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Abstract: Plant development processes are regulated by epigenetic alterations that shape nuclear
structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with
protection from environmental stresses. During plant growth and development, these processes
play a significant role in regulating gene expression to remodel chromatin structure. These epige-
netic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant
genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic
changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under
stress conditions, and activated elements cause mutagenic effects and substantial genetic variability.
This introduces novel gene functions and structural variation in the insertion sites and primarily
contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide
the ability to withstand environmental stresses. In recent years, many studies have shown that TE
methylation plays a major role in the evolution of the plant genome through epigenetic process that
regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements
and insertions of mobile genetic elements in regions of active euchromatin contribute to genome
alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic
diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential
for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant
genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene
expression and its associations with genome methylation and suggest that controlled mobilization
of TEs could be used for crop breeding. However, development application in this area has been
limited, and an integrated view of TE function and subsequent processes is lacking. In this review,
we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution
and discuss some recent examples of how TEs impact gene expression in plant development and
stress adaptation.
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1. Introduction

Transposable elements (TEs), also known as jumping genes or mobile genetic ele-
ments, are key players in plant biological systems and genome evolution [1–5]. TEs were
previously considered as genomic parasites since these self-replicating entities are ubiq-
uitous [6,7] and abundant in nature [8]. In recent years, several evolutionary studies in
eukaryote genomes emphasized the biological significance of TEs in animals and plant
genomes [9–11]. For example, in mammals [12] and in the model organism Drosophila [13],
TEs have a major role in disseminating cis-regulatory elements that help the host genome
regulate its own genes both in the short-term (adaptation to environmental changes) and
long-term (evolutionary changes). Furthermore, TEs act as key factors in diverse genetic
mechanisms, such as chromosomal changes related to recombination processes of mobile
genetic elements and other elements, regulation and expression of genes, genomic evolu-
tion, and genetic instability (Figure 1) [14–16]. TE transpositions may even cause mutations
that lead to novel functional protein-coding sequences [17,18]. For example, Rag1 and
Rag2 are TE-derived conserved genes that catalyse V(D)J somatic recombination in the
vertebrate immune system [19,20]. As a consequence of the biological significance of TEs,
TEs have recently been used as an integration tool in fundamental research [21] and in
gene therapy [22]. TEs, or parts thereof, can also be implemented into common molecular
biology tools, such as expression vectors [23]. In addition, TEs have been suggested as new
markers (together with mitochondrial polymorphisms and Y-chromosome polymorphisms)
to describe the evolutionary history of a species, or even of single individuals [24,25].

However, TEs are the most erratic components in plants and are species-dependent [26–29].
The host applies several strategies to control TE activities to avoid potential deleterious
actions by other TEs, such as retrotransposon elements (RTEs). While most of the long ter-
minal repeat (LTR) RTEs were recently inserted in most plant genomes, these insertions are
unique in the genome. For example, some RTEs are transcriptionally inactive under normal
conditions, but under different stress conditions, most of the RTEs are active [30]. The
flexible genomic alterations in RTEs can be considered suitable for most plant adaptation
mechanisms under various stresses, including biotic and abiotic stress [31–33]. However,
plants possess a potent response that restrains TE activity, leading to epigenetic silencing of
these elements, which results in alteration in plant gene function [15,34–36]. For instance,
in the African oil palm (Elaeis guineensis), DNA hypomethylation of a LINE (non-LTR
RTEs), related to rice Karma, is linked with alternative splicing and yield loss, whereas
hypermethylation near the Karma splice enhanced the normal fruit set [37]. Typically,
TE insertion did not impact the genome or related biomolecular products because of TE
silencing [38]. For instance, in Arabidopsis and corn (Zea mays), methylation of mutated TEs
is not harmful to the genome [26,33,39,40]. TE silencing is caused by miRNAs or epigenetic
mechanisms, such as DNA methylation or chromatin remodelling [38,41]. The addition of
a methyl group to the cytosine bases of DNA to generate 5-methylcytosine is called DNA
methylation [42].



Int. J. Mol. Sci. 2021, 22, 11387 3 of 40
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 40 
 

 

 
Figure 1. Primary regulatory roles of transposable elements (TEs). TEs are a rich source of host genome innovations. TE 
functions are either harmful or beneficial to the host genome, and their integration in the genome may induce deleterious 
mutations. Silenced TEs, mostly covered with DNA methylation, can affect the expression of nearby genes. In contrast, 
active TEs can act as regulatory elements by producing noncoding RNA (ncRNA) and alternative promoters [43]. 

Among several epigenetic mechanisms, DNA methylation and chromatin remodel-
ling are more commonly implicated in the inactivation of TEs in plants and animals 
[40,44–48]. TEs are transcribed steadily in methylation-deficient plants and cause mutant 
phenotypes that are directly linked to TE insertion [14,42]. The other most significant ep-
igenetic mechanism is chromatin remodelling. The altered chromatin structure results in 
constricted chromatin at the particular site of the genome where genes and transposons 
are inactivated, as the RNA polymerase is unable to access those sites. For example, in 

Figure 1. Primary regulatory roles of transposable elements (TEs). TEs are a rich source of host genome innovations. TE
functions are either harmful or beneficial to the host genome, and their integration in the genome may induce deleterious
mutations. Silenced TEs, mostly covered with DNA methylation, can affect the expression of nearby genes. In contrast,
active TEs can act as regulatory elements by producing noncoding RNA (ncRNA) and alternative promoters. The illustration
was adapted and redrawn from Jönsson et al. [43], with copyright permission from the Licensor Elsevier (Trends in Genetics:
Cell Press publisher) and Copyright Clearance Center (https://www.copyright.com) (Supplementary File S1).

Among several epigenetic mechanisms, DNA methylation and chromatin remodelling
are more commonly implicated in the inactivation of TEs in plants and animals [40,44–48].
TEs are transcribed steadily in methylation-deficient plants and cause mutant phenotypes
that are directly linked to TE insertion [14,42]. The other most significant epigenetic mech-
anism is chromatin remodelling. The altered chromatin structure results in constricted
chromatin at the particular site of the genome where genes and transposons are inactivated,
as the RNA polymerase is unable to access those sites. For example, in Arabidopsis, decon-
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densed chromatin regulates the expression of small RNAs to help maintain TE methylome
homeostasis during post-embryogenesis [49]. Hence, most elements are not transcribed [50].
Nevertheless, further investigations are required to understand the possible mechanisms
of TEs involved in plant evolutionary processes and stress adaptation mechanisms. This
review addresses TE methylation mechanisms and their significance in plant evolution and
stress adaptation.

2. TE Classification and Copy Number in Plants

According to TE structure, the plant evolves and adapts as a consequence of dynamic
changes in the TE. Based on the method of transposition (movement), TEs are classified
into two major classes, class I and class II (Table 1) [51]. Class II (DNA transposons) are
usually present in low copy numbers and are mobilized through a DNA intermediate
by “cut-and-paste” mechanisms [52], as in the case of the Helitrons transposon, which is
a “peel-and-paste” replicative mechanism via a circular DNA intermediate [53]. Class
I transposons or RTEs are mobilized by copy-and-paste using RNA as an intermediate,
whereby RNA is reverse-transcribed into cDNA then integrated into a target site of the
genome [54–56].

Based on its structure and mechanism of integration, RTEs are further divided into
different superfamilies, such as long terminal repeat (LTR) RTEs, non-LTR RTEs, and dic-
tyostelium repetitive sequences (DIRS) [30]. LTR RTEs are the most common superfamily,
contributing up to 80% of plant genome size [57], and have significantly higher copy
numbers than other superfamilies and classes (Table 1).

According to Wicker et al. [51], class I (retrotransposons) do not require subclasses
but superfamilies. However, class II transposons are classified into two subclasses distin-
guished by the number of DNA strands and do not move via an RNA intermediate. Each
subclass is further classified into different superfamilies and families, with wide variations
in the organization, but with shared common genetic structures and monophyletic origin.
For example, the families of Ty3/gypsy and Ty1/copia are superfamilies of LTR RTEs found
in virtually all major groups of eukaryotes [58]. Similarly, Tcl/mariner, hATs (hobo-Ac-
Tam3), and MULEs (Mutator-like elements) are subclasses of DNA transposons that are
widespread in eukaryotes [59]. Although conversion to the wild-type sequence at the
insertion site can occur upon transposition, many types of transposons leave a detectable
footprint upon mobilization. However, the net excision of the donor site of cut-and-paste
transposons is generally challenging to detect since the donor site is converted to a normal
site either by using a homolog as a template or a sister chromatid [59].

Both class I and class II TEs have autonomous (containing open reading frames, ORFs)
and non-autonomous (absence of encoding potential while lacking transposition ability)
TEs [12,23,60,61]. Class II autonomous TEs can encode transposase and helicase enzymes
for cut-and-paste mechanisms [62]. Class I autonomous TEs can encode specialized Gag
packaging proteins and reverse transcriptase for transposition [1]. The transposition-
competent TEs have not only coding ability but also bear intact cis-acting elements that
interact with the transposition complexes. LTRs (class I) and terminal-inverted repeats
(TIRs) (class II) are examples of such cis-acting elements. Thus, autonomous elements are
not dependent on any other factors for their movement [33], whereas non-autonomous
TEs depend on autonomous TEs to migrate. However, non-autonomous elements can still
express transposition-related proteins while lacking transposition ability [61]. For example,
Ac (Activator) TEs can translocate their position as they are autonomous. In contrast, Ds
(Dissociation) TEs are non-autonomous and can only be transposed by the availability of Ac
or any other autonomous element [63]. The continuous transposition of TEs in the plant
genome leads to significant evolutionary changes, constant divergences, and integrations
that result in, as yet, uncharacterized variations in TE forms and shapes [3].
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Table 1. Class- and family-wise examples of transposable elements (TEs) in different plant species. The table was adapted
and recreated from Feschotte et al. [64], with copyright permission from the Licensor Springer Nature (Nature Reviews
Genetics: Nature publisher) and Copyright Clearance Center (https://www.copyright.com) (Supplementary File S2).

Class Subclass Superfamily/
Family Plants Autonomous

Members

Non-
Autonomous

Members

Copy Number of
the Entire Family References

Class I

LTR
Retrotrans-
posons

copia-like O. sativa Tos17 - (2–5) 30 [65]

copia-like Hordeum sp. BARE-1 - 5000–22,000 [66]

copia-like N. tabacum Tto1 - 30 (300) [67]

copia-like N. tabacum Tnt1A - >100 [68]

copia-like Z. mays Hopscotch - 5–8 [69]

copia-like Z. mays - BS1 1–5 [70]

copia-like Z. mays Opie-2 - 100,000 [71]

gypsy-like O. sativa RIRE2 Dasheng 1200 [72]

gypsy-like Z. mays Magellan - 4–8 [73]

gypsy-like Z. mays Huck-2 - 200,000 [71]

gypsy-like Arabidopsis Athila 4 - 22 [74]

gypsy-like Arabidopsis Ta3 - 1 [75]

gypsy-like Arabidopsis Athila 6 - 11 [74]

gypsy-like Arabidopsis Tar17 - 2 [67]

Non-LTR
Retrotrans-
posons

LINEs; L1-clade Lilium
speciosum Del2 - 250,000 [76]

LINEs; L1-clade Z. mays Cin4 - 50–100 [77]

LINEs; L1-clade Arabidopsis Tal1 - 1–6 [78]

SINEs N. tabacum - TS 50,000 [79]

SINEs B. napus - S1 500 [80]

Class II
DNA trans-
posons

Mutator Z. mays MuDR Mu1 10–100 [81]

Mutator Arabidopsis AtMu1 - 1 (4) [82]

CACTA Z. mays Spm dSpm 50–100 [83]

CACTA Arabidopsis CAC1 CAC2 (4) 20 [84]

hAT Z. mays Ac Ds 50–100 [85]

PIF/Harbinger Z. mays PIFa mPIF 6000 [86]

PIF/Harbinger Angiosperms PIF-like Tourist-like Variable [86,87]

Tc1/Mariner Angiosperms MLEs Stowaway-
like Variable [88,89]

The copy numbers indicated are approximate and collected from various research articles. Those in parentheses result from transpositional
activation (Tos17 and Tto1) or in mutant backgrounds (CAC and AtMu1). LINE: Long Interspersed Nuclear Element, SINE: Short Interspersed
Nuclear Element, Ac: Activator; LTR: Long Terminal Repeat, MLE: Mariner-Like Element, Ds: Dissociation, mPIF: miniature P Instability Factor,
Spm: Suppressor–Mutator, PIF: P Instability Factor.

3. Surprising Traits of TEs

In plants, TEs are located within or near the gene or promoters. The position of
the TE determines plant gene expression and other regulatory mechanisms for growth
and development and stress adaptation. TEs are aligned at a suitable location in the
genome through transposition [90]. The aligned position should positively interact with
the organelles of the cell [91]. This location-based, genomic-level adaptation through these
various shapes of TEs surprised plant biologists by their outstanding genomic parasitism,
optimistic competition, and cooperation with other cellular processes [15,92]. Another

https://www.copyright.com
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significant and surprising property of TEs is the spectrum of site selection for transposition
in the plant genome [12]. However, the TE selection mechanism in the genome is still
unclear as TEs insertion sites are not detrimental and not strongly counter-selected [93].
This indicates that natural selection and genetics are the most significant and forceful
genome-shaping factors, acting through the adequate distribution and accumulation of
various TEs in the plant genome [94]. Under certain circumstances, this insertion by
transposition could cause positive effects that isolate the species from native populations.

In most cases, the insertion will have little or no effect on gene activity. In some cases, such
insertions might alter gene expression such that the plant is better adapted to environmental
and ecological conditions. The impact of such insertions might differ significantly among
species [95]. The position of some TEs in the genome is more stable than that of other TEs.
This genome stability is directly related to the forces of selection [96–98]. Such properties
of various classes of TEs have shaped the genomes of plant species, thereby maintaining
genome stability and function. A clear understanding of how natural forces of selection
impact the transposition of TEs in the plant genome can provide valuable insights into
evolutionary processes in plant biological systems.

4. Contribution of TEs in the Plant Genome

The average genomic fraction occupied by TEs in plant genomes is about 50% of
the entire genome. This percentage can range from 15% in small to >85% in large plant
genomes (Table 2) [99–101]. RTEs occupy a significant portion of the plant genome and are
the most significant factor in the plant genome, thus contributing to plant growth [99,102]
(Table 2). This variation was reported by researchers [103,104], who examined the possible
relationship between LTR-RTEs and the total physical length of the plant genome. The
total genomic content of plant species is a linear function of TE content. Thus, LTR-RTEs
are significant components of the plant genome and contribute to the genome differences
among plants [105].

The proportion of RTEs in the total genome of several plant species is directly cor-
related [100,106,107]. For example, the total proportion of RTEs in the total genome of
Arabidopsis is 14% (total genome size: 125 Mb) [108]; it is 35% in Oryza sativa (total genome
size 389 Mb) [109], and 85% in Zea mays (total genome size: 2.3 Gb) [110]. Among these
plant species, Z. mays contains more RTEs than any other plant species investigated thus
far (Table 2) [99]. Hence, the existence of an excess volume of RTEs in Z. mays has gradually
increased (doubled) the total genome size in the past 3 million years due to the swift
propagation of RTE families [99,111]. Similarly, the genome size of O. australiensis has
doubled due to the rapid proliferation of three LTR-RTEs families (RIRE1, Kangourou, and
Wallabi) [112].

Table 2. Proportion of class I and class II transposable elements (TEs) in the total genome of different plant species [99–
102,104,110,113–129]. The table was adapted and recreated from Ragupathy et al. [99], with copyright permission from the
Licensor Elsevier (Trends in Plant Science: Cell Press publisher) and Copyright Clearance Center (https://www.copyright.
com) (Supplementary File S3).

Plant Genome Total Genome Size
(Mb)

Total TE Content (%
of the Genome)

Total Class I or RNA
(Retroelements) (% of

the Genome)

Total Class II or DNA
Transposons (% of the

Genome)

Aegilops tauschii 4.98 68.20 13.30 53.50

Arabidopsis lyrata 230.00 29.70 15.99 4.80

Arabidopsis thaliana 125.00 14.00–18.50 7.50 11.00

Brachypodium distachyon 355.00 28.10 23.33 4.77

Brassica oleracea 600.00 20.00 14.00 6.00

Brassica rapa 529.00 39.51 29.90 3.20

Cajanus cajan 833.00 51.67 19.18 4.53

https://www.copyright.com
https://www.copyright.com
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Table 2. Cont.

Plant Genome Total Genome Size
(Mb)

Total TE Content (%
of the Genome)

Total Class I or RNA
(Retroelements) (% of

the Genome)

Total Class II or DNA
Transposons (% of the

Genome)

Carica papaya 372.00 51.90 42.80 0.60

Cicer arietinum 738.00 49.41 45.64 9.32

Citrus sinensis 367.00 20.50 18.21 2.28

Cucumis melo 450.00 19.70 14.70 5.00

Cucumis sativus 367.00 24.01 12.16 1.24

Fragaria vesca 240.00 22.81 16.37 6.44

Glycine max 1115.00 58.74 42.24 16.50

Gossypium herbaceum 1660.00 52.10 52.00 0.10

Gossypium raimondii 880.00 56.95 48.99 4.54

Gossypium raimondii 880.00 61.30 54.90 1.50

Hordeum vulgare 5100.00 58.89 52.83 5.25

Linum usitatissimum 370.00 24.29 20.62 3.80

Lotus japonicus 472.00 30.80 10.4–19.23 0.97–8.10

Malus domestica 742.00 42.40 37.60 0.90

Medicago truncatula 475.00 38.00 9.60 ND

Medicago truncatula 550.00 30.50 26.50 3.40

Musa acuminata 523.00 32.63 31.17 1.42

Oryza sativa 389.00 34.79 19.35 12.96

Phyllostachys edulis 1908.00 45.45 38.20 7.25

Populus trichocarpa 485.00 42.00 10.30 2.50

Populus trichocarpa 550.00 34.90 7.02 2.10

Pyrus bretschneideri 527.00 53.10 45.97 12.12

Ricinus communis 320.00 50.33 18.16 0.91

Secale cereale 8090.00 69.30 64.30 5.00

Setaria italica (Accession
Zhang gu) 510.00 46.30 31.60 9.40

Setaria italica (Inbred Yugu1) 510.00 40.00 25.00 ND

Solanum lycopersicum 900.00 63.20 62.30 0.90

Solanum tuberosum 844.00 62.20 32.29 3.94

Sorghum bicolor 730.00 62.00 54.52 7.46

Theobroma cacao 430.00 25.70 17.70 8.00

Vitis vinifera 475.00 41.40 17.04 0.43

Zea mays 2300.00 84.20 75.60 8.60

5. Distribution of TEs in the Plant Genome

Each TE is distributed in the plant genome with a specific insertion preference [130].
LTR- RTEs, such as the Ty3/gypsy and Ty1/copia superfamilies, are present in the cen-
tromere regions of the plant genome and play significant and perilous parts in the for-
mation and function of centromeres [12,106,131]. In addition, Ty3/gypsy and Ty1/copia
exhibit nested insertions, particularly in large genomes bearing a high number of elements
and prefer older copies of the same family. This suggests that nesting of LTR-RTEs is not
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random and depends on chromatin modifications. Class II TEs can also lead to TE nesting,
although nesting is common in LTR-RTEs [130].

Similarly, nonautonomous LTR-RTEs, such as Dasheng, are positioned in the pericen-
tromeric regions of the genome of O. sativa [72]. The grapevine RTE 1 (Gret1) is a type of LTR
retroelement. At the same time, the insertion and rearrangement of Gret1 in Vitis vinifera
occurred close to the region of the VvmbyA1 gene, which led to development of colour
variation in the fruit of Vitis vinifera [132]. Similarly, Rider is a type of LTR element. While
Rider is inserted into another region, it acts as a novel regulatory element and enhances the
expression of the Ruby gene, which leads to enhanced synthesis of anthocyanin production
in the fruit of Citrus sinensis [133]. Consistently, the fruit shape of Solanum lycopersicum
has been altered from round to oval due to the retroposition of the IQD12 gene [134]. In
Arabidopsis (Landsberg erecta (Ler) accession early flowering), when mutator-like TEs are
subjected to epigenetic modification, alteration in the first intron of Flowering Locus C
(FLC) results in a delay in the flowering process [135]. Likewise, Ac/Ds are composed of
autonomous and nonautonomous members of the maize hAT family, respectively. Ac/Ds
can also stimulate structural rearrangements of other TEs in Z. mays [136–138] and can
induce chromosomal rearrangements at the rice OsRLG5 locus [139].

6. TE-Induced Mutations

Active TEs induce heritable mutations in the genome that have been fully charac-
terized at both the genetic and molecular levels. Several reports also state that TEs are
mutagens and may be responsible for mutation through various means, such as by in-
serting themselves into active genes or near genes that contain promoter and enhancer
elements. Although all active genes contain at least a promoter and many are influenced by
enhancers, TE insertion still causes heritable mutations or alters gene activity [1]. Therefore,
TEs are considered as the most potent natural evolutionary and adaptation mediators
within the genome of plant species. TEs play a critical role in adaptation and new species
formation by evolution, as TE insertions generate gene (DNA) rearrangements and can
act as new coding and regulatory sequences (Figure 1) [140]. The high copy number (3000
to 10,000 per genome) of both classes (I and II) of TEs have site-specific (e.g., TAA or TA)
insertions or transitions in plants. Tourist and stowaway elements belonging to MITEs
in maize and sorghum, respectively, are preferably located at the 5′ and 3′ noncoding
sections in the genes of these plants [141]. Furthermore, these elements are interconnected
with the regulatory portion of genes in different flowering plants [142]. In cut-and-paste
transposition, a faulty repair process may seal the gap formed during transposition. More-
over, identical repetitive sequences create a problem in the pairing process, especially
during meiosis [106]. In some cases, TEs may insert the stopping codon that results in the
production of truncated proteins [143].

Arabidopsis is a genetic model plant used for evolutionary biology and mutation-
related studies and has significantly contributed to our TE research. However, an in-depth
analysis of the active TEs of Arabidopsis mutation accumulation lines showed an absence of
TE-induced direct mutation [144,145]. Surprisingly, study of Arabidopsis mutation accumu-
lation lines revealed the limited scale of TE-induced mutations, which were approximately
1/haploid genome/generation. TEs involved in the insertion process could be analysed
through purifying selection and population genomic analyses of polymorphic TEs, which
provide a partial view of TE migration or transition [93,146].

7. Association of RTEs with Genomes

Approximately 7.5% to 75% of the genomes of many plant species consist of RTEs
(Table 2), which play a vital role in the evolutionary process. According to recent studies on
genome analyses, approximately 67% of the hexaploid Triticum aestivum (wheat) genome
is made up of RTEs, which are primarily TEs of the class I Ty3/gypsy and Ty1/copia. The
chromosome content of hexaploid wheat has been improved with highly repetitive RTE
elements [147]. The latest assemblage of hexaploid wheat (bread wheat) enhanced the
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extremely recurring RTE elements positioned in the A, B, and D sub-genomes of the species.
Wheat is an important crop where repetitive RTEs occupy approximately 67% of the
genome, as RTEs undergo a large amplification process [147]. Moreover, the TE proportion
is very similar in the A, B, and D sub-genomes, which evolved approximately two to three
million years ago (Mya) (based on molecular dating of chloroplast DNA) [148]. This two to
three-million-year evolution by rapid amplification of various RTEs led to the development
of an intricate, surplus, and allohexaploid genetic material. These lengthy evolutionary
processes by RTEs made the genetic material of wheat by far the most prevalent and most
intricate in form in the plant kingdom.

RTEs associated with plant genomes may further show both positive and negative im-
pacts on genomic and phenotypic activities, such as alterations in gene activity and genome
organization. This occurs through amending gene expression, disrupting protein-coding
regions, and stimulating chromosomal rearrangements at a large scale [149]. Such RTE activ-
ities may create a mutation that expels the particular plant from its population. For example,
RTEs are the predominant source of cis-regulatory elements and cause rapid alteration in
the transcriptional unit of various genes under biotic and abiotic stresses [17,150]. Moreover,
large RTEs and related repetitive elements may be involved in DNA double-strand break
repair mechanisms and enhance chromosomal rearrangements through translocations,
inversions, duplications, and deletions [1,17,149].

8. Balance between TE Expression and Repression

To ensure survival, plants and other organisms must evolve and adapt to the surround-
ing biotic and abiotic stresses [151]. Large portions of the genomes of many organisms
are composed of RTEs that balance the expression and repression of essential gene se-
quences [152]. TEs are usually assumed to insert anywhere in the genome, but some
TEs are biased in their insertion locations to balance both expression and repression. For
example, Athila RTEs and other RTEs are inserted in the pericentromeric regions and less
proximal regions of the chromosome arms, respectively. This suggests that these regions
could help balance TE expression and repression through epigenetic modification [5,153].
Furthermore, for successful evolution, regulatory elements with TE insertions should
balance gene expression, as overexpression may be a disadvantage and increased copy
numbers may be unusable [154,155]. Insufficiency of enzymes encoded by TEs may explain
the insufficient quantity for the transposition process. For instance, transposition of Ppmar1
and Ppmar2 (Mariner-like elements (MLEs) isolated from Moso bamboo) is determined by
the quantity of transposases present inside the nucleus [156,157]. This suggests that MLEs
generally have the potential to develop a self-regulatory strategy that can control their
amplification and copy numbers by minimization of transposases. This is a well-known
regulation mechanism known as overproduction (or overexpression) inhibition [158]. TE
expression or its transposition may also be influenced by some default factors, such as chro-
matin, DNA alteration pathways, small interfering RNAs (siRNA), specific gene repressors
under abiotic stress [5]. For example, Wang et al. [159] performed an experiment on three
strains of Arabidopsis to demonstrate the significance of siRNAs and epigenetic processes
(such as DNA methylation) to identify the balance between the expression and repression of
genes. They found an optimistic correlation and interspecific alteration in gene expression
of TE sequence polymorphisms and the existence of associated TEs. Small gene (<2 kb)
sequences that possess conserved TEs are more stable than larger TEs inserted into adjacent
gene polymorphisms. siRNAs serve to repress TEs (stopping proliferation) situated near
coding genes, which leads to strong suppression of adjacent gene expression [48].

In some cases, such as the pollen of flowering plant species, the host cell could
employ a cohort cell (that does not pass hereditary information to subsequent generations)
produced simultaneously during the meiosis process, which ensures TE repression [160].
Moreover, the balance of expression and repression of TEs is also determined, and their
degrees vary among tissue types and with the age of the organism (i.e., stage of life cycle).
Furthermore, TEs are expressed only in germline cells and not in the somatic cells in many



Int. J. Mol. Sci. 2021, 22, 11387 10 of 40

plant species. Hence, TEs are retained in the germline (also called micronucleus) and are
actively deleted from the somatic macronucleus [160].

9. TE Transposition and Genome Stability

TEs associated with genes are transposed into other sites of the same genome with
transposase enzymes and TE transposition machinery. Moreover, TEs involved in this
transposition process can exist as replicates or conservative in form. In replicative transpo-
sition (copy-and-paste process), TEs are copied and relocated in the same genome, leading
to duplicate TEs in the genome [1,17,59,149]. The cut-and-paste process is involved in
conservative transposition, in which TEs are excised from their original position and trans-
posed to the new position in the same genome. In this cut-and-paste process, the adjacent
sequence of a neighbour gene sequence can be cut and reinserted into a new site in the
same genome; this phenomenon can also be called exon shuffling. This transposition can
cause damage to the genome by disrupting the expression of critical genes [161,162].

The plant can silence transposition through various mechanisms, such as via mutations
in TEs, epigenetic silencing (e.g., DNA methylation), and siRNA silencing [163]. In certain
situations, the transposition properties of TEs may assist the plant species to rapidly adapt
to biotic and abiotic stresses and expand genome size [150,164]. For example, a heat-
activated RTE in Arabidopsis, ONSEN, increases abiotic stress tolerance through a mutation
in an abscisic acid (ABA) responsive gene and epigenetic mechanisms [165]. Initially in
the transposition process, RTE generates its transcription by reverse transcriptase and
reintegration into the genome, a process termed retrotransposition. In both cases, the
transposase enzyme is involved in the insertion of TEs at another site. In retrotransposition,
RTEs inhabit approximately 74% of the 240-kb maize genomes (Adh region). These elements
comprise 11 different families from 23 members of RTEs [4,166]. In the transposition
process, insertion age correlates with the retrotransposition process, as the ends of RTEs
are probably identical during the element insertion mechanisms [26].

Although Barbara McClintock discovered TEs approximately 70 years ago, several
studies have revealed new information about TEs in both prokaryotes and eukaryotes. It
is now recognized that the excision and insertion traits of TEs can cause genetic instability
in both prokaryotes and eukaryotes, which can lead to genomic innovations and facilitate
the emergence of new species [167]. The effects of TEs on genetic stability remains poorly
understood. Available data suggest that the genomic instability of TEs has both positive and
negative impacts on the host. For example, genomic instability can increase genetic diversity,
give an optimistic outcome, facilitate evolution, and involve gene regulation [18,168]. In
contrast, genomic instability in plants may also lead to unusable phenotypic changes, such
as flowering, yield reduction, and reduction in stress tolerance [97,169–171].

10. TE Is the Source of Non-Coding RNAs (ncRNAs)

Non-coding RNAs (ncRNAs) are a group of various RNA complexes that act as key
factors in regulating gene expression. Based on the source and mode of action, ncRNAs
are classified into housekeeping ncRNAs (tRNAs, rRNAs, and snoRNAs) and regula-
tory ncRNAs. Moreover, regulatory ncRNAs are sub-classified into small ncRNAs (siR-
NAs and miRNAs) and long ncRNAs (intronic ncRNAs (incRNAs) and long intergenic
ncRNAs (lincRNAs)) [172]. Several theories, such as duplication, pseudogenization of
protein-coding sequences, double-stranded RNAs (dsRNAs) from heterochromatin regions,
evolution (genomic) from existing transposons, replication of RNA viruses, and random
hairpin structures have been proposed to explain the source of different ncRNAs, espe-
cially regulatory ncRNAs [172]. However, a significant amount of ncRNAs is transcribed
from TEs [173]. These ncRNAs, especially regulatory ncRNAs, can modify RNA stabil-
ity, prevent RNA translation, and, most importantly, play a key role in the modulation
of gene expression at transcriptional and post-transcriptional levels [172]. Interestingly,
recently published literature suggests that ncRNAs may be involved in various stress
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responses in plants [174,175]. For instance, siRNAs are involved in transcriptional and
post-transcriptional processes [176].

11. Role of ncRNAs in Plant Response to Abiotic Stress

TEs influence phenotype through the production of ncRNAs, which play a significant
role in responding to and balancing abiotic stress. Several recent research findings have
revealed that the active expression of ncRNAs, either directly or indirectly, is involved
in plant responses to abiotic stress [177]. miRNA expression might be enhanced or sup-
pressed in response to different abiotic stresses [178]. For example, salt stress in Arabidopsis
induces miR393 expression, and miR393 is involved in repression of lateral root initiation,
emergence, and elongation and increases levels of reactive oxygen species (ROS) in the
lateral root [179].

Similarly, siRNAs contribute significantly to abiotic stress responses. For example, in
Arabidopsis, nat-siRNA, along with SRO5, regulate proline metabolism through pyrroline-
5-carboxylate dehydrogenase (P5CDH), which reduces the increased production of ROS
under high salt stress [180]. Similarly, lncRNAs from plants exhibit a significant mimicry
response to different abiotic stresses [181]. lncRNAs serve as competitive endogenous
RNAs (ceRNAs) that have been overwhelmed by miRNAs. Thus, lncRNAs inhibit the
interaction of the original miRNA at the target site [182]. For example, in Arabidopsis
grown under phosphate deficiency stress conditions, lncRNA IPS1 is activated to mimic
miRNA399, which inhibits binding of native miRNA399s to their target site, such as in the
case of PHO2 [183]. Similarly, various types of siRNAs and lncRNAs from various plants
mediate responses to various abiotic stresses (Table 3) [172].

Table 3. Abiotic stress response mechanisms of non-coding RNAs (siRNAs and lncRNAs) from various plant species.

Plant Species siRNA Mechanisms Abiotic Stresses
Induced/Suppressed References

Arabidopsis SRO5-P5CDH
nat-siRNA

Regulation of proline
metabolism Salt stress ↓ [180]

Arabidopsis TAS1, TAS2, TAS3
ta-siRNA Elevated expression Hypoxia stress ↑ [184–186]

Arabidopsis HTT1, HTT2-TAS1 NYE Heat stress ↑ [187,188]

Arabidopsis TAS4 ta-siRNAs Biosynthesis of
anthocyanins Phosphate deficiency ↑ [189,190]

Arabidopsis TAS4-siR81(-) Accumulation of
anthocyanin Nitrogen deficiency ↑ [190]

Arabidopsis hcsiRNAs (ONSEN) DNA methylation Heat stress ↑ [191–193]

Arabidopsis hcsiRNAs (HD2C,
HDA6) DNA methylation Drought and ABA

stresses ↑ and ↓ [194–199]

Arabidopsis IPS1 * miR399 target mimicry Phosphate deficiency ↑ [183,200,201]

Arabidopsis lncRNAs * Antisense transcription Light stress ↑ [202]

Arabidopsis asHSFB2a * Antisense transcription Heat stress ↑ [203]

Arabidopsis COOLAIR * Chromatin remodelling Cold stress ↑ [204]

Arabidopsis lncRNAs * Histone modification Light stress ↑ [202]

Arabidopsis COLDAIR * Histone modification Cold stress ↑ [205]

Arabidopsis lncRNAs * RdDM pathway Heat stress ↑ [206]

Arabidopsis lncRNAs * RdDM pathway Salt stress ↓ [207]

Brassica oleracea nat-siRNAs DNA methylation Heat stress ↑ [208,209]

Brassica rapa nat-siRNAs DNA methylation Heat stress ↑ and ↓ [209]
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Table 3. Cont.

Plant Species siRNA Mechanisms Abiotic Stresses
Induced/Suppressed References

Brassica rapa lincRNAs * miRNA precursors Cold and heat stresses
↑ and ↓ [210]

Craterostigma
plantagineum CDT1-siRNA NYE Dehydration stress ↑ [211]

Manihot esculenta 2 nat-siRNA, 3
ta-siRNAs NYE Cold stress ↑ and ↓ [212]

Oryza sativa lncRNAs * target mimicry Phosphate deficiency ↑
and ↓ [213]

Phaeodactylum
tricornutum pti-MIR5472 * miR5472 precursors Phosphate deficiency ↑ [214]

Phaeodactylum
tricornutum pti-MIR5471 * miR5471 precursors Phosphate deficiency ↑ [214]

Populus tomentosa lincRNAs * miRNA precursors Nitrogen deficiency ↑
and ↓ [215]

Populus tomentosa lincRNAs * Antisense transcription Nitrogen deficiency ↑
and ↓ [215]

Populus trichocarpa lincRNA1128 * ptc-miR482a.1 target
mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA1393 * ptc-miR6459b target
mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA3018 * ptc-miR399i target mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA2752 * ptc-miR169o target
mimicry Drought stress ↑ [216]

Populus trichocarpa lincRNA1795 * ptc-miR476a target
mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA20 * ptc-miR476a target
mimicry Drought stress ↑ [216]

Populus trichocarpa lincRNA2623 * ptc-miR156k target
mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA2623 * ptc-miR156c target
mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA967 * ptc-miR6462e target
mimicry

No response to drought
stress [216]

Populus trichocarpa lincRNA2762 * ptc-miR156k target
mimicry Drought stress ↓ [216]

Populus trichocarpa lincRNA1449 * ptc-miR156k target
mimicry

No response to drought
stress [216]

Populus trichocarpa lincRNA179 * ptc-miR156a target
mimicry

No response to drought
stress [216]

Populus trichocarpa

lincRNA2198 *,
lincRNA2131 *,
lincRNA2085 *,
lincRNA2962 *
lincRNA1534 *,
lincRNA1039 *
lincRNA2962 *

NYE Drought stress ↑ [216]

Solanum lycopersicum lncRNAs * RdDM pathway Salt and drought
stresses ↓ [217]



Int. J. Mol. Sci. 2021, 22, 11387 13 of 40

Table 3. Cont.

Plant Species siRNA Mechanisms Abiotic Stresses
Induced/Suppressed References

Triticum aestivum 002061_0636_3054.1
siRNA NYE Heat, NaCl, and

dehydration ↓ [218]

Triticum aestivum 005047_0654_1904.1
siRNA NYE Heat, NaCl, and

dehydration ↓ [218]

Triticum aestivum 005047_0654_1904.1
siRNA NYE Cold stress ↑ [218]

Triticum aestivum 080621_1340_ 0098.1
siRNA NYE Cold stress ↑ and heat

stress ↓ [218]

Triticum aestivum 007927_0100_2975.1
siRNA NYE Cold, NaCl, and

dehydration ↓ [218]

Triticum aestivum ta-siRNA TAS3a-50D6
(+)

Auxin signalling pathway Cold stress ↑ [219]

Triticum aestivum TalnRNA5 * ta-miR2004 precursors Heat stress ↑ [218,220]

Triticum aestivum TahlnRNA27 * ta-miR2010 precursors Heat stress ↑ [218,220]

Triticum aestivum

TalnRNA21 *,
TahlnRNA3 *,
TahlnRNA14 *,
TahlnRNA19 *
TahlnRNA36 *,
TahlnRNA41 *
TahlnRNA42 *,
TahlnRNA47 *
TahlnRNA52 *

siRNA precursors Heat stress ↑ [218,220]

Zea mays lncRNAs * siRNA precursors and
antisense transcription Drought stress ↑ [221]

Star symbol “*” indicates lncRNA; no symbol indicates siRNA. Up arrow “↑” indicates that siRANs/lncRNAs are enhanced in response to
the corresponding abiotic stress while the down arrow “↓” indicates that siRANs/lncRNAs are suppressed in response to the corresponding
abiotic stress. NYE indicates that the mechanism/process of that particular siRNA or lncRNA has not yet been established. RdDM, small
RNA-directed DNA methylation.

12. Epigenetic Effects of TEs

As previously mentioned, all types of TEs from both classes have a unique role in
genome instability and evolution and organism adaptation to abnormal conditions [222].
Nevertheless, insertion or transposition of TEs in normal conditions may cause harmful
effects to organisms, including plants. Hence, under normal conditions (i.e., absence
of mutations or biotic or abiotic stress), TEs are silenced or inactivated by epigenetic
silencing mechanisms, such as DNA methylation or suppressive chromatin alterations
(Figure 2) [223]. The epigenetic silencing process is more active in plants than in any other
organisms. In this process, TEs can be in an inactive form, when the epigenetic silencing
process is turned off, or in alleviated conditions, such as under mutant backgrounds and
biotic or abiotic stress [104,224]. Recently, several studies have revealed that the promoter
sequence of TEs enhances expression of genes situated nearby in plants and how this
expression is controlled by epigenetic regulation, which mediates phenotypic diversity and
adaptation (Figure 3) [150,225].

In some eukaryotic organisms, epigenetic effects can also participate in the prolif-
eration and accumulation of TEs, leading to an enlargement in genome size, in which
siRNA-mediated pathways can occur and end with DNA methylation in TEs [1].

In eukaryotes, biochemical modifications of DNA that lead to chromatin remodelling
via histone binding are known as epigenetic modifications. These modifications provide
information on gene regulation. In general, histone lysine and arginine residues are
subjected to epigenetic modification. Several types of lysine residues (H3K4, H3K9, and
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H3K27 with mono/di/tri-methylation) have been extensively studied in animals and
plants. Among these types, H3K9me2 is associated with TE methylation [33]. These
suppressive epigenetic effects promote packaging of chromatin into compacted nuclear
partitions of the cell [226]. In eukaryotes, especially in plants, the epigenetic silencing
mechanisms directly act on TEs via the small RNA-directed DNA methylation (RdDM)
pathway. Briefly, the siRNA matching regions of TEs are targeted by either AGO4 or
AGO6 directed by siRNA. These targeted regions (scaffolding RNA) are transcribed by
polymerase V [227,228]. These scaffolded dsRNA elements react with methyltransferases
DRM1 and DRM2, leading to the methylation of TEs [226].
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Figure 2. Cellular functions of DNA methylation (m) in the plant genome. DNA methylation regulates transposon
activation, gene regulation, and chromosome interactions. (A) Methylation in the gene promoter either represses or
activates transcription [229–233]. (B) Gene body methylations mainly occur in the CG context, although its function remains
unknown [42,231,234–236]. (C) DNA methylation in heterochromatin regions causes the ASI1-AIPP1-EDM2 complex to
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enhance polyadenylation sites (red stars). ASI1 binds RNA and associates with chromatin, and EDM2 catches demethylated
histone H3 lysine in the heterochromatin region [159,237–239]. (D) The methylation of transposons and other DNA repeats
mainly occurs in pericentromeric heterochromatin regions [231,235]. (E) Chromosome interactions among pericentromeric
and heterochromatin islands are regulated by DNA methylation, and repressive chromatin regions are characterized by
abundant transposons and small RNAs [240,241]. ASI1, anti-silencing 1; AIPP1, immunoprecipitated protein 1; EDM2,
enhanced downy mildew 2; POL II, RNA polymerase II. The illustration was adapted and redrawn from Zhang et al. [42],
with copyright permission from the Licensor Springer Nature (Nature Reviews Molecular Cell Biology: Nature publisher)
and Copyright Clearance Center (https://www.copyright.com) (Supplementary File S4).
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the chromatin remodeller DDM1. Small interfering RNAs (siRNAs) derived from TE transcripts travel from the vegetative
cell to the sperm cells to reinforce global demethylation (m) in the endosperm with reinforced CHH methylation (H
represents A, T, or C) [160,242–245]. (B) Gene imprinting in the endosperm occurs either at MEGs or PEGs through DNA
and histone H3 lysine methylations [246–248]. (C) Methylation at the promoter of the gene encoding epidermal patterning
factor 2 (EPF2) that suppresses stomata formation is pruned by ROS1, whose mutation silences the EPF2 or the ERECTA
genes, thus resulting in stomata formation in Arabidopsis [249,250]. (D) Gradual expression of DML2 during tomato fruit
ripening reduces 5-methylcytosine (mC) DNA methylation at several genes (such as CNR, involved in fruit ripening) and
epimutation of those genes inhibits fruit ripening [42,229,251]. DME, transcriptional activator demeter; DDM1, decreased
DNA methylation 1; MEGs, maternally expressed genes; PEGs, paternally expressed genes; ROS1, repressor of silencing 1;
DML2, DNA demethylase DME-LIKE 2; MET1, methyltransferase 1. The illustration was adapted and redrawn from Zhang
et al. [42], with copyright permission from the Licensor Springer Nature (Nature Reviews Molecular Cell Biology: Nature
publisher) and Copyright Clearance Center (https://www.copyright.com) (Supplementary File S4).

13. TE Methylation

As TEs possess self-replication potential and exist as genomic parasites, they can cause
detrimental effects on essential active genes and generate ectopic recombination of DNA.
These damaging effects can be avoided and controlled by epigenetic silencing, such as
through DNA methylation [193]. siRNAs are interconnected with various TEs and act
as mediators and stimulate DNA methylation [252]. This DNA methylation may lead to
suppression of transposition through transcription reduction, along with the formation of
loops among DNA and histone methylations (Figure 4) through siRNAs [253]. For example,
siRNA-mediated epigenetic modification of TEs results in a delay of the flowering process
in Arabidopsis [135]. This suggests that TE epigenetic modification regulates FLC expression.
Hence, these siRNAs act as a strong substitute for DNA methylation in TEs, and siRNA-
targeted TEs have strong effects on nearby gene transcription than those without. In
some plant species, the cytosine methylation process occurs at CG, CHG, and CHH (H
represents A, T, or C) sites of TEs. Most of these sites are unmethylated, and some sites
(approximately 15%) are similar to DNA methylation patterns. Interestingly, siRNA-
mediated DNA methylation can spread about 500 bp into unmethylated neighbouring TEs.
In the case of DNA methylation in euchromatin TEs, it can spread approximately 200 bp
beyond the siRNA target positions. This depends on the effect of siRNAs on the expression
of proximal genes that are 400 bp in size [104,254,255].

In most cases, siRNA-mediated methylated TEs are probably situated fewer base
pairs away from active genes than the location of unmethylated or partially methylated
TEs. A possible reason for the partial methylation of TEs is the nucleotide composition of
siRNAs. This phenomenon suggests that under unfavourable conditions, such as biotic or
abiotic stress, active TEs are involved in the evolutionary process. In normal circumstances,
TEs have been targeted by siRNAs for DNA methylation of cytosine to maintain genomic
stability of the plant under usual conditions [42]. Moreover, to maintain TE methylome
homeostasis in Arabidopsis, altered chromatin structure also increases siRNA production
from heterochromatic TEs during post-embryogenesis [49].

https://www.copyright.com
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Figure 4. Transposable elements (TEs) are suppressed by DNA and histone methylations. (A) TE methylation is most
commonly found in the CG context. The de novo DNA methylation is performed by DNA methyltransferases DNMT3A
and 3B; the pattern of DNA methylation is maintained by DNMT1 by adding a methyl group to the newly synthesized
DNA strand (a complementary strand of the hemi-methylated DNA strand), thus ensuring that the epigenetic modifications
are inherited by the daughter cell. (B) Nucleosomes are made up of DNA and eight histone proteins. These proteins
can be modified in several ways for chromatin accessibility, thereby either activating or inactivating gene expression
(gene imprinting). TRIM28, a silencing complex, recognizes KRAB-ZNFs (Kruppel-associated box zinc-finger proteins),
which contain a TE-binding domain and deposits H3K9me3 on TE (euchromatin region), thus causing TE repression
and heterochromatin formation. The illustration was adapted and redrawn from Jönsson et al. [43], with copyright
permission from the Licensor Elsevier (Trends in Genetics: Cell Press publisher) and Copyright Clearance Center (https:
//www.copyright.com) (Supplementary File S1).

14. TE Methylation in Plant Evolution

Since DNA methylation is positively correlated with repetitive sequences, such as
RTEs and centromeric repeats non-randomly distributed across the entire plant genome,
it is also enriched in centromeres in replicated regions [256]. Active TEs are mutagenic

https://www.copyright.com
https://www.copyright.com


Int. J. Mol. Sci. 2021, 22, 11387 18 of 40

and disrupt genes, regulatory regions, and genome integrity. In contrast, the remaining
new RTEs are silent and permanently or partially disabled [257]. One of the earliest known
functions of the DNA methylation pathway is the inhibition of RTEs (Figure 3). In plant
genomes, RTEs have significantly higher DNA methylation levels than non-coding regions
(specifically CHG and CG) across all contexts [258], but some RTEs can easily escape
host silencing by activating anti-silencing factors [30]. Maintenance of LTR-RTE silencing
in Arabidopsis is based on a combination of RdDM and RNA-independent mechanisms.
TE silencing accepts a distinct chromatin state. For instance, silent or increased histone
H3K9 and DNA methylation in conjunction with H3 lysine results in TE suppression in
Arabidopsis, thus protecting the genomes from TE transposition and genome instability [259].
This distinctive three-layered state of silent heterochromatin is distinguishable from the
polycomb gene cluster transcribed and active heterochromatin gene expression and is
linked to the Arabidopsis genome [260]. There can be several different reasons for the
collapse of structures and reactivation of previously silenced TEs [261].

Changes in environmental conditions may lead to RTE reactivation. Alternatively,
polyploidy and hybridization may cause another kind of systematic shock for RTE activa-
tion [262]. Polyploidy frequently occurs in plant genomes, making the periodic expansion
of RTEs possible. For example, autopolyploidy promotes retention of TEs instead of
eliminating them. Eukaryotic species seem to be linked to large population sizes, and
small genomes are unusual for the few organisms known to have lost cytosine methy-
lation. Active transpositions of DNA methylation may be less effectively eliminated in
such populations [263]. Moreover, DNA methylation and gene expression patterns must
be understood to understand gene expression. Although DNA methylation patterns are
conserved across organisms, promoter DNA methylation is widely divergent. DNA methy-
lation in genes and promoters are perhaps the most well-known DNA methylation pattern
in plants [264].

15. TE Methylation in Plant Stress Response

Epigenetic modifications, including DNA and histone methylation, play a significant
role in managing stress responses in plants through memory of abiotic and biotic stress
factors. DNA methylation is a primary mediator of plant stress responses.

15.1. Abiotic Stress

Under both abiotic stress (such as extremes of temperature, salinity, low nutrient levels)
and under normal conditions, recent studies have shown variable expression of epigenetic
gene regulators depending on the local environment, thus demonstrating the need for
epigenetic regulation (Table 4) [265]. Epigenomic reprogramming research on histone-
associated chromatin and DNA modification has shown that plants exhibit a genome-wide
reorganization response to stress [266]. A recent study on drought response in Arabidopsis
revealed that trimethylation at lysine 4 on histone H3 (H3K4me3/H3K9me2) is complex
and directly correlates with gene expression in stressed cells (Figure 5C) [267]. Increasing
histone H3 phosphorylation at alkaline pH also helps maintain heterochromatin structure.
H3 threonine 3 (H3T3ph) also tends to interact with H3K4me3 during osmotic stress [268],
and this could potentially impact gene expression; this has previously been proposed
for histone deacetylase HDA9. The epigenomic environment also contains the repressive
H3K27me3 as a partial result of priming in Arabidopsis [269]. DNA methylation requires
a specific histone H1 variant, and two DEAD-box helicases are needed for the epigenetic
silencing of gene expression in plants, leading to stress [270]. Arabidopsis mutants defective
in all stages of the RdDM pathway or CHG maintenance have an altered stomatal index or
aversion to moisture starvation [271]. This supports the hypothesis that DNA methylation
regulates abiotic gene expression. Drought in several plant species leads to substantial
remodelling of DNA methylation, which allows plants to respond more effectively to
recurring stress and prepares offspring for future stress responses [272]. However, in this
case, modifying DNA methylation still seems to be essential to regulate neighbouring gene
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expression [273]. Phosphate starvation induced high-level TE methylation in rice but had a
very limited effect in Arabidopsis, suggesting species-specific TE methylation in response to
stress [274].

Table 4. Various roles of DNA methylation in plant responses to abiotic stresses [275].

Abiotic Stress Plants Changes in DNA
Methylation Levels Major Effects References

Cold stress Arabidopsis Enhanced methylation in the
ALN promoter Promotes seed dormancy [276]

Cold stress Arabidopsis Variation in ICE1 methylation Cold tolerance divergence in
different accessions [277,278]

Cold stress B. rapa
Decreased DNA methylation
levels in the BramMDH1
promoter

Increased heat tolerance and
growth rate [279]

Cold stress B. rapa Demethylation of BrCKA2 and
BrCKB4

Regulation of floral
transition. Regulation of
temperature-dependent sex
determination

[280]

Cold stress Cucumis sativus Demethylation of CHH sites
Regulation of
temperature-dependent sex
determination

[281]

Cold stress Rosa hybrida Enhanced CHH methylation of
the RhAG promoter

Regulation of floral organ
development [282]

Drought stress Arabidopsis Increased 5mC methylation
partly depending on H1.3

Adaptive response to water
deficiency [283]

Drought stress Brachypodium distachyon
Decreased global 5mC while
Bacillus subtilis strain B26
inoculation increases

Increased drought stress
resilience [284]

Drought stress G. hirsutum Global hypermethylation in all
three contexts Acclimation to drought stress [285]

Drought stress O. sativa Differential 5mC methylation
alterations

Constitutive drought
tolerance [286]

Drought stress Populus trichocarpa
Increased methylation of
upstream and downstream 2
kb and TEs

Regulation of drought
responses [287]

Drought stress Z. mays Suppression of ZmNAC111 by
MITE through RdDM

Natural variation in maize
drought tolerance [288]

Heat stress Arabidopsis Altered methylation of
transposon remnants

Regulation of basal
thermotolerance [206]

Heat stress Arabidopsis Changes in genome-wide
CHH-methylation patterns

Natural adaptation to
different temperatures [289]

Heat stress B. napus DNA hypomethylation
Regulation of heat stress
responses in cultured
microspores

[290]

Heat stress Brassica napus Increased DNA methylation in
heat-sensitive genotypes Adaptation to heat stress [291]

Heat stress Glycine max Hypomethylation in all
contexts

Affects the expression of
genes or TEs under heat
stress

[292]

Heat stress Gossypium hirsutum Reduced DNA methylation
level in a heat-sensitive line Microspore sterility [293,294]

Heat stress O. sativa Decreased DNA methylation
levels of OsFIE1

Regulation of seed size
under heat stress [295]
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Table 4. Cont.

Abiotic Stress Plants Changes in DNA
Methylation Levels Major Effects References

Heat, salt, cold
stresses O. sativa

Increased 6mA levels in heat
and salt stress, decreased 6mA
levels in cold stress

Regulation of plant
responses to environmental
stresses

[296]

Salt and drought
stresses S. melongena Expression changes of

C5-MTases and demethylases
Response to salt and drought
stresses [297]

Salt and drought
stresses Solanum lycopersicum Activation of Rider

retrotransposon
Modulation of salt and
drought stress responses [298]

Salt stress B. napus

Decreased methylation in the
salinity-tolerant cultivar but
increased methylation in the
salinity-sensitive cultivar

Acclimation to salt stress [299]

Salt stress O. sativa Decreased 5mC levels in the
OsMYB91promoter Enhanced salt tolerance [207]

Salt stress O. sativa Increased methylation level of
the osa-miR393a promoter Improved salt tolerance [300]

Salt stress T. aestivum Increased 5mC levels in
TaHKT2;1 and TaHKT2;3 Improved salt tolerance [301]

Salt stress Triticum aestivum
Reduced methylation levels in
the promoter of
salinity-responsive genes

Contributes to superior
salinity tolerance [302]

Salt stress Zea mays
Increased methylation of root
ZmPP2C and demethylation of
leaf ZmGST

Acclimation to salt stress [303]

Salt, heat and
drought stresses O. sativa Activation of an LTR

retrotransposon, HUO
Modulation of stress
responses [304]

15.2. Biotic Stress

When compared with abiotic stress, less information is available on DNA methylation
and histone post-translational modifications in response to biotic stress. Recent literature
indicates that both necrotrophic and biotrophic pathogens are involved in changes to
chromatin structure [305]. Chromatin modification is another layer of regulation for plant
disease resistance. E3 ubiquitin ligase genes and histone monoubiquitination 1 (HUB1) and
HUB2 regulate the expression of R genes, which induce constitutive immune responses in
an Arabidopsis mutant. Histone ubiquitination is directly induced at the R gene locus [306].
Loss of histone deacetylase HDA19 mediates Arabidopsis immune responses to the pathogen
Pseudomonas syringae pathovar tomato (Pst) strain DC3000 [307]. Silent or suppressed genes
in stress regulation are characterized by the dimethylation and trimethylation of histone
H3 Lys 27 (H3K27me2/3).

The rice gene, Jumonji C (jmjC) histone lysine protein gene (JMJ705) encoding histone
lysine demethylase is involved in reversing Lys DNA methylation. In transgenic plants,
increased JMJ705 expression removes H3K27me3 from defence-related genes, induces
their expression with the aid of jasmonic acid, and improves resistance to the bacterial
blight disease pathogen Xanthomonas oryzae pathovar oryzae [308]. In contrast, impaired
JMJ703 activity raised levels of H3K4me3 and reactivated two families of non-LTR-RTE,
and loss of JMJ703 did not change silencing of TE silencing [309]. This suggests that histone
modifications are involved in TE silencing to regulate the plant immune response. It is
also fascinating to note that the role of TEs is also important in plant pathogens to facilitate
infection. For example, the ascomycete fungal pathogen Leptosphaeria maculans secretes an
arsenal of small, secreted proteins (SSPs) that act as effectors to modulate host immunity to
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facilitate infection in B. napus. Chromatin-based transcriptional regulation of SSP-encoding
genes associated with TEs in fungi impacts disease development during infection [310].

Many differentially methylated stress-response genes were discovered in plants ex-
posed to different pathogens. Differentially methylated regions in the genome are also
linked to gene expression. Mutations in the non-CG methyltransferases (DRM1, DMR2,
and CMT3) and the CG methyltransferase (MET1) lead to genome-wide hypomethylation
and pleiotropic developmental defects [311]. However, the met1 and the drm1, drm2, and
cmt3 (ddc) mutants showed more disease resistance to the bacterial pathogen P. syringae
pv. tomato DC3000 (Pst). These dynamic changes in DNA methylation and the functional
consequences of differential methylation in regulating defence-related genes following
pathogen attack in Arabidopsis are facilitated by TEs. In the Arabidopsis triple mutant rdd
(ros1 dml2 dml3), defence-related genes are typically downregulated and therefore sus-
ceptibility to the fungal pathogen Fusarium oxysporum is increased. These genes in the
mutant contain hypermethylated TE in their promoters. In contrast, these promotors are
actively demethylated in the wild-type strain. Furthermore, ROS1, DML2, and DML3
demethylase activities are linked to fungal disease resistance, and DNA demethylation
of TE sequences is largely regulated by ROS1 [312]. In addition, DNA methylation can
prime TEs to cause activation of epigenetic transducers and can also directly induce gene
silencing. Repeat components of DNA regions are known as DNA methylation interferes
with expression of some biotic stress response genes. Loss of TE methylation also makes it
easier to start the transcription process [313]. DNA methylation regulates stress-related
genes by selective suppression of active TEs in their regulatory regions [314]. However, in
addition to these mechanisms, a full understanding of epigenetic changes is also essential
to better understand new key factors underlying plant stress responses. For example, TE
methylation changes may lead to the activation of the SA signalling pathway to trigger
widespread cell death during biotic stress. However, no direct evidence linking cell death
to differential methylation has been observed.
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Figure 5. Epigenetic modifications under stress conditions and possible stress memory. (A) Both biotic and abiotic stresses
can induce or change DNA methylation (5-methylcytosine, mC) and induce other epigenetic changes in the genome;
such modifications are associated with the expression of stress-response genes, which conversely may lead to epigenetic
processes. Reprogrammed epigenetic modifications (stress memory) are inherited by the offspring. (B) In Arabidopsis,
ROS1, DML2, and DML3 remove DNA methylation, thus collectively regulating stress responsive genes in their vicinity.
Defects in demethylases, such as ROS1, DML2 and DML3, exhibit increased susceptibility to the fungal pathogen Fusarium
oxysporum [315]. (C) During Arabidopsis recovery from heat stress, DDM1 and MOM1 regulate the deletion of stress-induced
epigenetic memory. Mutations in DDM1, a chromatin remodeller, assuages transcriptional silence with a significant loss of
DNA methylation. MOM1 intermediates facilitate transcriptional silence via an unknown mechanism without loss of DNA
methylation. Dysfunction of DDM1 and MOM1 in heat stress-induced gene de-silencing can be inherited in plants exposed
to repeated stress [316]. ROS1, repressor of silencing 1; DMEL2 and DML3, transcriptional activator demeter (DME)-Like
2 and 3, respectively; DDM1, decreased DNA methylation 1; MOM1, morpheus molecule 1; H3K9me2, demethylated
histone H3 lysine 9. The illustration was adapted and redrawn from Zhang et al. [42], with copyright permission from the
Licensor Springer Nature (Nature Reviews Molecular Cell Biology: Nature publisher) and Copyright Clearance Center
(https://www.copyright.com) (Supplementary File S4).
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16. Detection of TE Modifications and Measurement of TE Expression

Detecting TE modifications and measuring TE expression can facilitate understanding
how TEs alter gene expression. A wide range of molecular techniques and analytical ap-
proaches are available to assess TE expression and modifications. However, these approaches
should be carefully considered before implementation [317]. Analysis of TE sequencing
results or TE-derived reads is challenging, as TEs are usually present in multiple copies in
the plant genome, and ncRNAs and several mRNA genes are derived from TEs. However,
there are several methods to detect TE methylation. These include methylation-sensitive
amplified polymorphisms (MSAPs), methylation-specific PCR (MSP), sequencing of specific
genes, and high-performance liquid chromatography (HPLC). However, these techniques are
not suitable for broad identification of TE-modified sites. Whole genome bisulfite sequencing
(WGBS) and reduced representation bisulfite sequencing (RRBS) are widely used methods
to study TE modifications. Standard methods used for next-generation sequencing (NGS)
are becoming routine. Several low-cost NGS platforms, including 454 sequencings, Illumina
Genome analyser, Illumina, HeliScope Single Molecular Sequencer, Helicos BioSciences, and
Nanopore sequencing are available to systematically study TE methylation [318]. Similar to
DNA, RNA also undergoes various modifications (known as epitranscriptomics) and plays a
significant role in biological processes [319]. This will lead to new discoveries in TE epitran-
scriptomics. As the present techniques cannot accurately detect TE modifications, focused
research is necessary to generate new NGS platforms that can advance the understanding of
all types of TE modifications in plants.

Recent molecular biology approaches such as ALE-seq, mobilome-seq, and VLP DNA-
seq are more applicable in detecting active TEs in plants [320,321]. However, multi-mapped
reads are typically discarded or not considered for analysis because of short-read sequencing.
Thus, long-read sequencing technologies have recently been used as promising alternative
methods that can easily separate different copies of the same family of TEs. For instance,
unique transcripts containing various TEs were identified in maize using PacBio single-
molecule RNA sequencing [322]. In addition, Oxford Nanopore Technology (ONT) can
generate complete gene-like transcript annotation for TEs [323], suggesting that long-read
sequencing allows the mapping of TE reads to a unique position of the plant genome.

However, conventional molecular biology techniques are still commonly used to study
TEs. Although some approaches provide unique information, these are not applicable
with genome-wide approaches. Although TE-derived transcripts are commonly quantified
using qRT-PCR, this method has several major limitations. First, the main portion of the
raw material starts with high-quality RNA, which contains pre-mRNA. Accordingly, the
process begins with autonomous and passive transcription. Second, it is challenging to
develop probes and primers that are truly different for a specific TE family. Third, the order
of the amplified fragment cannot be predicted and is more likely to be a shortened tran-
script [317,324]. Unlike Southern blotting, Northern blotting assesses the size distribution
of TE transcripts and whether full-length transcripts are present. Finally, programming in-
dividual TE loci with a reporter gene knock-in can be used to measure and parallelize gene
expression levels accurately and rapidly [317,325]. This methodology has been employed
in measuring each individual Ty1 RTE present in S. cerevisiae [326]; however, the results
cannot be easily applied or generalized. Detection of TE proteins is also important. Internal
TE mutations often inhibit translation of TE proteins, and post-translational modifications
limit RTEs downstream. Western blotting and immunofluorescence experiments can ad-
dress this issue. However, all conventional molecular biology techniques have several
major limitations and advantages [317]. Thus, new approaches are needed to study a
genome-wide view of TE expression.

17. Recent Machine Learning and Computational Tools for Analysing

Genome-wide analyses of TE methylation are limited due to the complex structures
and high diversity of TEs. Several TE-dedicated computational tools (Table 5) are avail-
able for genome-wide analysis of TE expression and TE classification. These tools use
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various approaches, such as structure-based, homology-based, comparative genomics,
and de novo. However, using these tools can still be challenging due to the polymorphic
structures of TEs; thus, there are still debates on TE classification and annotation. No
single bioinformatics tool can give reliable results on different types of TEs, and all tools
have a high rate of false positives [30,327]. In general, RNA-seq data is mostly used for
genome-wide approaches but mapping strategies of TEs with reference genomes mainly
differ. Consequently, in addition to computational tools, the use of machine learning algo-
rithms in bioinformatics has rapidly increased in recent years due to their demonstrable
achievements in handling the difficult task of managing large datasets. Examples include
genome annotation, classification of various plant genotypes with morphological and
molecular markers, modularity and prediction of important quantitative properties in
plants, analysis of complex, non-linear plant characteristics, and prediction and optimiza-
tion of in vitro breeding methods. Various types of machine learning have been developed,
each with its own methods, strengths, and disadvantages, thus making certain approaches
more suited to specific tasks. Machine learning is divided into two categories (supervised
and unsupervised), both of which improve the accuracy of TE detection by using results
obtained by conventional software [30]. Machine learning can classify autonomous and
non-autonomous TEs derived from LTR-RTEs using different features, such as LTR and
ORF lengths. This can also distinguish between retroviral LTRs and other RTEs. Using
machine learning, it is possible to discover new information on TEs, such as arrays of TEs,
new transposition, TE methylation, new ncRNAs, and new DNA motifs. Using machine
learning applications, detection of single nucleotide polymorphisms (SNPs) associated
with TEs are useful for creating TE population models. Variation in allele frequencies may
be used to reveal TE positive selection. However, very few tools, such as Red and TEClass,
apply machine learning for TEs and their application in TEs is still limited [30].

Some online TE libraries also use machine learning approaches. For instance, In-
pactorDB (a semi-curated dataset composed of 130 439 LTR- RTEs from 195 plant genomes
of 108 plant species) is an RTE library (e.g., RepeatMasker) for identifying and annotating
LTR-RTEs using a machine learning approach [30]. Deep learning is a sub-discipline of
machine learning and has shown successful results in genomics; hence, the use of deep
learning in machine learning is also rapidly increasing. Deep learning and machine learn-
ing are more efficient approaches that use selected histograms or expected histograms to
define TE genomic windows and hierarchical classification. However, machine learning has
limited potential because of the repetitive nature and diverse polymorphisms of TEs and
the species specificity of TEs. Furthermore, although deep learning is useful for genomic
research, thus far no software has been developed to use deep learning for the identification
and classification of TEs. Despite these challenges, a well-developed machine learning
tool for TE classification would advance TE research [327]. Using data mining along with
several key features, such as LTR length, TDS, ORFs, TATA boxes, AATAAA, and poly-
A tails, developing machine learning for TE classification is possible. Thus, researchers
should consider using computational tools and machine learning with deep learning and
integrating different TE analyses, which can facilitate development of new applications for
TE measurement, transposition, methylation levels, classification, and annotation.
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Table 5. Analysis of transposable element (TE) unit expression from RNA-seq results using statistical methods and approaches. The table was adapted and recreated from Lanciano
et al. [317], with copyright permission from the Licensor Springer Nature (Nature Reviews Genetics: Nature publisher) and Copyright Clearance Center (https://www.copyright.com)
(Supplementary File S5).

Approaches or Tools Mapping or
Pseudo-Mapping

Fate of
Multimappers

Type of
Quantification

Distinguishes Unit-Length
Transcripts from other
TE-Derived Transcripts

Includes
Polymorphic TE

Expression
Notes References

Endogenous
retrovirus (ERV) map Reference genome Discarded Locus specific - - Uses a curated full-length

human ERV database [328]

L1EM Model transcriptome EM algorithm Locus specific + -

Proof-of-principle on
human long interspersed
element 1 (L1) could be
generalized

[329]

Manual curation Reference genome Discarded Locus specific + - Difficult to generalize [324]

Multi-omics 1 Reference genome NA Locus specific + +

Combines targeted DNA
sequencing, RNA-seq, and
ChIP-seq (chromatin
immunoprecipitation
followed by sequencing)

[330]

Multi-omics 2 Reference genome NA Locus specific + + Combines whole-genome
sequencing and RNA-seq [331]

Random assignment
of multimappers Reference genome Randomly assigned Locus specific - -

Locus-specific
transcription not reliable
on youngest TEs

[332]

RE discover TE Model transcriptome EM algorithm F Family specific + - Uses Salmon TE algorithm [333]

Rep Enrich Reference genome Remapped on TE
pseudogenome Family specific - - - [334]

Salmon TE Consensus
transcriptome

Expectation-
maximization (EM)
algorithm

Family specific - - Rapid pseudo mapping [335]

SQuIRE Reference genome EM algorithm Locus specific - +/−

Polymorphic insertion can
be added as extra
chromosome if internal
sequence known

[336]

https://www.copyright.com
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Table 5. Cont.

Approaches or Tools Mapping or
Pseudo-Mapping

Fate of
Multimappers

Type of
Quantification

Distinguishes Unit-Length
Transcripts from other
TE-Derived Transcripts

Includes
Polymorphic TE

Expression
Notes References

TE tools TE pseudo genome Randomly assigned Family specific - - Applicable to unassembled
genomes [337]

TEcandidates Reference genome
Remapped on
partially masked
reference genome

Locus specific - - - [338]

Telescope Reference genome EM algorithm Locus specific + - - [339]

TEtranscripts Reference genome EM algorithm Family specific - -
Commonly used tool,
tested on a wide variety of
organisms

[340]

TeXP Reference genome Randomly assigned Family specific +/- -

Subtracts signal from
pervasive transcription but
not from other forms of
chimeric transcripts

[341]



Int. J. Mol. Sci. 2021, 22, 11387 27 of 40

18. Future Perspectives and Biotechnological Opportunities

Plant research has addressed important questions on whether TE-associated DNA
variants contribute to evolutionary transition without affecting the genome. To better
understand the impact on evolution, extensive molecular studies on the forms, origins,
and impacts of TE activation in Arabidopsis have been performed. The results are also
applicable to other organisms, especially maize [5]. In particular, the epigenetic and genetic
influence of TEs on both hosts and TEs remains relatively understudied. The impact of TEs
is attributed to the influence on the genome by suppressing genome recombination in the
locality of TEs [226]. In the long term, peripheral transmission effects could theoretically
influence overall evolution and have significant implications for genetic and molecular
experiments that employ epigenomics [342]. Long-read technologies may elucidate the
function of TEs from diverse plants [343]. Similar to DNA methylation, epitranscriptomic
modification of RNAs (posttranscriptional RNA modifications) found in eukaryotes is a
new layer of gene regulation and may function against TE transcripts [344]. Furthermore,
single-cell genomics technologies, for example, appear to be a promising alternative for
investigating DNA context in individual cells. Digital droplet PCR (ddPCR) is cost-effective
and easy to use [345]. Since ddPCR performs a PCR on many thousands of tiny droplets, the
digital presence or absence of TE in each droplet is easily identified by counting the number
of droplets. Overall, the latest advances in DNA sequencing have radically changed the
direction of transposon research. Relying on new types of epigenomics would open up
knowledge and allow engineering of non-genetically modified crops [320].

19. Conclusions

It is generally agreed that TEs facilitate genetic and evolutionary diversification.
Although some circumstantial evidence supports the above hypothesis, none of it is sub-
stantial and there is no direct proof that TEs facilitate ripening inhibitors. TEs are most
often thought to create new genetic and phenotypic diversity via the introduction of new
regulatory elements and gene and chromosomal disruptions. TEs also often play a crucial
role in lineage-specific regulatory and coding sequence evolutions, contributing to new
gene functions. Thus, TEs play a key role in the emergence of new phenotypes. For
example, TEs are the primary source of novel regulatory sequence variations in primates.
Adaptive novelty is mainly due to TE behaviour, which results in a large variety of genetic
alterations, such as gene replication, enhanced expression, and newly created genes. Until
now, most analyses of TEs only addressed occurrences of TEs and gene activity or transcript
and phenotype relationships. A better understanding of the 3D chromatin structure organi-
zation within the nucleus may increase our understanding on the function of chromatin
structure and its relation to mechanistic genome variations. This review highlighted the
need to assess the regulation of TEs and their influence on the adaptive genome. This
may facilitate development of improved traits for climate resilience and stress tolerance in
the future.
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