x-ray diffraction, and freeze-fracture electron microscopy to study the LPS
neutralization of a series of synthetic peptides. The results showed that the activity of
AMPs in neutralizing LPS was related to the fluidization of the LPS acyl chain, the strong
exothermic Coulomb interaction between the two compounds, and the ability to form
LPS multilamellar structures [159]. Heinbockel et al. proved using a mouse model that



Int. J. Mol. Sci. 2021, 22, 11401 11 of 20

Pep19-2.5 had strong endotoxin neutralization efficiency. Endotoxin is a component of
LPS [160]. Similarly, Wilmar Correa et al. studied the binding of Pep19-2.5 to the bacterial
cell membrane through thermodynamic analysis and small-angle x-ray scattering. The
experimental results showed that Pep19-2.5 combined with the bacterial cell membrane
and caused an exothermic reaction [161].

(b) Inhibition of LPS binding to LBP. Most LPS-binding peptides tend to depolymerize
LPS oligomers [162]. This leads to the dissociation of LPS oligomers, thereby inhibiting
the binding of LPS to LBP. The anti-inflammatory activity of dCATH was studied by
fluorescence spectroscopy and flow cytometry. It was found that dCATH induced strong
binding with LPS oligomers, led to the depolymerization of LPS oligomers, and inhibited
the binding of LPS and LBP [163]. However, some other studies were inconsistent with this
statement. According to reference [164], in contrast to the depolymerization of LPS, AMPs
induce LPS to cause strong polymerization and form LPS multilamellar structures. Uppu
and Haldar studied the binding of QN-PenP peptides to LPS by fluorescence spectroscopy
and dynamic light scattering. The results showed that AMPs bound to LPS did not
dissociate or promote LPS aggregation and finally neutralized LPS [164]. The content of
this step is worthy of further study.

(c) AMPs can combine with LPS competitively and inhibit the transport of LPS. They
cause competitive inhibition with CD14, and hence LPS cannot act on TLR4 receptors [165].
The flow cytometry analysis showed that the derived peptide 18-mer LLKKK could effec-
tively bind to CD14 to inhibit the binding of LPS to CD14 (+) cells [165].
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Through upstream inhibition, AMPs can effectively prevent the activation of down-
stream signaling pathways and inhibit the occurrence of inflammation. Some examples are
given in Table 4.

In recent studies, a new anti-inflammatory mechanism of AMPs emerged. Lipoproteins/-
peptides (LP), a microbial toxin, could induce inflammation by activating TLR2 [166].
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Heinbockelet et al. found that Pep19-2.5 interacted with the polar regions of LP and LPS,
through primary Coulomb/polar force, interacted with the nonpolar parts of LP and LPS
through hydrophobic interaction, and finally neutralized LP and LPS [167]. For AMPs, this
is a new mechanism, which needs more research support.

2. Inhibiting and regulating inflammation-related signaling pathways and the expres-
sion of transcription factors (Figure 3).

TLR signaling pathway, nuclear factor-kappaB (NF-κB) pathway, and mitogen-activated
protein kinase (MAPK) pathway are three important signaling pathways related to the
regulation of inflammatory signal transduction. TLRs pathway is recognized and combined
by TLRs and PAMPs to activate downstream NF-κB and MAPK pathways [168,169]. TLRs
have two signal transduction pathways: one is the MyD88-dependent TLR signal transduc-
tion pathway, while the other is the TRIF-dependent pathway. NF-κB pathway regulates
the expression of TNF-α, IL-1β, IL-6, and inflammatory chemokines (MIP-lα and MIP-2);
also, C-reactive protein and other acute-phase proteins promote inflammation [170,171].
NF-κB is involved in a variety of inflammatory response–related expression and regulation
and plays an important role in the inflammatory response. The MAPK pathway includes
C-Jun amino-terminal kinase (JNK), p38MAPK, and extracellular-signal-regulated protein
kinase (ERK) [172]. After LPS initiates the TLR pathway by identifying TLR4, it induces
the phosphorylation of JNK, p38, and ERK to promote inflammation [173,174].

LPS combines with TLR4-activated TLR pathway and activates downstream NF-
κB pathway or MAPK pathway. TRIF-dependent signal transduction is related to the
endocytosis of activated TLR4 [152]. Therefore, inhibiting the endocytosis of TLR4 is also
a mechanism of the anti-inflammatory activity of AMPs. AMPs inhibit TLR4-mediated
NF-κB and MAPK pathways, displaying significant anti-inflammatory activities [154].
Examples are given in Table 4.

The anti-inflammatory mechanism after pathogen infection not only protects the host
from infection but also induces adaptive immunity, different from the inflammation caused
by aseptic tissue injury (Table 4 and Figure 3) [144]. Inflammation is accompanied by the
exudation of various inflammatory cells; the formation of inflammatory cell infiltration
is also the main component of the inflammatory defense response. AMPs can regulate
inflammatory cells and promote them to play an anti-inflammatory role in local inflam-
mation through migration, chemotaxis, and phagocytosis [175,176]. Inducible nitric oxide
synthase (iNOS) can use nitric oxide (No) free radicals to cause oxidative stress and assist
macrophages in removing invading pathogens [177]. The anti-inflammatory activity of
AMPs cannot be accomplished via a single way of action but involve multiple ways.

Table 4. AMPs with anti-inflammatory activity and the mechanism of action of each antibacterial peptide.

AMP Mechanism of Action References

LL-37

Binds to LPS receptors (CD14 and TLR4) expressed on cells and inhibits TNF-α;
neutralizes LPS; suppresses the macrophage pyroptosis that induces the release of
pro-inflammatory cytokines; releases neutrophil extracellular traps; stimulates
neutrophils to release antimicrobial microvesicles

[178–180]

CAP18
Binds to LPS, inhibits the interaction between LPS and LPS-binding protein, and
attaches to CD14 molecule, thus inhibiting the expression of LPS-binding CD14 (+)
cells to reduce the production of TNF-α by these cells

[165]

dCATH 12-4 and
dCATH 12-5

Bind with LPS oligomers leading to the dissociation of LPS aggregates, which
prevents LPS from binding to LBP or alternatively to macrophage CD14 receptor [163]

PA-13 Neutralize LPS; inhibit LPS-mediated TLR activation [181]

SET-M33 and
SET-M33D

Neutralize LPS; reduce the release of TNF-α, IL6, COX-2, and other
inflammatory factors [182,183]

γ-AA Inhibits LPS-activated TLR4 signal transduction [184]

OIR3 Inhibits pro-inflammatory factors TNF-α, IL-1β, and IL-6 release [185]
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Table 4. Cont.

AMP Mechanism of Action References

LB-PG, CA-PG Inhibit the expression of pro-inflammatory cytokines and chemokines induced by
LPS, such as TNF-α, iNOS, MIP-1α, and monocytes [186]

GW-A2
Inhibits No, iNOS and TNF-α, and IL-6 in LPS-activated macrophages; reduces NF-
κB activation increase; inhibits LPS- and ATP-induced NLRP3 inflammasome
activation; neutralizes LPS and ATP

[157]

WALK11.3 Inhibits the expression of inflammatory mediators, including No, IL-1β, IL-6, INF- β,
and TNF-α; specifically inhibits TLR4 endocytosis [187]

Ps-K18 Inhibits TLR4-mediated NF- κB pathway, activating innate defense [154]

Papiliocin Inhibits expression of the NF- κB pathway [188]

CLP-19 Inhibits LPS–LBP binding and subsequent MAPK signaling [189]

CecropinA Inhibits ERK, JNK, and p38 phosphorylation in the MAPK pathway [190]

Human beta-defensin
(hBD)-3 and hBD-4

Mediate phosphorylation of ERK-1/2 and p38; activate mast cells, degranulate mast
cells, and increase vascular permeability, thereby regulating active defense and
enhancing anti-inflammatory effects

[176]

IDR-1 Activates FPR1 chemotactic neutrophils to participate in immune regulation [175]

4. Concluding Remarks and Future Directions

New antibacterial drugs need to be urgently found owing to the increasingly serious
problem of antibiotic resistance. Since the discovery of AMPs, their antimicrobial activities
have been widely studied. For the antimicrobial mechanism of AMPs, the early research
mainly focused on the destruction of the bacterial membrane. AMPs also have intracellular
activity, and they are used to carry drugs to target cells for treatment. They have been
found to have various biological activities. Therefore, they are also used as candidates for
anti-inflammatory and immunomodulatory drugs. However, in-depth research has not
been conducted on the mechanism of other activities. For example, the anti-inflammatory
mechanism of AMPs mainly focuses on the inflammation caused by LPS.

In humans and other higher animals, natural AMPs are released when the body is
stimulated or self-injured, and participate in immune regulation to maintain the stability
of the internal environment [28]. Therefore, we should fully understand the activities
of AMPs and the coordination between AMPs and other factors in vivo, so as to avoid
the change in activity during drug use. At present, researchers mainly focus on a single
mechanism of action in vitro. This is not conducive to the exploration of the relationship
between multiple mechanisms. Therefore, we need to find a more effective way to deal
with the problem at the macro level.

In addition, structure determines function. Size, residue composition, charge, confor-
mation, helicity, hydrophobicity, and amphiphilicity of AMPs all determine the antimicro-
bial activity [191,192]. However, the scientific problem of “what structure makes AMPs
have biological activities such as antibiofilm and immune regulation” still needs to be
explored continuously. It is necessary to further study the structure-function relationship
of AMPs so as to obtain AMPs with low toxicity, strong activity, and diverse functions.

In conclusion, this review clarified the shortcomings of the current research on the
mechanism of AMPs. The findings might contribute to solving the global issue of antibiotic
resistance.
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