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Abstract: Alzheimer’s Disease (AD) is the most common neurodegenerative disorder in our society,
as the population ages, its incidence is expected to increase in the coming decades. The etiopathology
of this disease still remains largely unclear, probably because of the highly complex and multifactorial
nature of AD. However, the presence of mitochondrial dysfunction has been broadly described
in AD neurons and other cellular populations within the brain, in a wide variety of models and
organisms, including post-mortem humans. Mitochondria are complex organelles that play a crucial
role in a wide range of cellular processes, including bioenergetics. In fact, in mammals, including
humans, the main source of cellular ATP is the oxidative phosphorylation (OXPHOS), a process
that occurs in the mitochondrial electron transfer chain (ETC). The last enzyme of the ETC, and
therefore the ulterior generator of ATP, is the ATP synthase. Interestingly, in mammalian cells, the
ATP synthase can also degrade ATP under certain conditions (ATPase), which further illustrates
the crucial role of this enzyme in the regulation of cellular bioenergetics and metabolism. In this
collaborative review, we aim to summarize the knowledge of the presence of dysregulated ATP
synthase, and of other components of mammalian mitochondrial bioenergetics, as an early event
in AD. This dysregulation can act as a trigger of the dysfunction of the organelle, which is a clear
component in the etiopathology of AD. Consequently, the pharmacological modulation of the ATP
synthase could be a potential strategy to prevent mitochondrial dysfunction in AD.

Keywords: mitochondria; mitochondrial dysfunction; Alzheimer’s disease; ATPase; ATP syn-
thase; OXPHOS

1. Introduction

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder and the
leading cause of dementia in the world. In fact, AD affects around 35 million people
worldwide and because of the aging global population, the incidence of this pathology
is expected to only increase in the coming decades [1]. AD presents in patients with a
wide range of symptoms. Some of the earliest symptoms of the disease are memory loss
and cognitive decline [2,3]. Over time, AD deleteriously affects other regions of the brain,
including the cerebral cortex, which will induce difficulties in speech and reasoning, as
well as behavioral alterations in patients [4]. This strongly burdens the health span of
patients, and will ultimately cause their death, either directly or through complications
associated with the disease.
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Interestingly, the main symptoms and the basic etiopathology of AD are mostly
common to both the early-onset (before age 60 approximately) and the late-onset (after age
60 approximately) forms of the disease [5]. Furthermore, both forms of AD share some
common molecular features, including the presence of specific alleles of apolipoprotein
E (ApoE), and decreased levels of the intact postsynaptic protein neurogranin [6]. While
early-onset AD is a consequence of mutations in some specific genes, including those
coding for presenilin 1 and 2 (PSEN1 and PSEN2, respectively), and the amyloid precursor
protein (APP) [7,8], this type of AD is associated with the familial forms of the disease.
Late-onset, which represents approximately 90–95% of cases of AD, is associated with the
sporadic forms of the disease [9]. The focus of this review is sporadic AD; therefore, we
will refer to this type of disease as just AD.

AD is a multi-causal and highly complex disease, whose exact etiology remains still
mostly unknown. Although increased age is the greatest risk factor for the development of
the pathology, aging is not considered the exclusive cause of AD, there are a variety of other
risk factors including but not limited to family history of AD, gender, ethnicity/race [10].
For example, AD appears to disproportionally affect women. In fact, women are two-thirds
more likely to develop AD than men [10,11]. Women live longer than men on average,
which elevates their risk for AD. Differences in the presence of AD have also been observed
between races and ethnicities. Accordingly, African Americans, when compared to non-
Hispanic Caucasians, are twice as likely to develop AD; and Hispanic individuals are
between one and a half times more likely to develop AD when compared to non-Hispanic
Caucasian Americans [10,11]. The causes for these differences in the incidence of AD
in individuals from different genders, races, and ethnicities remain mostly unknown,
even if it has been proposed that it could be tied to health disparities, such as those that
increase the risk of cardiovascular disease, more than to specific mutations [10,11]. Based
on all this, conducting research in the field of AD aimed to advance our knowledge of the
etiopathology of the disease is not only a way to improve people’s health spans, but it is
also a powerful tool to decrease inequities.

As previously mentioned, the etiopathology of AD remains unclear. However, a few
molecular features of this etiopathology have been identified. For example, the analysis of
postmortem brains has identified some common hallmarks of AD, which include but are
not limited to the presence of increased amyloid plaques, neurofibrillary tangles (NFTs),
synaptic dysfunction, and inflammation [12–15]. The most common component of the
amyloid plaques is the aggregated form of amyloid β (Aβ), which, in AD, accumulates
within the brain, both intra- and extra-cellularly. Specifically, intracellular neuronal accu-
mulation of Aβ, as well as in other brain cell types including astrocytes, and microglia;
has been broadly demonstrated in both animal models and human samples [12,16–21]. Aβ
is derived from the breakdown of APP by the enzymes γ-secretase and β-secretase [22],
and its neuronal accumulation, increase, and ultimately cell death [23]. The mechanism
underlying this rise in cell death is complex and multifactorial. For example, the increased
extracellular presence of the aggregated peptide inhibits the communication between dif-
ferent cellular populations within the brain, which contributes to the disruption or the
degradation of synapsis, ultimately contributing to increased apoptosis, which is the most
common cause of cell death in the brains of AD patients [24]. Moreover, intracellular
NFTs are formed by aggregated and phosphorylated tau and α-Synuclein (αSyn) amyloids,
among other proteins [25,26]. The synergic and deleterious effects of these two proteins
have already been demonstrated [27]. In fact, the presence of insoluble and aggregated tau
and αSyn is associated with a decline in neural function [28–30]. However, the mechanism
underlying these synergic effects is still not well-understood.

At the cellular level, the effects of AD in the central nervous system are observed
several years before the appearance of the symptoms in the patients [31] (Figure 1). One
of the most prevalent of these early features of AD is the presence of mitochondrial dys-
function in diverse cellular types, including astrocytes and neurons [32–34]. Interestingly,
the dysregulation of the organelle has also been demonstrated in other neurodegenerative
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disorders and aging [35–39]. In the case of AD, it has been proven that mitochondrial
dysfunction precedes the onset of the main symptoms of the disease [40]. Therefore,
mitochondrial-addressed strategies have been widely proposed in AD, and some of them
have proven to have a positive effect against a part of the cellular effects and symptoms
of AD, in diverse cellular and animal models. For instance, the use of antioxidants sup-
presses the AD-like pathology progression [41]. Furthermore, the inhibition of Drp1, which
is the main protein involved in mitochondrial fission [42], decreases dementia, among
other molecular hallmarks of AD, including Aβ deposition [43]. Additionally, the use of
mitochondrial carbonic anhydrase inhibitors showed a positive effect against Aβ-induced
cellular damage [44,45].
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Figure 1. Mitochondrial dysfunction is an early, crucial component of cell death in AD. Dysregulated
OXPHOS, including the dysfunction of the ATP synthase, induces decreased ATP production and
increased ROS. This will ultimately lead to a rise in the rates of apoptotic cell death not only in
neurons but also in other cell types in the central nervous center. The increased death of cells will
induce serious damage in the brains of the patients, which correlates with the symptoms of the
disease. Interestingly, mitochondrial dysfunction, including dysregulated OXPHOS, is an early event
in AD, preceding the accumulation of Aβ and the presence of NTFs. ↑ upregulated; ↓ downregulated.

One of the main components of mitochondrial physiology is the maintenance of an
appropriate bioenergetics status. Accordingly, dysregulated bioenergetics is well described
in AD [46–49]. While extra-mitochondrial pathways are also involved in mammalian
cellular bioenergetics, the main source of ATP in these organisms is mitochondrial oxidative
phosphorylation (OXPHOS) [50]. Dysregulated bioenergetics is especially deleterious for
cells in the brain, as neurons and other brain cells are highly metabolically active and
consequently, highly energy dependent. For example, one single resting cortical neuron
utilizes approximately 4.7 billion ATP/sec [51]. Thus, dysregulated bioenergetics will
dramatically affect neuronal populations, the main contributor of increased neuronal cell
death in AD. Moreover, the electron transport chain (ETC), the site of OXPHOS, is the
main contributor to increased generation of reactive oxygen species (ROS), which is a
key contributor towards oxidative stress and another hallmark of AD in neurons, which
contributes to the increased cell death present in these cells [52].
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The mammalian ETC consists of five complexes, along with the transporters ubiquinone
and cytochrome C [53]. All five complexes are encoded by both nuclear DNA and mi-
tochondrial DNA (mtDNA), except complex II, which is exclusively encoded by nuclear
DNA [53–55]. Human complex V, which is also known as the mitochondrial ATP syn-
thase, is ultimately responsible for the production of ATP through the phosphorylation
of ADP [56]. Mammalian ATP synthase is composed of two functional domains, F1 and
F0, which are located in the mitochondrial matrix and the inner mitochondrial membrane,
respectively [57,58]. The F0 subunit is a rotatory proton channel, which also ensures proper
anchorage, and stabilization of the F1 subunit [59]. While F0 is composed of diverse smaller
components, the F1 domain is ultimately responsible for the synthesis of ATP [57]. When
isolated from mitochondria, and thus uncoupled from the proton gradient, this subunit is
known as F1-ATPase, as it catalyzes the hydrolysis of ATP [60]. The molecular composition
of the F1 subunit is α3β3γδε [61]. Moreover, the oligomycin sensitivity conferral protein
(OSCP), is usually also associated with the ATP synthase, which is located in the upper part
of the peripheral stalk [62,63]. Interestingly, dimers of the mammalian ATP synthase have
also been demonstrated to be components of the mitochondrial permeability transition
pore (mPTP) [64], a structure not only crucial for apoptosis, but also for cell survival [65,66].

The dysfunction of diverse complexes of the ETC has been described in a wide variety
of pathological scenarios, including in AD. Specifically, the dysregulation and dysfunction
of the mitochondrial ATP synthase have been described as one of the cellular hallmarks
of this disease, as it is corroborated by a vast bibliography, which we aim to critically
review in this manuscript [40,67–80]. It is our humble opinion that further research should
be conducted in this field to better validate mitochondrial bioenergetics in general, and
more specifically the mammalian ATP synthase, as a pharmacological target to prevent the
cellular dysfunctions present in AD. This could significantly contribute towards decreasing
cellular damage, including at the mitochondrial level, which is present in neurons and
other cellular populations in AD patients, and hopefully, to prevent or decrease the extent
of the symptoms of this terrible disease.

2. ATP Synthase Dysfunction in AD

As mentioned above, the dysregulation of the F1F0 ATP synthase has been broadly pro-
posed in different cellular populations of both patients and rodent models of AD [40,67–78].
In fact, it has been described that Aβ plaques can directly affect the functioning of complex
V [73]. However, many other mechanisms may be involved in the dysregulation of the
ATP synthase which is present in AD. For instance, Terni et al. showed that the α subunit
of the ATP synthase from the entorhinal cortex of postmortem brains of AD patients has
shown to be lipoxidized, due to the increased presence of oxidative stress in these samples,
when compared with age-matched samples [71]. Consequently, the same authors have
shown that the activity of the ATP synthase was decreased by approximately 30% in the AD
samples when compared with control samples. Interestingly, the activity of the complex
I of the ETC remained unaffected. These effects were observed even at Braak stages I/II
of AD, which are considered early, clinically silent stages of the disease and character-
ized by tauopathy on the entorhinal and transentorhinal cortices [81]. Interestingly, using
self-developed antibodies against insoluble AD brain lesions and human brains which
were donated by AD patients, some authors have detected increased accumulation of
mitochondrial α subunit of the ATP synthase in the cytosol of AD degenerating neurons,
which demonstrates substantial changes in the metabolism of this protein in AD. This accu-
mulation was present even at the early stages of the disease [68]. The same authors showed
that this subunit is observed in degenerating neurons either alone or tightly associated
with aggregated tau.

The β subunit of the ATP synthase has also been shown to be negatively affected in
AD. For example, Tsuji et al., using quantitative proteomic analysis, found that proteins
related to the mitochondrial energy metabolism were affected in human brains obtained
from AD patients [15]. Specifically, they showed that the β subunit of the ATP synthase
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was upregulated in these samples, while the presence of the α chain was decreased. The
authors suggest that this phenotype could be a crucial component underlying bioenergetics
dysregulation in AD. Moreover, using rat cortical primary cultures, a group of authors
showed inhibition of the ATP synthase activity and as consequence, increased production
of superoxide anion, oxidative damage in complex I of the ETC, mitochondrial membrane
depolarization, and ultimately, increased apoptotic cell death in the AD rats, when com-
pared with the control animals. The authors described that this inhibition is a consequence
of the dissociation of the anti-apoptotic protein B-cell lymphoma extra-large (Bcl-xL) from
the β subunit of the ATP synthase [75]. Moreover, they showed that the mechanisms
underlying this dissociation involve the accumulation of cyclin B1 in the areas of the brain
affected in AD, due to the inactivation of the anaphase-promoting complex/cyclosome
(APC/C)-cadherin 1 (Cdh1), which causes stabilization of cyclin B1, ultimately increasing
cell death. Mitochondrial accumulation of B1 binds and activates the cyclin-dependent
kinase-1 (Cdk1), forming a B1-Cdk1 complex in the organelle, which phosphorylates Bcl-xL,
thus dissociating this protein from the β subunit [75]. Furthermore, Chou et al., using
proteomics assays conducted in the cortices of the triple transgenic strain of AD mice
(3xTg-AD) and littermate controls, showed an increased presence of the β subunit of the
ATP synthase in the mutant mice, compared with the control animals, when they were
analyzed using BN/SDS-PAGE 2D-DIGE [82]. The same authors described similar effects
in other subunits of the ATP synthase, as well as downregulation of some complexes of
the mitochondrial NADH-ubiquinone oxidoreductase. Dysregulation of the β subunit of
the ATP synthase, as well as of other subunits of this enzyme and some other enzymes
related to OXPHOS, such as the mitochondrial superoxide dismutase 2 (SOD2), was cor-
roborated in the same manuscript, using IEF/SDS-PAGE2D-DIGE. The authors of this
study proposed that the upregulation of the proteins that are also dysregulated could be a
compensatory mechanism. Differences in the results from this study and the previous one
could be related to the specific type of samples that were used (human vs. mice models), as
well as to the specific areas in the brain that have been addressed by each study.

Not only the presence of the different protein components of the ATP synthase but
also the levels of the mRNA are affected in AD. For example, it has been shown that the
number of mRNA transcripts coding for the ATP synthase β-subunit in nuclear DNA,
which is one of the subcomponents of the F1, is decreased by 50–60% in the mid-temporal
cortex of AD patients, but not in primary motor cortices. Interestingly, mRNAs coding
for other components of OXPHOS in both nuclear and mtDNA were also decreased in
these samples [83]. However, there is some controversy regarding this last point. In fact, a
group of authors, using cerebral cortices and cerebellums from 2-, 5-, and 18-month-old
APP transgenic mice (Tg2576), have shown the upregulation of mRNA expression of some
mitochondrially encoded genes which are involved in mitochondrial energy metabolism.
They have also proven that this upregulation increases as the age of the animals increases.
The authors suggest that this could be a compensatory response to the damage induced in
mitochondrial energy metabolism by the APP and/or Aβ [84]. This data is corroborated by
other studies in which the authors used human brains obtained from AD patients [69,85].

As previously mentioned, different studies have shown that the mitochondrial ATP
synthase is not only structurally affected in AD, but also that its regulation is compromised
in this pathology. For example, using animal models, some authors have demonstrated
increased expression of Cyclophilin D (CypD), which is a mitochondrial protein, in aging
and AD, where it promotes ATP synthase dysfunction [77]. These results were corroborated
and expanded by other authors, who showed that CypD deficiency attenuated ATP syn-
thase dysregulation, restoring bioenergetics, via interaction with the oligomycin-sensitivity
conferring protein (OSCP) [76,78]. OSCP is a protein that is located in the peripheral stalk
of the ATP synthase, providing structural stability to this enzyme [86]. While the expression
of OSCP has been demonstrated to decrease with aging, the interaction between CypD and
OSCP increases with aging, most likely due to the increased expression of CypD [77,78].
Interestingly, the decreased presence of OSCP in AD seems to be independent of the ex-
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pression of the different subunits of the ATP synthase, as demonstrated using 5XFAD
mice and mitochondria isolated from synaptic and non-synaptic cells [76]. Specifically, the
CypD/OSCP interaction has been demonstrated to lower OXPHOS activity by uncoupling
the F1F0 subunit of the ATP synthase, which increases oxidative stress via increased su-
peroxide production, and ultimately triggers the formation and the opening of the mPTP
in the cellular populations in the brains of patients of AD [76,77]. These effects might be
induced by the direct interaction between Aβ and OSCP, which has been demonstrated in
models of AD [76,78].

Moreover, the cellular signaling system involved in sensing glucose, and therefore,
the activation of the ATP synthase, has also been demonstrated to be dysregulated in AD.
For example, suppressed O-GlcNAc (glycosylation with O-linked β-N-acetylglucosamine)
has been proven in diverse models of AD [74]. Glycosylation of the α subunit from the
ATP synthase by O-GlcNAc is a signal for the enzyme to activate ATP production [74].
The same authors demonstrated that the mechanism underlying this process is the direct
binding between Aβ and the ATP synthase, which inhibits the direct interaction between
the α subunit of the enzyme and the O-GlcNAc transferase. Additionally, they have also
proven that the treatment with pharmacological inhibitors of the O-GlcNAcase was able to
rescue the impairment of ATP production. Moreover, the deleterious effects of decreased
O-GlcNAc on tau pathology have also been corroborated using cellular models of AD [87].
O-GlcNAc is a post-translational modification that adds an N-acetylglucosamine moiety
to serine or threonine residues in target proteins that contain an O-glycosidic bond, has
been demonstrated to be a glucose sensor [88]. The mechanism underlying this sensing
system involves uridine diphosphate-N-acetylglucosamine, which is a natural source of
O-GlcNAc, and it is produced from extracellular glucose by the hexosamine biosynthetic
pathway [89].

3. Dysregulation of Other Complexes of the ETC in AD

As previously mentioned, ETC is formed by five complexes, and the function of all of
them is closely inter-connected. Consequently, dysregulation of complexes other than the
ATP synthase has also been described in AD. In fact, decreased expression of genes coding
for OXPHOS, especially of those involved in complex I, has been demonstrated in AD.
Furthermore, the synergic effects of aggregated Aβ and tau to reduce overall mitochondrial
function have also been proven by Rhein et al. [90]. The authors of this study demonstrated
that tau is specifically responsible for the early bioenergetic dysfunction, present in Braak
stage I/II. This increases the vulnerability of mitochondrial proteins to damage by Aβ in
the late stages of AD. Lastly, Aβ plaques have also been shown to be per se an inhibitor of
complex IV via decreased ability for affected neurons to depolarize [91].

The literature is rich with examples that show the presence of defects in the diverse
complexes of the ETC in AD. For example, some authors have shown that tau tangles,
which are formed during AD, are associated with a 31% decrease in the activity of complex
I [92,93]. Moreover, other authors have demonstrated that approximately one-third of
the proteins associated with cytochrome C oxidase (COX), which is complex IV of the
ETC; as well as the levels of NADH, which is a substrate for complex I, have both been
shown to be reduced due to the accumulation of aggregated Aβ in AD [94–97]. In fact,
the joint dysregulation of complex II and IV in AD has been proven [90]. Additionally,
Adav et al. showed in a quantitative proteomic study which was conducted comparing
temporal cortices which were obtained from AD patients and age-matched controls, the
deleterious effects that the progression of AD plays in the dysregulation of mitochondrial
bioenergetics [98]. The authors of this in-depth study showed results spanning across ETC
complexes I through V. Although all the complexes were affected, the authors found the
degree of this affection to be greater in the subunits of complex I. Interestingly, the effects
of the dysregulation of the coupling of complex I with the rest of the components of the
ETC have also been shown to have a deleterious effect on the synthesis of ATP which is
present in AD [93]. Accordingly, complex I deficiencies have been shown to correlate with
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complex V dysfunction, with the consequent decreased production of ATP and increased
generation of ROS [92]. Interestingly, increased ROS has been demonstrated not only in AD
but also in general aging [35]. In addition, Reddy et al., using postmortem brains which
were obtained from AD patients, showed downregulation of mRNA coding for complex
I of the ETC in these patients. However, in accordance with other previously mentioned
studies [84], complexes III and IV were upregulated in these samples, when compared
with the samples obtained from healthy individuals. The data also showed differential
expression of ATPase δ-subunit in AD patients. These changes were present even in brains
obtained from early-stage AD patients. The authors, however, recognize a large intra-
personal variation in the data between the different individuals and suggest conducting
further studies to increase the sample size [69]. Lastly, it has been demonstrated that the
dysregulation of COX, which leads to a decline in ATP production as previously mentioned,
also leads to decreased mitochondrial membrane potential, which will, ultimately, increase
apoptotic cell death [99,100]. The effects of AD in COX have been described within the
neurons in the hippocampus, which is one of the areas of the brain where a higher number
of senile plaques and NFTs accumulate [101,102]. In fact, it has been demonstrated that
there is a 35–40% decrease in the activity of COX in hippocampi from AD patients when
compared with age-matched individuals [67]. These results were corroborated in animal
models, where decreased COX activity because of the treatment with the Aβ25-35 peptide
was found in rats, as well as in the hippocampi of mice as a consequence of the increased
presence of Aβ plaques [15,91,103]. Accordingly, other authors also showed decreased
levels of the mitochondrially-coded COX subunits I and III in the association cortex from
AD patients, again when compared with age-matched controls [69,85,104].

The close and deleterious interconnection between increased production of ROS
and mitochondrial dysfunction, including bioenergetics dysregulation, has been broadly
demonstrated in both human and animal models of AD [90,105–109]. Specifically, increased
oxidative stress negatively affects the integrity of mtDNA (including base mispairing,
random point mutations, and deletions), and the status of protein homeostasis, damaging
the complexes of the ETC and dysregulating mitochondrial bioenergetics, in a vicious
cycle which ultimately induces increased apoptotic cell death [110–113] (Figure 2). For
example, various researchers have hypothesized that the mechanism affecting COX in
AD involves ROS. Specifically, it has been proven that this complex is very sensitive to
changes in the fluidity and the composition of the membrane lipids. This is because some
of these lipids, including cardiolipin, phosphatidylcholine, and phosphatidylethanolamine,
are essential for the functioning of this subunit [114]. Under situations where a rise in
ROS generation is present, these lipids can be peroxidated, which will ultimately affect the
activity of complex IV [115]. Accordingly, decreased activity of complex IV and increased
lipid peroxidation has been found in various samples, including brains obtained from
patients of AD [116–118]. At the same time, this affection of complex IV increases the
generation of superoxide by complexes I–III [119]. Interestingly, Aβ aggregates also have
been shown to directly interact with the lipidic membranes [120]. In fact, Aβ has been
demonstrated to induce intracellular accumulation of hydrogen peroxide and/or lipid
peroxide in models of AD [84,121], which prolonged presence in neurons and other cellular
populations in the brain will ultimately result in cellular oxidative damage. Interestingly,
Kawamoto et al. demonstrated that the massive increase in the production of ROS that is
produced in AD is not only present in neurons and brain cellular populations, but also
in other cells, including platelets and erythrocytes [70]. Lastly, Korolainen et al. found
decreased levels of oxidation in proteins from brains obtained post-mortem from AD
patients when compared with control, aged-matched brains [122]. This for example was
the case with the mitochondrial glutamate dehydrogenase. The authors of this study
proposed that these findings do not contradict the bibliography suggesting a crucial role
for ROS in the cellular damage observed in AD. They, in fact, suggest that their findings
could be a co-existing compensatory post-transcriptional response [122]. Interestingly, in
the same study, the authors show increased expression of the β subunit of the ATP synthase
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in the AD samples, when compared with control samples. However, no changes in the
oxidative status of this protein were described.
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Figure 2. Mitochondrial dysfunction is present at different levels in mitochondria, in a deleterious
cycle which increases the damage to the organelle and the cells in AD. Dysregulation of the mitochon-
drial ATP synthase is present in neurons and other cellular populations in the brains of AD patients.
This dysregulation will further contribute towards bioenergetics dysfunction and the consequent
increased production of ROS. That rise in the levels of ROS is one of the main causes underlying the
damage present in AD in the mtDNA, which will further affect the expression and the activity of the
ATP synthase, starting the deleterious cycle again.

Some pharmacological approaches have been proposed to counteract or to prevent
bioenergetics dysfunction in AD, with the hope of decreasing the cellular damage that is
present in this condition. For instance, some studies conducted in various models have
shown that decreased levels of complex IV activity, which is closely related to the ATP
synthase, lead to reduced NADH oxidation [123]. Based on these findings, some authors
have proposed the oral treatment with NADH, or even with the dehydrogenated form of
this molecule (NAD+), as a pharmacological tool in AD [124,125]. Additionally, the use of
small molecules to modulate complex I has also demonstrated protective effects against
cognitive decline in various mice models, extending their lifespan [126,127]. Moreover,
some authors have proposed to mitigate neuroinflammation as a pharmacological tool in
AD [128]. Interestingly, COX plays a crucial role in the regulation of neuroinflammation
in mammals [129]. Furthermore, the regulation of the cellular secretion pathways and
exocytosis, which are closely related to the bioenergetic status of the cells, have also
been proposed as a pharmacological strategy in AD [130]. Lastly, using mice models
of AD (APP/SEN1) where increased production of ROS has been demonstrated, Dixit
et al. showed that while the deficiency of ascorbate, which is a well-known antioxidant,
exacerbates mitochondrial oxidative stress as expected, the supplementation with this drug,
not only mitigates the generation of ROS, but it also prevents mitochondrial membrane
depolarization and, therefore, bioenergetics dysregulation [131].
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4. Mitochondrial Calcium Homeostasis

Mitochondrial calcium homeostasis is closely related to the bioenergetic status of
the cells, as well as to the opening of the mPTP [132], which is a crucial structure in cell
fate, including apoptosis. The concentration of resting mitochondrial calcium, which
is usually higher than the cytoplasmic concentration of the cation, has been defined as
approximately 100–200 nM, even if it considerably increases when calcium signals are
activated [133–135]. Intramitochondrial calcium is crucial in the production of ATP by
activating the dehydrogenase enzymes within the organelle, including those involved in
the tricarboxylic cycle, which leads to increased levels of NADH and ATP generation [136].
While mitochondrial-free calcium homeostasis still remains poorly understood, it has
been proposed that inorganic polyphosphate (polyP) could play a key role in this pro-
cess [137,138]. Interestingly, polyP has also been demonstrated to be crucial in mammalian
bioenergetics [47], including the regulation of the mPTP [65,139], as well as in the physi-
ology of the endoplasmic reticulum (ER) [140]. Furthermore, this polymer has also been
proposed to have a protective role in neurodegenerative disorders, including AD [48,49].

Dysregulated mitochondrial calcium homeostasis has been broadly described in AD.
For example, in a study conducted using cytoplasmic hybrid (cybrid) cell lines obtained
from AD patients, Sheehan et al. showed decreased ability to buffer increasing cytoplasmic
calcium concentrations by mitochondria in these samples, compared with the cells cybrids
which were prepared from control patients. This dysregulated calcium homeostasis will ul-
timately induce mitochondrial dysfunction, increased ROS production, mtDNA mutations,
and apoptosis [141]. In fact, as previously mentioned, mitochondria have been shown
to be a direct site for the accumulation of aggregated Aβ in the neurons of both animal
models of AD and samples obtained from patients of the disease. One of the mechanisms
that can explain the cytotoxicity of the peptide involves the mechanisms of the calcium
transfer from ER to mitochondria, which has been demonstrated in various models of
AD [142–145]. Specifically, Boyman et al. showed that the content of the mitochondrial
calcium uniporter (MCU), a structure that allows calcium to flow from the ER to mitochon-
dria [146], significantly increases in fibroblasts obtained from AD patients, when compared
with healthy age-matched individuals [147]. The same authors demonstrated that this
increased presence of MCU further causes mitochondrial calcium levels in the organelle to
increase. In fact, the pharmacological blockage of MCU has been proposed as a therapeutic
strategy against AD, to prevent mitochondrial calcium uptake from the ER. For example,
the use of Ruthenium 360, which is a well-known inhibitor of MCU, prevented Aβ-induced
mitochondrial calcium overloading [143].

The interaction between mitochondria and ER in mammalian cells is mediated by
the mitochondria-associated ER membranes (MAMs) [148]. MAMs play a crucial role not
only in calcium homeostasis but also in the regulation of lipid synthesis, mitochondrial dy-
namics, energy metabolism, cell survival, and apoptotic signaling [142,145]. Interestingly,
using mammalian cells, Area-Gomez et al. demonstrated that in AD models there is an
upregulation of MAM activity, which elevates the crosstalk between mitochondria and ER,
deleteriously affecting mitochondrial calcium homeostasis [149]. Moreover, the upregula-
tion of MAM-associated proteins, which increases the number of ER-mitochondria contact
points, as well as the MAM-associated protein expression in the primary hippocampal
neurons extracted from postmortem human samples from AD patients and from transgenic
models of the diseases, has also been demonstrated [142,145]. These effects were observed
even before the presence and development of Aβ plaques and NTFs. Lastly, it is of note
that the effects of dysfunctional MAMs are not only present in neurons, but also in other
cellular populations where mitochondrial dysfunction has been described in AD, such as
the case of human fibroblasts. In fact, Supnet et al. have found that fibroblasts obtained
from AD patients present a significant increase in cytosolic calcium levels when compared
to healthy age-matched controls after treatment with thapsigargin [150], which is a drug
that allows for the release of calcium from the ER stores, which induces mitochondrial
calcium accumulation [151]. The use of this drug has been shown to induce the opening of
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the mPTP, depolarize mitochondria, and ultimately activate apoptosis [152]. In another
study, which was conducted using fibroblasts from AD patients, Gibson et al. showed
that after the treatment with thapsigargin, the mitochondrial length, membrane potential,
and buffering capacity were significantly reduced in the samples obtained from the AD
patients, when compared to fibroblasts obtained from young and healthy individuals [153].

As previously mentioned, the accumulation of calcium in mitochondria triggers
the formation and the opening of the mPTP [132], which is a structure closely related
to apoptosis. Therefore, dysregulated mPTP has also been demonstrated in AD. For
example, using human fibroblasts from AD patients, some patients have shown that the
opening of the mPTP is a crucial contributor towards increased mitochondrial dysfunction
in these samples when compared with fibroblasts isolated from age-matched control
individuals [147]. Moreover, Perez et al. demonstrated the full and permanent opening
of the mPTP in fibroblasts obtained from AD patients when compared with fibroblasts
obtained from healthy, age-matched individuals [147]. The same authors, propose that the
opening of the mPTP is a pathological event, triggering the apoptotic signaling cascade
since it allows for calcium efflux from the inner mitochondrial membrane, which ultimately
increases the mitochondrial levels of calcium, as cytosolic calcium levels continue to elevate.

5. Conclusions

While the presence of bioenergetics dysfunction, including the dysregulation of the
mammalian ATP synthase, is clear in AD, the mechanisms underlying this dysfunction
remain still mostly unclear. This might be due to the high complexity of mitochondrial
bioenergetics. In fact, mitochondrial bioenergetics is crucial not only for the maintenance
of appropriate bioenergetics through the production of ATP, but it is also pivotal in the
regulation of some other mitochondrial and cellular processes which are, consequently,
affected in AD. This is the case of the oxidative status of the cells and the metabolism
of calcium, among others. Dysregulation of these processes can further increase the
degree of mitochondrial dysfunction and of the cellular damage induced by dysfunctional
bioenergetics, creating a vicious and deleterious cycle, which will ultimately drive the cell
to apoptosis.

It is our humble opinion that further research should be conducted in this field to
clarify the exact mechanisms underlying mitochondrial bioenergetics dysregulation in AD,
which, as previously mentioned, has been proven to be an early event in this pathology.
While some pharmacological strategies have already been proposed and tested in different
models of the disease, there is still much work left to do to cure AD. Just by increasing
our knowledge about these mechanisms, we will be able to validate the mammalian ATP
synthase as a pharmacological target in AD and subsequently to search for therapeutic
tools that will allow us to prevent mitochondrial dysfunction and, hopefully, to ameliorate
the symptoms or to prevent or delay the progression of the disease.
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