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Abstract: The formation and maintenance of the mitotic spindle during cell division requires several
microtubule-interacting motor proteins. Members of the kinesin-5 family play an essential role in
the bipolar organization of the spindle. These highly conserved, homotetrameric proteins cross-link
anti-parallel microtubules and slide them apart to elongate the spindle during the equal separation of
chromosomes. Whereas vertebrate kinesin-5 proteins are well studied, knowledge about the biochem-
ical properties and the function of plant kinesin-5 proteins is still limited. Here, we characterized the
properties of AtKRP125b, one of four kinesin-5 proteins in Arabidopsis thaliana. In in vitro motility
assays, AtKRP125b displayed the archetypal characteristics of a kinesin-5 protein, a low velocity
of about 20 nm·s−1, and a plus end-directed, processive movement. Moreover, AtKRP125b was
able to cross-link microtubules and to slide them apart, as required for developing and maintaining
the mitotic spindle. In line with such a function, GFP-AtKRP125b fusion proteins were predomi-
nantly detected in the nucleus when expressed in Arabidopsis thaliana leaf protoplasts or Nicotiana
benthamiana epidermis cells and analyzed by confocal microscopy. However, we also detected GFP
signals in the cytoplasm, suggesting additional functions. By generating and analyzing AtKRP125b
promoter-reporter lines, we showed that the AtKRP125b promoter was active in the vascular tissue of
roots, lateral roots, cotyledons, and true leaves. Remarkably, we could not detect promoter activity in
meristematic tissues. Taken together, our biochemical data support a role of AtKRP125b in mitosis,
but it may also have additional functions outside the nucleus and during interphase.
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1. Introduction

Transport processes and restructuring are an essential part of the cycle of a living cell
and are largely mediated by motor proteins in almost all eukaryotic organisms. Kinesins
move along microtubules and are, therefore, often involved in processes such as organelle
transport, mitotic spindle assembly and maintenance, and chromosome movement. Mi-
crotubules serve as a transport structure for the navigation of kinesins. However, the
dynamics of microtubules themselves can also be influenced by some kinesins by either
stabilizing or depolymerizing them in a controlled manner [1,2]. The highly conserved
motor domain forms the catalytic center of these proteins and is capable of hydrolyzing
ATP. The ATP-turnover allows a precisely timed binding and unbinding of the motor heads
to the microtubule resulting in force transmission [3,4].

All kinesins are classified into 14 families according to their structure. Classification
is often, but not always, accompanied by functional clustering. The high variability in
kinesin function is due to characteristics outside the motor domain of kinesins. Whereas
the variability of structure and function within a kinesin family can be quite high, the
kinesin-5 family is highly conserved. The classical role of kinesin-5 in animal systems is the
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assembly and maintenance of the mitotic spindle during anaphase and metaphase [5–7].
Kinesin-5, unlike most kinesins, forms dumbbell-shaped bipolar homotetramers rather than
homodimers [8]. It has been shown for Eg5, an animal kinesin-5, that both ends of these
tetramers, occupied by motor domains, are able to bind to two microtubules simultaneously
and thus cross-link them. Movement of Eg5 along the cross-linked microtubules causes
anti-parallel microtubules to be displaced relative to each other. Within the spindle, Eg5
cross-links and displaces the spindle midzone microtubules, ensuring their stability and
elongation [9]. Knockout of Eg5 leads to nonpolar spindles and thus problems with the
correct division of chromosomes during cell division. This highlights the importance of
kinesin-5 in cell division. In contrast to the spindle in animal cells, the plant spindle lacks
the centrioles, so their structure differs significantly. Nevertheless, there is evidence that
kinesin-5 proteins are also involved and play an important role in the plant spindle: the
kinesin-5 AtKRP125c occupied plant spindle microtubules, and a lack of AtKRP125c led to
compromised spindle structure and problems with cytokinesis [10,11]. Beyond this, the
function of kinesin-5 in plants has been poorly understood, especially with regard to the
biochemical and biophysical properties of plant kinesin-5 proteins. Here, we performed
in vitro motility assays with a recombinant kinesin-5 from Arabidopsis thaliana (AtKRP125b).
In the process, we found that AtKRP125b was capable of cross-linking and counter-shifting
microtubules in vitro and thus indeed possessed all the properties to fulfill the canonical
role in the spindle.

Interestingly, Arabidopsis has a high number of kinesin-5 genes compared to most
eukaryotic organisms. Whereas most eukaryotes contain only one gene encoding a
kinesin-5, Arabidopsis was found to have 4 kinesin-5 genes, namely AtKRP125a, AtKRP125b,
AtKRP125c, and AtF16L2.60 [12,13]. In general, the number of kinesin genes in plants is sig-
nificantly higher than in other eukaryotes [12]. Most of these additional genes have arisen
through gene duplications within specific kinesin families, such as kinesin-7, kinesin-12
or kinesin-14. Gene duplication is often accompanied by the acquisition of plant-specific
functions. For example, a large proportion of kinesin-14 takes on a role as a minus-end
directed kinesin, replacing dynein, which is absent in plants [14]. Kinesins of the kinesin-7
family are involved in plant-specific processes such as phragmoplast expansion [15]. A
role in mitochondria is also speculated [16]. Kinesin-12 motor proteins are also involved in
phragmoplast and preprophase band organization, both functions outside their classical
role in animal cells [17–19]. Therefore, we wondered whether the high number of kinesin-5
genes in Arabidopsis may also indicate that kinesin-5 has evolved specific functions in plants
and investigated putative cellular functions of AtKRP125b. For this purpose, we examined
the AtKRP125b promoter activity in transgenic promoter-GUS Arabidopsis lines and the
intracellular localization of GFP-AtKRP125b after expression in transformed Arabidopsis
and Nicotiana benthamiana cells. The AtKRP125b promoter was active in vascular but not in
meristematic tissue, whereas the AtKRP125b protein was localized in both the nucleus and
the cytoplasm. Our results may indicate that AtKRP125b does not have an exclusive role in
the mitotic spindle but may also perform additional functions in the cell during interphase.

2. Results
2.1. The Kinesin AtKRP125b Moves along Microtubules at a Slow Velocity

The velocity at which a kinesin moves along microtubules can be determined by using
a gliding assay. For this purpose, the recombinant full-length AtKRP125b was bound
to a glass surface with antibodies. In an ATP-rich environment, fluorescently labelled
microtubules were able to bind to the motor domains of AtKRP125b and were transported
by them along the glass surface (Figure 1a–c, Supplementary Movie S1). Analysis of the
velocity of microtubule displacement revealed that AtKRP125b displaces microtubules at
17 ± 8.8 nm/s (Figure 1c,d). This velocity is generally quite low compared to other kinesins.
However, our observations were comparable to studies on Eg5, which showed that Eg5
moves at a velocity of ~20 nm s−1 towards the microtubules plus end [5].
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graphs of polarity-marked microtubules gliding along a AtKRP125b coated surface at different 
timepoints. The plus end of the polarity-marked microtubule is labelled in red, the remainder of the 
microtubule is labelled in blue. The starting position of each microtubule is marked by a white ar-
rowhead. (c) Kymograph of the lower microtubule shown in (b). This space–time plot displays in-
tensity values along the microtubule’s path over time. The velocity can be deduced from the kymo-
graph’s slope. (d) Histogram of the mean transport velocities for 504 gliding microtubule filaments. 
A Gaussian fit (red line) shows a velocity of 17.0 ± 8.8 nm s−1 (mean ± SD). 

2.2. AtKRP125b Is a Processive Kinesin 
The processivity of a kinesin describes its ability to move as a single molecule over 

longer distances along microtubules, always with at least one motor head bound to the 
microtubule. The longer the traveled distance of this motor protein, the more processive 
it is. For the role in the mitotic spindle, high processivity is not necessary, because in this 
case several molecules cooperate. Therefore, kinesin-5 motor proteins can distribute the 
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surface via antibodies (Figure 2a). It is clearly evident that AtKRP125b moves proces-
sively in the µm range (Figure 2b,c, Supplementary Movie S2). An evaluation of the ve-
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Figure 1. AtKRP125b moves with a slow velocity in in vitro gliding assays. (a) Schematic representa-
tion of a gliding motility assay with His-tagged full-length AtKRP125b. (b) Fluorescent micrographs
of polarity-marked microtubules gliding along a AtKRP125b coated surface at different timepoints.
The plus end of the polarity-marked microtubule is labelled in red, the remainder of the microtubule
is labelled in blue. The starting position of each microtubule is marked by a white arrowhead.
(c) Kymograph of the lower microtubule shown in (b). This space–time plot displays intensity values
along the microtubule’s path over time. The velocity can be deduced from the kymograph’s slope.
(d) Histogram of the mean transport velocities for 504 gliding microtubule filaments. A Gaussian fit
(red line) shows a velocity of 17.0 ± 8.8 nm s−1 (mean ± SD).

2.2. AtKRP125b Is a Processive Kinesin

The processivity of a kinesin describes its ability to move as a single molecule over
longer distances along microtubules, always with at least one motor head bound to the
microtubule. The longer the traveled distance of this motor protein, the more processive
it is. For the role in the mitotic spindle, high processivity is not necessary, because in this
case several molecules cooperate. Therefore, kinesin-5 motor proteins can distribute the
resulting forces very well among several motor proteins in a cluster and prevent the detach-
ment of individual molecules [20]. In the stepping assay, single FlAsH-stained AtKRP125b
molecules moved along microtubules, which were tightly bound to the glass surface via
antibodies (Figure 2a). It is clearly evident that AtKRP125b moves processively in the µm
range (Figure 2b,c, Supplementary Movie S2). An evaluation of the velocity of the single
molecules revealed a mean velocity of 11.3 ± 12.5 nm/s (mean ± SD, n = 122 total stepping
events), which is comparable to the velocity from the gliding assay (Figures 2d and 1d).

2.3. AtKRP125b Moves along Microtubules toward Their plus End

The directionality of a kinesin is mainly determined by the location of the motor
domain and a specific neck-linker sequence [21]. Since the plus ends of spindle micro-
tubules point toward the midzone and kinesin-5 is involved in elongation, i.e., pushing
apart the overlapping spindle molecules, AtKRP125b was hypothesized to be a plus end-
directed motor protein to fulfill the classical role of a kinesin-5 in the mitotic spindle. In
the applied stepping assay, it could be seen that AtKRP125b molecules always moved
toward the labeled plus end (Figure 2b,c, Supplementary Movie S2). Accordingly, it could
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be observed that the displacement of microtubules was unidirectional with a leading
minus end and a trailing plus end (labelled end) in the gliding assay (Figure 1b,c and
Supplementary Movie S1), indicating that AtKRP125b moved toward the plus end of the
microtubule and thus it is a plus end-directed kinesin. This finding is consistent with the
directionality determined for human Eg5, which also moves toward the plus end [5].
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Figure 2. Single molecule stepping assays reveal, AtKRP125b is a processive motor protein.
(a) Schematic representation of a single molecule stepping assay with fluorescently-labelled full
length AtKRP125b. (b) Fluorescent micrographs of a single AtKRP125b molecule (green) stepping
along an immobilized polarity marked microtubule at different timepoints. The plus end of the
polarity-marked microtubule is labelled in magenta, while the remainder of the microtubule is
labelled in blue. The starting position of the AtKRP125b-molecule is marked by a white arrowhead.
(c) Kymograph of the stepping event shown in (b). (d) Histogram of the mean transport velocities for
121 single molecule stepping events. A Gaussian fit (red line) shows a velocity of 11.3 ± 12.5 nm s−1

(mean ± SD).

2.4. AtKRP125b Is Able to Cross-Link Microtubules and Slide Them Apart

The homotetrameric structure of kinesin-5 proteins generally enables two micro-
tubules to be linked and slid apart simultaneously. In the sliding assay, fluorescently
labelled long microtubules were tightly bound to the support via antibodies. Free short
microtubules labeled with a fluorescent dye of a different wavelength were cross-linked to
the immobilized microtubule by recombinant AtKRP125b (Figure 3a). Movement of the
short microtubules along the long microtubules occurred only in some cases (Figure 3b,c,
Supplementary Movie S3). Moreover, there were rare cases in which the short microtubule
reached the end of the long microtubule and, instead of detaching, made a 180◦ turn and
re-attached to the long microtubule. In these cases, the movement stopped (Figure 3d,
Supplementary Movie S4). If the plus ends of the microtubules point in the same direction,
force is exerted in the same direction by both pairs of motor domains and no net motion
occurs. However, if the microtubules are in an anti-parallel relationship, force from the
two pairs of motor domains will be exerted in opposite directions and there will be net
motion. This motion should be twice as fast as the determined velocity from the gliding
assay. Surprisingly, we determined a mean velocity of 11.7 ± 5.2 nm s−1 (mean ± SD,



Int. J. Mol. Sci. 2021, 22, 11361 5 of 12

N = 121 total sliding events, Figure 3e) for the moving short microtubules, which was not a
doubling but even a slight slowdown compared to the gliding velocity of 17 nm s−1.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 13 
 

 

Supplementary Movie S4). If the plus ends of the microtubules point in the same direction, 
force is exerted in the same direction by both pairs of motor domains and no net motion 
occurs. However, if the microtubules are in an anti-parallel relationship, force from the 
two pairs of motor domains will be exerted in opposite directions and there will be net 
motion. This motion should be twice as fast as the determined velocity from the gliding 
assay. Surprisingly, we determined a mean velocity of 11.7 ± 5.2 nm s−1 (mean ± SD., N = 
121 total sliding events, Figure 3e) for the moving short microtubules, which was not a 
doubling but even a slight slowdown compared to the gliding velocity of 17 nm s−1. 

 
Figure 3. Sliding assays show AtKRP125b cross-links microtubules and slides them apart. (a) Sche-
matic representation of a sliding motility assay with full-length AtKRP125b. (b) Fluorescent micro-
graphs of short red microtubules sliding along long, immobilized microtubules (blue) at different 
timepoints. The starting position of each microtubule is marked by a white arrowhead. (c) Kymo-
graph of the upper blue microtubule shown in (b). (d) Kymograph of a short, red microtubule being 
transported to the end of the lower, blue microtubule and immediately flipping back onto it. The 
red microtubule stops after flipping. (e) Histogram of the mean transport velocities for 122 sliding 
microtubule filaments. A gaussian fit (red line) shows a velocity of 11.7 ± 5.2 nm s−1 (mean ± SD). 

2.5. The AtKRP125b Promoter Is Not Active in Mitotically Active Tissues 
Since cell division in plants occurs almost exclusively in meristematic tissue, we as-

sumed that the promoter activity of AtKRP125b is most pronounced in or even restricted 
to meristems. GUS staining of eight-day-old pAtKRP125b::GUS seedlings revealed blue 
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(Figure 4a), in emerging lateral roots (Figure 4b), in the basal region of the hypocotyl (Fig-
ure 4c), in the petals of young flowers (Figure 4d), and the apex and vascular tissue of 
cotyledons and true leaves (Figure 4e,f). In 24-day-old pAtKRP125b::GUS plants, the pro-
moter was also active in vascular tissue of petals, the stigma, and anthers of mature flow-
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Figure 3. Sliding assays show AtKRP125b cross-links microtubules and slides them apart.
(a) Schematic representation of a sliding motility assay with full-length AtKRP125b. (b) Fluores-
cent micrographs of short red microtubules sliding along long, immobilized microtubules (blue) at
different timepoints. The starting position of each microtubule is marked by a white arrowhead.
(c) Kymograph of the upper blue microtubule shown in (b). (d) Kymograph of a short, red micro-
tubule being transported to the end of the lower, blue microtubule and immediately flipping back
onto it. The red microtubule stops after flipping. (e) Histogram of the mean transport velocities for
122 sliding microtubule filaments. A gaussian fit (red line) shows a velocity of 11.7 ± 5.2 nm s−1

(mean ± SD).

2.5. The AtKRP125b Promoter Is Not Active in Mitotically Active Tissues

Since cell division in plants occurs almost exclusively in meristematic tissue, we
assumed that the promoter activity of AtKRP125b is most pronounced in or even restricted
to meristems. GUS staining of eight-day-old pAtKRP125b::GUS seedlings revealed blue
staining of leaves and roots. Promoter activity was observed in vascular tissue in the
root (Figure 4a), in emerging lateral roots (Figure 4b), in the basal region of the hypocotyl
(Figure 4c), in the petals of young flowers (Figure 4d), and the apex and vascular tissue
of cotyledons and true leaves (Figure 4e,f). In 24-day-old pAtKRP125b::GUS plants, the
promoter was also active in vascular tissue of petals, the stigma, and anthers of mature
flowers and in the remnants of the stigma and in the internode of young siliques (data
not shown). Remarkably, no GUS staining was detected in mitotically active tissue such
as the root apical meristem or the flowering meristem, which contradicts our hypothesis
that AtKRP125b shows a role in the mitotic spindle. However, we cannot exclude the
possibility that not all regulatory elements were captured with the selected promoter
sequence. A repeat of the experiment with a longer promoter sequence failed to transform
with agrobacteria due to the length of the construct.
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nucleus (Figure 5a,b). To quantify the overlap of the signals, we calculated the square of 
Pearson’s correlation coefficient (R2), which was 0.77 and 0.62, respectively, indicating 
high signal agreement. In the next step, we were aiming to study the subcellular localiza-
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Figure 4. The AtKRP125b promoter is active in various organs. Images show GUS-staining in 8 day-old plants of
pAtKRP125b::GUS lines after 90 min incubation with X-Gluc. (a,b), Intense GUS staining was observed in vascular tissue of
the root (a) and emerging lateral root (b) above the meristem. (c) GUS staining was visible in the hypocotyl and in emerging
adventitious roots. d,e,f, GUS-staining was observed in the apex and vascular tissue of flower buds (d), cotyledons (e), and
true leaves (f). Scale bars: 200 µm.

2.6. AtKRP125b Knockout Mutants Show No Developmental Abnormalities

If AtKRP125b is indeed involved in mitotic spindle formation, knockout of the corre-
sponding gene should result in changes of plant development, such as growth retardation.
However, phenotyping of krp125b single mutants did not show any significant change in
growth or development compared with wild-type plants (Figure S1). It may, however, well
be that one of the other kinesin-5 family members substitutes for the missing AtKRP125b
function. All our attempts to generate double or multiple kinesin-5 Arabidopsis mutants
by CRISPR-Cas9 technology were not successful.

2.7. GFP-AtKRP125b Is Localized in the Nucleus and in the Cytoplasm

The lack of AtKRP125b promoter activity in mitotically active cells prompted us to
test for a putative subcellular localization of the AtKRP125b protein. For that purpose, we
infected Nicotiana benthamiana leaf pavement cells with Agrobacteria tumefaciens carrying
a CaMV-35S::GFP-AtKRP125b construct and detected the fluorescence by confocal laser
scanning microscopy. In contrast to the GFP control, which was distributed between the
nucleus and cytoplasm, the GFP-AtKRP125b fusion protein was exclusively found in the
nucleus (Figure 5a,b). To quantify the overlap of the signals, we calculated the square of
Pearson’s correlation coefficient (R2), which was 0.77 and 0.62, respectively, indicating high
signal agreement. In the next step, we were aiming to study the subcellular localization
in the native environment and transformed isolated Arabidopsis leaf cell protoplasts. A
strong GFP fluorescence was observed in a nuclear structure. The overlap with the applied
Hoechst 33342 signal, which stained DNA, confirmed that the GFP-AtKRP125b protein was
indeed localized to the nucleus (Figure 5c). In addition to this expected localization, a fluo-
rescence signal was present in the cytosol in about 50% of all protoplasts (Figure 5c), thus
indicating that AtKRP125b may also have a function outside the nucleus during interphase.
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Figure 5. GFP-AtKRP125b is localized in the nucleus and cytoplasm. (a) Fluorescent image of transient expressed GFP-
AtKRP125b (green) in Nicotiana benthamiana leaf pavement cells. The second image shows a merge of three channels:
GFP-AtKRP125b (green), bright field (grey) and chlorophyll autofluorescence (magenta). (b) Fluorescent image of transiently
expressed free GFP as a comparison to (a). Scale bars: 10 µm. (c) Co-localization of GFP-AtKRP125b and nucleus in
Arabidopsis thaliana mesophyll protoplasts. Images show transient expression of GFP-AtKRP125b (green), nuclei staining
with Hoechst 33342 (blue) and chloroplast autofluorescence (magenta). The upper images show a protoplast without
a signal in the cytoplasm. The lower images show a maximum intensity projection of a protoplast with an additional
GFP-AtKRP125b signal in the cytosol.

3. Discussion

Members of the kinesin-5 motor protein subfamily have a major function in the spindle
organization during mitosis in different organisms ranging from humans to plants [9].
Here, we demonstrated that the biochemical and biophysical properties of AtKRP125b,
one of four kinesin-5 proteins in Arabidopsis, were in line with a putative function in
spindle organization. Its intracellular localization in nucleus and cytoplasm may suggest
an additional function during interphase.

The ability to cross-link the spindle microtubules and thus to maintain the stability of
the mitotic spindle depends on the property of kinesin-5 proteins to bind to two different
microtubules at the same time and to displace them against each other. The tetrameric
nature of kinesin-5 allows the cross-linking of microtubules with its two pairs of motor
domains at each end. Though this function has been widely observed in all eukaryotes
and is well investigated in animals [5–7,11], it had not been demonstrated yet in vitro for
a kinesin-5 motor protein from plants. In the first step, we were interested to find out
whether AtKRP125b is a plus-end directed motor protein. Studies on the directionality
showed that most kinesin-5 proteins, which were localized in the midzone of the mitotic
spindle and were responsible for spindle elongation, were plus end-directed motor pro-
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teins. An exception is the two yeast kinesins Kip1 and Cin8, which were described as
bidirectional kinesins [22–24]. In the case of Cin8 bidirectionality is achieved by clustering
of multiple molecules. This bidirectionality may indicate a function of Cin8 unrelated to
the mitotic spindle [24]. In contrast, kinesin-5 from tobacco TKRP125 shows distinct plus
end-directed movement [10,25]. We performed gliding assays and found that AtKRP125
was capable of binding to microtubules and to move towards the plus-end of polarity-
marked microtubules (Figure 1a–c and Supplementary Movie S1). We determined the
velocity of gliding microtubule filaments to 17 ± 8.8 nm s−1 (mean ± SD, n = 504 total
transport events, Figure 1d). This relatively slow velocity was comparable to studies on
Eg5, showing that Eg5 moves at a velocity of ~20 nm s−1 [5]). Such slow velocities are
common for kinesins that work collectively in a cluster. These motor proteins are usu-
ally non-processive kinesins, because they distribute the resulting forces among several
motor proteins in the cluster and prevent the detachment of individual molecules [20].
Although it is not required to be processive to slide microtubules [26–29], we wanted to
know whether AtKRP125b is a processive motor, because such processivity might allow
more diverse functions, such as, for example, long range transport. Therefore, we examined
the processivity of AtKRP125b in addition to its directionality and velocity. Stepping assays
with FlAsH-labelled AtKRP125b revealed a surprisingly high processivity in the µm range
(Figure 2b,c). In addition, we have shown in sliding assays that AtKRP125b was indeed
able not only to cross-link microtubules but also to move anti-parallel aligned microtubules
along each other. Since AtKRP125b exerts force in both directions on microtubules as a
bipolar tetramer, one would expect the velocity of transported microtubules to be twice
as high as in the gliding assay. In similar in vitro experiments with Eg5, Kapitein et al. [5]
observed a doubling of the velocity in sliding assays (~40 nm s−1) compared to gliding
assays (~20 nm s−1) which suits the velocity of microtubules sliding apart at the equator of
the metaphase spindle in animals (~30–50 nm s−1) [30]. In contrast to that, the velocity in
the sliding assay with AtKRP125b was even slightly lower than the velocity in the gliding
assay. We cannot rule out the possibility that the low velocity is due to lack of posttransla-
tional modifications in the recombinant molecule, but we rather suspect that the unusually
high processivity is associated with the low velocity in the sliding assay. Cryo-EM structure
analysis revealed that the tail domain of one kinesin-5 tetramer interacts with the opposing
motor domain of a neighboring tetramer [31]. It has been shown that this interaction has a
significant impact on the ATP-binding of the motor domain. Thereby, the tail slows down
the ATP binding of the motor domain, resulting in a prolonged interaction between the
motor domain and microtubule, a slower velocity, and a higher processivity. The reduction
of velocity brings an increase of generated force in return (Shimamoto et al. 2015). Since
the plant spindle differs in structure from the spindle in animal cells, it is quite possible
that this additional force is a prerequisite for AtKRP125b to fulfill its canonical role in
the plant cell. In agreement with our data, AtKRP125c was also found to be associated
with microtubules and appears to play a central role in the mitotic spindle [11]. Barroso
et al. [32] demonstrated binding to microtubules for DcKRP120 from carrot (Daucus carota),
and Asada et al. [10] demonstrated for TKRP125 from tobacco that this protein moves along
microtubules toward their plus end. Both proteins appear to be primarily active during
mitosis [10,32]. Furthermore, it is also conceivable that AtKRP125b requires this additional
force for other functions unrelated to the mitotic spindle, especially since AtKRP125c is
also thought to have a role outside the mitotic spindle [11].

In order to support the notion of AtKRP125b functions in addition to the putative
role in the mitotic spindle, we determined the AtKRP125b promoter activity and the
intracellular localization of the gene product. Since the mitotic spindle is only formed in
cells undergoing cell division and these cells are located in mitotic tissue, we assumed to
find AtKRP125b promoter activity mainly in meristems. In fact, however, GUS staining
of AtKRP125b-promoter: GUS plants showed that the promoter was primarily active
in vascular tissue. We did not detect any activity in meristematic tissue (Figure 4). The
absence of AtKRP125b promoter activity in these regions may contradict our hypothesis that
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AtKRP125b has a role in the mitotic spindle. However, we cannot exclude the possibility
that not all regulatory elements were captured with the selected promoter sequence or
that mRNA produced in the vasculature may be transported into mitotically active tissues.
Previously, expression analyses indeed showed that the AtKRP125b transcript was present
in meristematic tissues and induced in mitosis [25]. The high basal level of AtKRP125b
transcript before the induction of mitosis may suggest that AtKRP125b is expressed already
in interphase and has a function that is beyond mitosis [25]. This was supported by
the detection of GFP-AtKRP125b fusion proteins not only in the nucleus, but also in the
cytoplasm (Figure 5). Future experiments will show whether this dual localization is due
to shuttling of AtKRP125b between cytoplasm and nucleus or whether AtKRP125b has an
additional function during interphase. Such functions outside the mitotic spindle have
already been described for animal homologs of kinesin-5. Thus, human Eg5 plays a role in
the transport of neurotrophins and neurotransmitter receptors in neurons [33]. Falnikar
et al. [34] found that when Eg5 is inhibited in migrating neurons, their velocity is increased,
but their movement is less directed. Eg5 transports short microtubules along the axons of
migrating neurons. When Eg5 is inhibited, the frequency of transport is reduced [34]. In
Drosophila melanogaster, kinesin-5 Klp61F transports proteins from the Golgi complex to the
cell surface in non-mitotic cells [35]. A similar function for AtKRP125b in non-meristematic
tissue would be possible. However, this needs to be investigated by further experiments.
Not only in animal cells, but also in plant cells, the localization of kinesin-5 indicates a
role outside the mitotic spindle. Inhibition of TKRP125 leads to inhibition of translocation
of phragmoplast microtubules in tobacco BY-2 cells [10]. In addition, TKRP125 is present
along cortical microtubules during S phase [10]. Based on the ability of AtKRP125b to
cross-link and counter-shift microtubules, we hypothesize that AtKRP125b is involved in
such processes. Kinesin-4 FRA1 is involved in cell wall assembly and appears to play a
role in the organization of cortical microtubule networks [36]. Involvement of kinesin-5 in
these processes has not yet been investigated but seems possible to us.

Taken together, our in vitro data showed that on the molecular level AtKRP125b dis-
plays the canonical properties of a kinesin-5 motor protein. The localization of AtKRP125b
in the nucleus and cytoplasm, as well as the missing promotor activity in meristematic
tissue, open the possibility for additional functions beyond the spindle elongation for
kinesin-5 proteins in plants.

4. Material and Methods
4.1. Protein Expression, Purification, and Labelling

For the expression plasmid, AtKRP125b cDNA was cloned into the pFastBac1-vector
(Invitrogen, Waltham, MA, USA) by using overlap extension PCR cloning [37]. In the
cloning procedure, a His-tag and tetracystein-tag were added, respectively. After expression
in High Five Cells (BTI-TN-5B1-4), recombinant His-tagged protein was purified via metal
affinity chromatography (HisTrap by GE Healthcare, Chalfont St Giles, UK), snap-frozen in
liquid nitrogen, and stored at −80 ◦C or used immediately. Microtubules were purified and
polymerized as described before [38,39]. Polarity-marked microtubules were polymerized
as described previously [40]. Cy5-labelled tubulin was used to prepare the seeds and
Dylight 594-labelled tubulin for the elongation, resulting in Dylight 594-labelled plus ends.
Digoxigenin-labelled microtubules were prepared as described previously [39] using a
mixture of digoxygenin-labelled tubulin and Cy5-labelled tubulin in a 1:5 ratio.

4.2. In Vitro Motility Assays

Microscope flow chambers were constructed as described previously [41]. Gliding
and stepping assays were performed as described before [42,43]. AtKRP125b was stained
with 1 µM FlAsH-EDT2 [44] for one hour on ice before imaging stepping assays. For the
sliding assay, digoxigenin-labelled microtubules were immobilized on the glass surface
with digoxigenin antibodies (Roche, Basel, Switzerland). Full-length AtKRP125b was
injected into the flow chamber and attached to the digoxygenin-labelled microtubules.
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Unbound motor protein was washed out after short incubation with BRB80 pH 6.9 con-
taining 0.01 mM Taxol. Then, short Dylight 594-labelled microtubules were injected and
washed out after short incubation. All motility assays were performed at 28 ◦C in BRB80
pH 6.9 supplemented with 1 mM ATP, 10 mM DTT, 10 µM Taxol and 1 mM n-propyl gal-
late [45]. Fluorescently labelled microtubules were visualized with epi-illumination under
a fluorescence microscope (TI-E, Nikon, Tokyo, Japan) at 564 nm or 640 nm, respectively.
Single FlAsH-stained AtKRP125b molecules in stepping assays were excited with 488 nm
TIRF illumination. Positions of microtubule filaments and single motor protein molecules
were tracked with the FIESTA software [46], and velocities were analyzed using MatLab
(Mathworks, Natick, MA, USA).

4.3. Analysis of Promoter Activity

For cloning of the AtKRP125b-promoter GUS construct we amplified 847 bp in front of
the start codon of AtKRP125b from genomic DNA by PCR with primers Kin5_GUS-fw (CAC-
CGTGTTTCCTAGCCTTCTTTT) and Kin5_GUS-rev (GAACGGACGGCGAATCCAGTGAGA)
and cloned the derived fragment into pMDC163 using TOPO PCR-Cloning (Invitrogen,
Waltham, MA, USA). Agrobacteria tumefaciens C58C1 cells were transformed with this
plasmid and painted onto flowers and buds of Arabidopsis thaliana plants as previously
described [47]. Transformed offspring was identified by hygromycin selection [48]. We
identified five independent GUS-positive plant lines that showed a distinct signal after
staining in X-Gluc solution for 90 min.

4.4. Plant Material and Growth Conditions

If not stated otherwise, all plants were grown either on soil or Murashige and Skoog
media (MS, Duchefa, Haarlem, The Netherlands) supplemented with 0.8% phyto agar
(Duchefa) and 1% sucrose in growth chambers at 22 ◦C under long-day conditions (16 h
light, 8 h dark). To examine Arabidopsis thaliana roots, seedlings were grown at 22 ◦C and
17 ◦C in a vertical position for seven days under long-day conditions (16 h light, 8 h dark)
and afterwards shifted to new plates to ensure that the roots grew on top of MS media.
The roots were exposed to light during growth on MS medium. 72 plants of each line were
examined. The T-DNA alleles of atkrp125b-1 (GK011.H10) and atkrp125b-2 (SALK_152139)
were received from the Nottingham Arabidopsis Stock Centre.

4.5. Subcellular Localization

A GFP-fusion construct was generated by cloning AtKRP125b from cDNA into pMDC43
using TOPO-PCR cloning (Invitrogen). Protoplasts from Arabidopsis thaliana mesophyll cells
were prepared as previously described [49] and transformed, using 20 ng of plasmid DNA.
Additionally, the construct was inserted into A. tumefaciens C58C1 and then transformed
into N. benthamiana leaves [50]. These procedures were repeated 3 times. All imaging of
subcellular localization was captured with a confocal laser scanning microscope (TCS SP8,
Leica, Wetzlar, Germany). GFP fluorescence was visualized using an argon laser at 488 nm
for excitation and an emission window of 502–512 nm. Hoechst 33342 was visualized with
an excitation of wavelength of 405 nm and an emission window of 445–465 nm, whereas
chlorophyll autofluorescence was detected in an emission window of 660–675 nm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111361/s1.
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