Species	Gene	Product size (bp)	Tm (°C)	Sequence (F)	Sequence (R)
Mouse	GAPDH	155	59	5'-tgctggtgctgagtatgtcg-3'	5'-caagcagttggtggtacagg-3'
Mouse	MYOD	213	59	5'-aggagcacgcacacttctct-3'	5'-tctcgaaggcctcattcact-3'
Mouse	MYOG	185	59	5'-tccagtacattgagcgccta-3'	5'-caaatgatctcctgggttgg-3'
Mouse	MYL2	177	59	5'-aaagaggctccaggtccaat-3'	5'-cctctctgcttgtgtggtca-3'
Mouse	Atrogin1	160	59	5'-ttcagcagcctgaactacga-3'	5'-tgaaagetteeccaaagta-3'
Mouse	MuRF1	206	59	5'-tgaggtgcctacttgctcct-3'	5'-tcacctggtggctattctcc-3'
Mouse	MSTN	163	59	5'-acgctaccacggaaacaatc-3'	5'-ggagtcttgacgggtctgag-3'
Mouse	CyclinA2	227	59	5'-ctgtctctttacccggagca-3'	5'-Agtgatgtctggctgcctct-3'
Mouse	Ki67	199	59	5'-gggcgaagttcacagtcaat-3'	5'-ctccttcactggggtcttga-3'

Supplementary Table S1. Primer information

Supplementary Figure S1. Ki67, CyclinA2, and MSTN expression with *G. uralensis* crude water extract treatment.

Supplementary Figure S2. Procedure of *G. uralensis* fraction.

Fraction for bioassay

Supplementary Figure S3. Metabolite (NH₃) analysis in cultured media supplemented with EtOAc fraction

Supplementary Figure S4. ¹H NMR spectrum of compound 1 in MeOD-d4 (600 MHz)

Supplementary Figure S5. ¹³C NMR spectrum of compound 1 in MeOD-d4 (150 MHz)

Supplementary Figure S6. ¹H NMR spectrum of compound **2** in MeOD-*d*₄ (600 MHz)

Supplementary Figure S7. ¹³C NMR spectrum of compound **2** in MeOD-*d*₄ (150 MHz)

Supplementary Figure S8. ¹H NMR spectrum of compound 3 in Acetone-d₆ (600 MHz)

Supplementary Figure S9. ¹³C NMR spectrum of compound 3 in Acetone-*d*₆ (150 MHz)

Supplementary Figure S10. ¹H NMR spectrum of compound 4 in MeOD-d₄ (600 MHz)

Supplementary Figure S11. ¹³C NMR spectrum of compound 4 in MeOD-d₄ (150 MHz)

Supplementary Figure S12. ¹H NMR spectrum of compound 5 in CDCl₃ (600 MHz)

Supplementary Figure S13. ¹³C NMR spectrum of compound 5 in CDCl₃ (150 MHz)

Supplementary Figure S14. ¹H NMR spectrum of compound 6 in MeOD-d₄ (600 MHz)

Supplementary Figure S15. ¹³C NMR spectrum of compound 6 in MeOD-d₄ (150 MHz)

Supplementary Figure S16. ¹H NMR spectrum of compound 7 in MeOD-d₄ (600 MHz)

Supplementary Figure S17. ¹³C NMR spectrum of compound 7 in MeOD-d4 (150 MHz)

Supplementary Figure S18. ¹H NMR spectrum of compound 8 in DMSO-d₆ (600 MHz)

Supplementary Figure S19. ¹³C NMR spectrum of compound 8 in DMSO-d₆ (150 MHz)

Supplementary Figure S20. ¹H NMR spectrum of compound 9 in MeOD-d₄ (600 MHz)

Supplementary Figure S21. ¹³C NMR spectrum of compound 9 in MeOD-d4 (150 MHz)

Supplementary Figure S22. ¹H NMR spectrum of compound 10 in DMSO-d₆ (600 MHz)

Supplementary Figure S23. ¹³C NMR spectrum of compound 10 in DMSO-d₆ (150 MHz)