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Abstract: Breast cancer is one of the leading causes of death in women. With improvements in
early-stage diagnosis and targeted therapies, there has been an improvement in the overall survival
rate in breast cancer over the past decade. Despite the development of targeted therapies, tyrosine
kinase inhibitors, as well as monoclonal antibodies and their toxin conjugates, all metastatic tumors
develop resistance, and nearly one-third of HER2+ breast cancer patients develop resistance to all
these therapies. Although antibody therapy has shown promising results in breast cancer patients,
passive immunotherapy approaches have limitations and need continuous administration over a
long period. Vaccine therapy introduces antigens that act on cancer cells causing prolonged activation
of the immune system. In particular, cancer relapse could be avoided due to the presence of a longer
period of immunological memory with an effective vaccine that can protect against various tumor
antigens. Cancer vaccines are broadly classified as preventive and therapeutic. Preventive vaccines
are used to ward off any future infections and therapeutic vaccines are used to treat a person with
active disease. In this article, we provided details about the tumor environment, different types of
vaccines, their advantages and disadvantages, and the current status of various vaccine candidates
with a focus on vaccines for breast cancer. Current data indicate that therapeutic vaccines themselves
have limitations in terms of efficacy and are used in combination with other chemotherapeutic or
targeting agents. The majority of breast cancer vaccines are undergoing clinical trials and the next
decade will see the fruitfulness of breast cancer vaccine therapy.

Keywords: vaccine; breast cancer; HER2; therapeutic vaccine; cell-based vaccine; DNA-based vaccine

1. Introduction

Cancer is the second most common cause of death worldwide. According to the WHO,
in 2018, approximately 9.6 million people died from cancer. Among the different types of
cancers, lung, breast, prostate, and colorectal cancers are the most common. Each of these
cancers contain molecularly defined subtypes and therefore vary in terms of incidence and
prognosis. Breast cancer is the second most common reason for cancer-related fatalities
in the United States in spite of the various recent improvements in diagnosis, prognosis,
and treatment [1,2]. In the United States, approximately one in eight women during their
lifetime will develop invasive breast cancer. Based on the data published in 2020, it is
projected that about 276,480 women and 2000 men will be diagnosed with invasive breast
cancer, and approximately 48,530 new cases of non-invasive (in situ) breast cancer will
occur [3]. Breast cancer is defined as asymmetrical growth and proliferation of cells in the
breast tissue [4]. In the last few decades, there has been an appreciable improvement in
the treatment of breast cancer patients; however, there is a need to develop new, effective
treatment strategies with minimal adverse effects.

The four major molecular subtypes of breast cancer include luminal A, luminal B,
HER2-enriched, and basal-like triple-negative. This is determined by the expression of
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hormones (both estrogen and progesterone) and HER2 receptors. Triple-negative breast
cancer (TNBC) is a condition where patients do not express the genes for estrogen receptor
(ER), progesterone receptor (PR), and Her2/neu, thus making it difficult to treat TNBC
patients. Along with HER2-enriched cancers, there is a subset of luminal B breast cancers
that has HER2 overexpression [5–7]. HER2 belongs to the EGFR family receptors that play
a crucial role in the pathogenesis of various cancers such as lung, breast, ovarian, and renal
cancer [8]. The EGFR family includes 4 types of receptors; HER1 (EGFR), HER2, HER3,
and HER4. Amongst these four receptors, HER2 receptors are overexpressed in different
types of cancers. In about 20 to 30% of breast cancer patients, HER2 receptors are found to
be overexpressed [9]. The HER2 overexpression is associated with enhanced tumor growth,
poorer response to traditional chemotherapy, and overall decreased survival [10]; thus,
researchers have focused on the development of HER2-based targeted therapies.

Treatment of HER2-positive breast cancer with chemotherapeutic agents alone elicited
a poor response [11–15]. The discovery of tumor-associated antigens (TAA) has facilitated
the emergence of immunotherapy. Immunotherapy with respect to cancer can be defined
as the interference of the immune system for the mitigation of cancers [16]. Monoclonal
antibodies that have anti-tumor properties were developed against the HER2 receptor.
The intervention of the tumor growth via monoclonal antibodies falls under the cate-
gory of passive immunity [17,18]. Trastuzumab was the first FDA-approved monoclonal
antibody recommended for treating HER2-positive metastatic breast cancer. It causes
anti-tumor effects through various mechanisms such as induction of apoptosis, induction
of cell cycle arrest, antibody-dependent cell-mediated cytotoxicity (ADCC), inhibition of
HER2 extracellular domain shedding, and inhibition of downstream signal transduction
pathways [19–21].

Additionally, monoclonal antibodies and their conjugates such as pertuzumab, trastuzumab
emtansine (T-DM1), and fam-trastuzumab deruxtecan were also approved by the FDA for
treating HER2-positive breast cancer patients [22]. In the EMILIA study, T-DM1 exhibited
improved survival for the second-line treatment of metastatic HER2-positive breast cancer
compared to the existing standard therapy, capecitabine with lapatinib, a HER2 tyrosine
kinase inhibitor [23]. T-DM1, compared to trastuzumab, has also been shown to improve
disease-free survival after surgery in those patients who have residual cancer after receiving
neoadjuvant chemotherapy in the KATHERINE trial [24]. Fam-trastuzumab was studied in
a phase II clinical trial, which showed promising efficacy results in those patients diagnosed
with metastatic HER2-positive breast cancer who failed T-DM1 [25,26]. Using monoclonal
antibodies for cancer therapy is an effective and efficient strategy to treat breast cancer, but
it has its own drawbacks such as the cost, treatment duration and frequency, resistance,
and tolerance. Furthermore, these monoclonal antibodies show temporary disease control
once the tumor is metastasized; hence, there is a need for therapies that elicit anti-tumor
effects on metastatic tumors. Due to the aggressiveness of HER2-positive breast cancer,
there is also a need to minimize the chance of relapse in those with a curable disease.

Despite the development of targeted therapies, tyrosine kinase inhibitors, as well
as monoclonal antibodies and their toxin conjugates, all metastatic tumors develop resis-
tance, and nearly one-third of HER2+ breast cancer patients develop resistance to all these
therapies [7,27]. Thus, passive immunotherapy approaches have limitations and need con-
tinuous administration over a long period. On the other hand, a vaccine which introduces
antigens acts on the cancer cells, causing prolonged activation of the immune system. Vac-
cines have a number of advantages compared to chemotherapy and monoclonal antibodies.
Potential cancer relapse can be averted by activating long-term immunological memory
with an effective vaccine that can protect against various tumor antigens. Vaccines are not
required to be administered frequently and, historically, vaccines are comparatively safer
than chemotherapy [28]. The first attempt to use a cancer vaccine was more than a century
ago. In 1902, von Leyden and Blumenthal used an autologous tumor cell suspension as a
vaccine and treatment for cancer patients [29]. During the 1950s, animal studies revealed
that cancer tumors induced in mice by chemicals were immunogenic. Since then, there
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have been attempts to design a vaccine for cancer. Among breast cancer types, HER2-
positive and triple-negative breast cancer (TNBC) subtypes are most immunogenic [30].
Thus, for these types of cancer, activating the patient’s immune system is a promising
approach. Although overall progress is slow and clinical translation of this knowledge
faced challenges, preclinical studies provided strong support for cancer vaccines, and there
are some success stories.

Cancer vaccines can be broadly classified as preventive and therapeutic. Preventive
vaccines are used to ward off any future infections, whereas therapeutic vaccines are used
to treat a person with active disease [28]. Sipuleucel-T (Provenge) was the first therapeutic
cancer vaccine approved by the FDA in the year 2010 for the treatment of metastatic
castrate-resistant prostate cancer (mCRPC) [31]. Table 1 provides a list of FDA-approved
preventive cancer vaccines. In this article, we will focus on therapeutic vaccines. Currently,
a couple of therapeutic vaccines are approved by the FDA, which are listed in Table 2.
Ongoing clinical trials of therapeutic vaccines are listed in Table 3. The success of these
vaccines depends on several factors, including understanding the tumor microenvironment,
strategies for reactivating the immune system utilizing different vaccine candidates, and
vaccine formulations. Numerous review articles about cancer vaccines have been published
over the past five years [30,32–45]. In this article, we provided details about the tumor
environment, different types of vaccines, their advantages and disadvantages, and the
current status of various vaccine candidates with a focus on vaccines for breast cancer.

Table 1. List of FDA-approved preventive cancer vaccines.

Name of the Vaccine Cancer Type Prevented

Cervarix HPV-related anal, cervical, head and neck, penile, vulvar, and
vaginal cancers

Gardasil-4 HPV-related anal, cervical, head and neck, penile, vulvar, and
vaginal cancers

Gardasil-9 HPV-related anal, cervical, head and neck, penile, vulvar, and
vaginal cancers

Hepatitis B (HBV) vaccine (HEPLISAV-B) HBV-related hepatocellular carcinoma

Cancer Vaccines: Preventive, Therapeutic, Personalized. Cancer Research Institute website. Updated January 2020. Accessed 15 October
2020 (https://www.cancerresearch.org/immunotherapy/treatment-types/cancer-vaccines).

Table 2. List of FDA-approved therapeutic cancer vaccines.

Therapeutic Cancer Vaccines Cancer Type Treated

Bacillus Calmette–Guérin (BCG) Early-stage bladder cancer
(through local instillation into the bladder)

Sipuleucel-T (Provenge) Prostate cancer

Cancer Vaccines: Preventive, Therapeutic, Personalized. Cancer Research Institute website. Updated January 2020. Accessed 15 October
2020 (https://www.cancerresearch.org/immunotherapy/treatment-types/cancer-vaccines).

Table 3. List of various cancer vaccines currently under clinical trials (clinicaltrials.gov).

Name/Conditions Interventions Clinical Phase Clinical Trial Identifier

1

Mammaglobin-A
DNA Vaccine In Breast Cancer Patients

Undergoing
Neoadjuvant Endocrine Therapy

Mammaglobin-A DNA
Vaccine Phase 1 NCT02204098

2

Vaccine Therapy in Preventing Cancer
Recurrence in

Patients With Non-Metastatic,
Node-Positive, HER2

Negative Breast Cancer That is in
Remission

pUMVC3-IGFBP2-HER2-
IGF1R Plasmid DNA Vaccine

Sargramostim
Phase 1 NCT02780401

https://www.cancerresearch.org/immunotherapy/treatment-types/cancer-vaccines
https://www.cancerresearch.org/immunotherapy/treatment-types/cancer-vaccines
clinicaltrials.gov
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Table 3. Cont.

Name/Conditions Interventions Clinical Phase Clinical Trial Identifier

3

A Study to Evaluate Concurrent
VRP-HER2 Vaccination

and Pembrolizumab for Patients With
Breast Cancer

VRP-HER2
Pembrolizumab Phase 2 NCT03632941

4

HER2 Directed Dendritic Cell Vaccine
During

Neoadjuvant Therapy of HER2+Breast
Cancer

Dendritic Cell Vaccine
(DC1)

Neoadjuvant
Chemotherapy

Phase 1 NCT03387553

5
Vaccine Therapy in Treating Patients

With HER2-
Negative Stage III-IV Breast Cancer

CD105/Yb-
1/SOX2/CDH3/

MDM2-polyepitope
Plasmid DNA

Vaccine

Phase 1 NCT02157051

6

HER2 Pulsed DC Vaccine to Prevent
Recurrence of

Invasive Breast Cancer
Breast Cancer

HER2 pulsed Dendritic
Cell Vaccine Phase 1 NCT02063724

7

HER2 Pulsed DC Vaccine to Prevent
Recurrence

of Invasive Breast Cancer Post
Neoadjuvant

Chemotherapy
Breast Cancer

HER2 pulsed Dendritic
Cell Vaccine Phase 1 NCT02061423

8

QUILT-3.013: Study of Ad5 [E1-,
E2b-]-HER2/Neu

Vaccine (ETBX-021) in Subjects With
Unresectable

Locally Advanced or Metastatic
HER2-Expressing

Breast Cancer
Cancer

ETBX-021 Phase 1 NCT02751528

9

Xenogeneic HER2/Neu DNA
Immunization for Patients

With Metastatic and High-Risk Breast
Cancer.

MAB HER 2
(HERCEPTIN) Phase 1 NCT00393783

10

Immune Response and Potential
Booster for Patients

Who Have Received HER2-pulsed
DC1

HER2 DC1 Vaccine Phase 2 NCT03630809

11

A Vaccine (H2NVAC) Before Surgery
for the Treatment

of HER2-Expressing Ductal
Carcinoma In Situ

Granulocyte-Macrophage
Colony-Stimulating Factor

Multi-epitope HER2
Peptide Vaccine H2NVAC

Phase 1 NCT04144023

12

A Phase I/II Trial of HER2/Neu
Pulsed DC1 Vaccine

Combined With Trastuzumab for
Patients With DCIS

Breast Cancer

HER2 pulsed DC1
Drug: trastuzumab
Drug: pertuzumab

Phase 1
Phase 2 NCT02336984

13

Vaccine Therapy With Sargramostim
(GM-CSF) in

Treating Patients With HER2 Positive
Stage III-IV Breast

Cancer or Ovarian Cancer

pNGVL3-hICD vaccine
Biological: sargramostim Phase 1 NCT00436254
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Table 3. Cont.

Name/Conditions Interventions Clinical Phase Clinical Trial Identifier

14

TPIV100 and Sargramostim for the
Treatment of HER2

Positive, Stage II-III Breast Cancer in
Patients With

Residual Disease After Chemotherapy
and Surgery

Pertuzumab
Sargramostim
Trastuzumab

Trastuzumab Emtansine
Vaccine Therapy

Phase 2 NCT04197687

15

Vaccine Therapy in Treating Patients
With Stage IV

HLA-A2 and HER2 Positive Breast or
Ovarian Cancer

Receiving Trastuzumab

HER2/neu Peptide
Vaccine

Phase 1
Phase 2 NCT00194714

16
Vaccine to Prevent Recurrence in

Patients With HER2
Positive Breast Cancer

DC1 Vaccine
WOKVAC Vaccine Phase 2 NCT03384914

17

Phase II Trial of Combination
Immunotherapy With

NeuVax and Trastuzumab in
High-risk HER2+ Breast

Cancer Patients

NeuVax vaccine
Drug: Trastuzumab

Drug: GM-CSF
Phase 2 NCT02297698

18

Folate Receptor Alpha Peptide
Vaccine With GM-CSF in

Patients With Triple-Negative Breast
Cancer

Low dose FR# vaccine
Drug: Cyclophosphamide

High dose FR# vaccine
Phase 2 NCT02593227

2. Tumor Microenvironment and Its Modulation for Effective HER2 Vaccines

The human immune system is a complex network containing a variety of cells that ef-
fectively fight against pathogens and TAAs [46]. These TAAs are presented to the immune
system in two ways; directly by the tumor cells and/or by antigen-presenting cells (APCs).
In the process, the TAAs are degraded to immunogenic peptides and then presented to T
cells via the major histocompatibility complex (MHC), eventually resulting in an immune
response. However, this process is suppressed in the tumor microenvironment. The mi-
croenvironment around the tumor plays a significant role in its progression and control of
cancer growth [47]. The tumor microenvironment is rich in molecules such as cyclooxyge-
nase 2 (COX-2), vascular endothelial growth factor (VEGF), interleukin-6, interleukin-10,
stem cell factor-1, macrophage-colony stimulating factor (M-CSF), and transforming growth
factor (TGF-β) that are involved in the suppression of immune system functions and pro-
mote activation, invasion, and metastasis of tumors [48]. Furthermore, several mechanisms
have been reported to be involved in immunosuppression, including expansion of myeloid-
derived suppressor cells (MDSCs) [49], tumor-associated macrophages, and other myeloid
cells [50,51], perturbation of cytokine networks [52], changes in host metabolism [53], and
the production of amino acid-degrading enzymes and indoleamine 2,3-dioxygenase 1
(IDO1) [54]. Costimulatory signals such as B7, CD40, 4-1BBL [55], and OX40L [56] that
are involved in the activation of T cells are absent in tumors of epithelial origin. Dendritic
cells are also suppressed, resulting in a poor immune response against tumors [57]. These
compounded immunological anomalies can lead to altered DC and T cell function and
result in an impaired immune response against tumor cells [58]. The identification of the
various causes for the immunosuppression and discovery of various molecules and TAAs
(HER2, carbohydrate antigens, telomerase reverse transcriptase (hTERT), and mucin-1
(MUC-1)) led to the development of various strategies for the treatment of breast cancers
by activating the immune system [46]. Research has demonstrated that patients with
HER2-positive cancers have HER2 antibodies, prompting researchers to focus on a strat-
egy to enhance patients’ immunity for the treatment of HER2-positive breast cancers [59].
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Several strategies for developing vaccines against cancer are being investigated, including
the use of peptides, proteins, APCs, tumor lysates, tumor cells, DNA, mRNA, and viral
vectors [47].

3. Peptide-Based Cancer Vaccines

In the past decade, peptide-based vaccines have attracted a lot of attention for their
potential use against cancer. There is a wealth of information about peptide-based cancer
vaccine therapies in the literature [60–62]. Peptide-based cancer vaccines offer several
possible advantages, including ease of synthesis, being cost-effective compared to other
cancer-based vaccines, tolerable side effects, and safety. Additionally, computer-based
algorithms can be applied while screening amino acid sequences for candidates with
MHC class I-restricted peptide epitopes of the TAAs, and these candidates can be tested
experimentally for their antigen-specific immune response.

T cell-based vaccines induce immune responses by delivering synthetic T cell epitopes
into the body. T cell-based vaccines were originally studied to subsequently activate
cytotoxic T lymphocytes (CTLs). Both CTLs and T helper cells were activated using short
peptides; however, now, longer peptides are used to activate both CTLs and T helper cells.
These peptides, when injected into a patient, bind to human leukocyte antigen (HLA)
classes I and II of the APCs and form a peptide–HLA complex. This complex, when
recognized by CTLs, is activated and proliferates. This results in an immune response,
thereby attacking cancer cells [63].

On the other hand, B cell-based vaccines induce immune response via the B cell epitope
of the specific TAA/tumor-specific antigen (TSA). In this type of vaccine, antibodies are
produced and bind to the antigen of interest. The major advantage is MHC-I molecules are
not involved in the generation of a response. Even if MHC-I molecules are downregulated
by tumor evasion mechanisms, it will not affect the immune response against tumors [63].

The first clinical trials for the peptide-based vaccines were performed in the year 1990
by using a single epitope–peptide. E75 is a 9 amino acid-long peptide derived from the
HER2 receptor and is predicted to bind HLA-A2, thus activating CTLs [64–66]. E75 is the
most studied cancer vaccine. Several phase I studies were conducted by injecting peptide
as a vaccine by mixing it with different immunoadjuvants. Results show that the vaccine is
safe and is able to induce peptide-specific CTLs. Later, additional studies were evaluated
by combining E75 with a granulocyte-macrophage colony-stimulating factor (GM-CSF) in
187 node-positive and high-risk node-negative breast cancer patients. Results concluded
that the 5-year disease-free survival (DFS) was 89.7% for those who received E75 and
80.2% in those who received placebo, respectively. In phase III clinical trials, E75 with the
adjuvant GM-CSF vaccine (Neuvax) was evaluated in patients with low HER2 expression
(IHC 1+/2+). This combination was found to have no difference between placebo and
Neuvax in DFS events resulting in the termination of clinical trials; however, future studies
should be done combined with other medications [67].

GP2, an immunogenic peptide, a fragment of the transmembrane domain of HER2
(654–662), is a 9 amino acid-long peptide (IISAVVGIL) vaccine. It binds to the HLA-A2
molecule, but with lesser affinity compared to E75 [68], and activates CTLs. The phase I
clinical trial suggested that GP2 with GM-CSF is safe and tolerated in patients with lymph
node-negative breast cancer [68]. The phase II clinical trials were conducted in the clinically
disease-free patients with node-positive and high-risk node HER2-expressing tumors
(immunohistochemistry (IHC) 1+–3+). Results did not show a significant difference in
response to the vaccine compared to the control groups in the rate of reoccurrence; however,
it can be inferred from the trials that the vaccine is safe to be injected. Furthermore, there
was a trend toward clinical significance in patients with HER2-overexpressed tumors [69].

AE37 is a peptide with 15 amino acids which activates CD4+ T helper cell (Th) lympho-
cytes [70]. In phase I clinical trials conducted on patients with different HER2-expressed
breast cancer of all stages and IHC of 1+ to 3+, it was demonstrated that the vaccine has no
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significant effect on the DFS rate in patients with high HER2-expressing receptors on their
breast tissue [69].

Limited research has been performed on B cell peptide vaccines. The success of
trastuzumab as a therapeutic agent for breast cancer has led to an interest in B cell peptide
vaccines. A phase I study was performed in metastatic breast cancer patients with three
HER2 peptides derived from the HER2 receptor formulated with influenza virosomes. The
study results showed that the vaccine is safe. In about 80% of the patients, it was found to
be immunogenic. The antibodies developed in the patients can be compared to those of
the current antibody-based HER2 treatment drugs [63,71]. Another phase I clinical trial for
the vaccine containing two HER2 B cell epitomes that are binding sites for trastuzumab
and pertuzumab was performed [72]. The aim of the vaccine is to overcome the resistance
associated with trastuzumab and pertuzumab. This study was performed on 49 patients
diagnosed with metastatic and/or recurrent solid tumors and showed that the vaccine is
safe, elicits anti-tumor effects, and has the ability to overcome the resistance associated
with trastuzumab and pertuzumab. Thus, this vaccine could be used as an alternative to
monoclonal antibodies.

Even though peptide-based vaccines have several advantages, they do have some
limitations. Peptide-based vaccines need a suitable adjuvant in order to produce an
efficient immune response. The immune response is limited to a few epitopes, which
results in a limited response against tumor cells. Other limitations include secondary
structure, enzymatic stability, short half-life, and high rates of elimination [73–75]. There
are examples of attempts to improve the balanced induction of both CD8 and CD4 T cells
by using multivalent synthetic long peptides (SLPs) containing both MHC class I and class
II epitopes [76].

4. Protein-Based Cancer Vaccines

While most of the attempts made using peptide-based vaccines have not shown a signifi-
cant breakthrough compared to injecting a whole protein into the body, it has many theoretical
advantages that may overcome the disadvantages associated with peptide-based vaccines.
The major advantage of utilizing a whole protein (HER2 intra- or extracellular domains) as
vaccines is that it contains both HLA class I and II epitopes; hence, specific HLA restrictions
can be avoided. Long polypeptides or protein-based vaccines can significantly activate T cells
resulting in a heightened immune response and superior T cell activation [77,78].

Unlike peptide-based vaccines, the prospect of utilizing protein-based vaccines has
not been explored extensively. The first clinical study was performed with the HER2
intracellular domain (a fragment sequence from 676 to 1255 of the full-length HER2/neu)
with the aim to evaluate whether the vaccine can generate immunogenicity. In this study,
29 patients who had HER2-positive breast or ovarian cancer and were in remission after
traditional treatment were injected with different doses (25, 150, and 900 µg) of the vaccine.
Results showed that the vaccine was well-tolerated, and HER2 ICD-specific T cell immu-
nity developed in approximately 89% of the patients who completed the whole vaccine
schedule. About 82% of the patients developed HER2/neu-specific immunoglobulin G
antibody immunity. Furthermore, there were no reports of grade 2–4 toxic events [79].
Additionally HER-2/neu helper peptide based vaccines have been found to be effective in
BC patients [80] A study was performed by Hamilton et al. [81] with the aim to evaluate
immunogenicity, safety, and effect of the anti-HER2 protein. The vaccine, dHER2 [82],
is a recombinant protein consisting of an extracellular domain (ECD) and a fragment of
the intracellular domain (ICD) of HER2 combined with the adjuvant AS15. The twelve
patients enrolled in the study with trastuzumab-refractory HER2-overexpressing metastatic
breast cancer received the vaccine and oral lapatinib. Results indicated that all the patients
in the study were prompted with the anti-HER2-specific antibody, and there were no
reports of cardiotoxicity. Reports also showed the overall survival at 300 days was found
to be 92% (95% CI: 77%–100%), suggesting a potential survival benefit in patients with
HER2-overexpressing breast cancers refractory to trastuzumab [81].
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5. Whole Cell-Based Vaccines

Most of the non-cell-based cancer vaccines are designed using a single tumor-associated
antigen (TAA), and a major problem in developing vaccine therapies is the selection of an
appropriate TAA that would maximize the immune response. Immunizing BC patients
with tumor cells isolated from the patient can circumvent the problems associated with
antigen selection. The principle behind this strategy is that a tumor cell harbors a wide va-
riety of TAAs that would help in inducing a strong immune response. Tumor cells isolated
from patients are used to develop autologous tumor cell-based vaccines (ATCVs). ATCVs
consist of both characterized and uncharacterized TAAs that could help in launching a
polyclonal response against a wide variety of tumor cells [83]. However, the process of
developing ATCVs for individual patients is complex and expensive; hence, allogeneic tu-
mor cell lines can be used as an alternative for the development of cell-based vaccines [84].
Whole cell-based vaccines can also be manipulated to express cytokines or chemokines to
maximize the immune response against the injected whole-cell vaccine [85]. The addition
of the granulocyte-macrophage colony-stimulating factor (GM-CSF) to a whole tumor cell
vaccine stimulates the migration of DCs, T cells, eosinophils, and macrophages to the site
of vaccination [85].

Two ongoing and three completed clinical trials have explored the efficacy of ATCVs
in BC patients. In a completed study, 121 patients diagnosed with breast cancer, metastatic
breast cancer, or ovarian cancer were vaccinated with an autologous breast tumor cell
infected with Newcastle disease virus (NDV). The 4-year overall survival (OS) was 96%,
thus validating the efficacy of the vaccine [86]. In a different study, 42 breast cancer patients
were vaccinated with a vaccine mix consisting of autologous and allogenic breast tumor
cells, three TAAs combined with GM-CSF and IL-2 [87]. Post-vaccination, a significant
increase in lymphocyte proliferation was observed in 57–100% of the patients enrolled in
the study [87]. Elliott et al. enrolled 37 breast cancer patients with suppressed immunity
into a study and vaccinated them with a whole-cell vaccine consisting of autologous and
allogenic tumor cells supplemented with adjuvants. Post-vaccination, it was observed that
the 10-year survival of vaccinated patients with depressed immunity increased significantly
compared to the historic controls of unvaccinated patients [88]. In the above three clinical
studies, the whole cell-based vaccines were found to be safe and did not elicit any signifi-
cant toxicity. Currently, two active clinical studies sponsored by the Dana–Faber Cancer
Institute are in progress (NCT00317603, Vaccination with Autologous Breast Cancer Cells
Engineered to Secrete Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) in
Metastatic Breast Cancer Patients, available at: clinicaltrials.gov; NCT00880464, Autologous
Vaccination with Lethally Irradiated, Autologous Breast Cancer Cells Engineered to Secrete
GM-CSF in women with Operable Breast Cancer, available at: clinicaltrials.gov). A detailed
review of the clinical and preclinical studies related to ATCVs and breast cancer therapy
can be found elsewhere [83]. The aforementioned clinical studies have demonstrated that
ATCVs can be used as a highly effective and safe vaccine in BC patients. However, one
disadvantage of using ATCVs is the high variability in the vaccine and the tedious vaccine
manufacturing process [83].

ATCV manufacturing is dependent upon a patient’s specific tumor tissue. Therefore,
it can be considered personalized medicine. The ATCVs may not have broad-spectrum
application that is expected from a traditional vaccine. Allogenic vaccines are similar to
ATCVs except that the source material is obtained from a different individual or from
well-established cancer cell lines that are known to express specific TAAs [89]. A phase I
clinical trial involving 28 metastatic BC patients was carried out to investigate the efficacy
of a combination therapy using an allogeneic vaccine along with chemotherapy [90]. The
allogeneic vaccine was formulated with TAAs obtained from two Her2/neu positive
adenocarcinoma breast cancer cell lines SKBR3 and T47D. This vaccine was administered
either alone or in combination with cyclophosphamide (CY) and doxorubicin (DOX) [91].
This study demonstrated that the vaccine alone or along with low-dose chemotherapy
could induce an effective HER2-specific humoral and T cell-mediated immunity [89]. In
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another phase I study, an HLA-A2+-matched allogeneic MDA-MB-231 breast cancer cell
line was transfected with the costimulatory molecule B7-1 (CD80) and used as a vaccine
against stage IV BC [92]. Although no tumor regression was observed, the vaccinated
patients did show an increase in tumor-specific immune activity [92]. The data available
from clinical trials demonstrate the efficacy of cell-based allogenic vaccines in stimulating a
measurable immune response [93,94]. The safety of an allogeneic vaccine was investigated
in a clinical trial sponsored by Paul Ehrlich Institute, Langen, Germany (NCT01127074,
Vaccination of Metastatic Breast Cancer Patients With a CD80-modified Allogeneic Cancer
Cell Line (KS2422) (KS2422-vacc)) and in another clinical trial sponsored by Beth Israel
Deaconess Medical Center (NCY00625755, A Phase I/II Study to Assess the Safety and
Efficacy of Vaccinations With Allogenic Dendritic Cells: Autologous Tumor-Derived Cells
Subjected to Electrofusion in Patients With AJCC Stage IV Renal Cell Carcinoma) [95].
However, a major problem with the development of allogeneic tumor cell vaccines is the
use of cell lines that may not represent the actual antigen repertoire of the tumor.

6. Dendritic Cell-Based Vaccines

Dendritic cells (DCs) are highly specialized antigen-presenting cells that can process
exogenous and endogenous antigens and present them to CD4+ T cells and CD8+ T cells,
respectively [96,97]. DCs are the strongest modulators of primary immune response
and can be exploited to generate highly effective DC-based vaccines [98]. Non-active or
immature dendritic cells (iDCs) are usually isolated from the peripheral blood of cancer
patients. The iDCs are then supplied with tumor-associated antigens (TAAs), recombinant
DNA/RNA encoding tumor antigens, or DC/tumor hybrids [99]. The antigen-laden iDCs
are then stimulated by exposure to specific cytokines for stimulation/maturation [100].
Stimulated/mature DCs are then infused back into patients wherein they present the cancer
antigens to CD4+/CD8+ T cells, thus launching a robust anti-tumor T cell response [99].
Kugler et al. demonstrated the efficacy of a DC-based vaccine in patients suffering from
advanced BC and ovarian cancer. Autologous DCs were pulsed with HER2/neu- or
MUC1-derived peptides to generate a DC-based vaccine. Ten patients included in this
pilot study showed a strong immunogenic response with no side effects [101]. The lack
of side effects when autologous DCs are used for vaccine production can be exploited
to generate potent DC-based vaccines for BC. Using an alternative approach, Avigan
et al. fused patient-derived tumor cells with autologous DCs to generate fusion cells [102].
The fusion cell-based vaccine showed a strong anti-tumor response in patients suffering
from metastatic BC and renal cancer [102]. The use of patient-derived tumor cells or cell
lysates provides a wide variety of antigens to the immune system, thus facilitating a strong
immunogenic response [103]. Zhang et al. generated a whole antigen vaccine against BC
by fusing DCs with TNBC cells. The DC–TNBC hybrid was found to potentially elicit
anti-tumor immunity by facilitating lymphocyte proliferation [104]. Preclinical studies
for the development of DC-based vaccines for BC have shown some promising results.
Sakai et al. modified DCs by transducing them with a non-signaling neu oncogene, which
thwarted the growth of BC in BALB-neu transgenic mice [105]. A detailed explanation of
the clinical studies related to DC-based vaccines has been discussed elsewhere [103].

7. DNA-Based Vaccines

Recently, the use of DNA-based vaccines has emerged as an effective vaccination
strategy against cancer [106]. DNA vaccines have the potential to induce an antitumor
immune response in breast cancer patients [107–109]. DNA vaccines are based on the
dogma that the gene encoding a tumor antigen can be transfected and expressed in an APC.
Physiologically, such antigens are further processed and presented to launch a strong and
viable antitumor immune response. The most important aspects of DNA vaccination are
the selection or design of a potent plasmid vector and an efficient delivery system coupled
with monitoring of post-vaccination immune response. The plasmid used in DNA vac-
cines is usually of bacterial origin with CMV or a chimeric SV40–CMV promoter [110,111].
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DNA-based vaccines are designed by using different types of TAAs. The TAAs are usu-
ally expressed exclusively in tumors or overexpressed by oncogenes. HER2/neu and
mammaglobin-A (Mam-A) are oncoproteins that are overexpressed in breast cancer and
have been used as target antigens in developing DNA vaccines. Norell et al. carried out a
pilot clinical trial wherein eight patients suffering from advanced/metastatic breast cancer
were administered a DNA vaccine containing signaling-deficient full-length version of
HER2/neu along with low doses of IL-2 and GM-CSF. A strong humoral response was
observed after HER2/neu vaccination, although no substantial improvement in the T cell
response was elicited [112]. Mam-A is a 93 amino acid secretoglobin protein that is highly
overexpressed in breast cancer and serves as an ideal target antigen. Kim et al. carried
out a phase I clinical trial and administered a DNA vaccine carrying Mam-A cDNA to 15
Mam-A+ patients, and the post-vaccination immune response was monitored. After six
months, the first seven patients enrolled in the study displayed an increase in ICOSHiCD4+

T cells and a decrease in Foxp3C CD4C T cells [109]. The activated ICOSHiCD4+ T cells
expressed IFN-γ instead of IL-10 and were observed to cause preferential lysis of Mam-
A-expressing breast cancer cells [113]. The present studies demonstrate the effectiveness
of DNA vaccines in controlling breast cancer. However, the safety and the immunogenic
mechanisms of DNA-based vaccines need to be further investigated.

8. Future Direction and Concluding Remarks

Breast cancer treatment using chemotherapy, hormonal therapy, passive immunother-
apy, and other modalities has made a major contribution to the treatment of breast cancer.
However, long-lasting effects are limited, and disease relapse and progression are observed
in some patients. The discovery of breast cancer as immunogenic and the success of ther-
apeutic vaccines such as Sipuleucel-T in treating prostate cancers raised the prospect of
utilizing vaccination to manage breast cancer. Several preclinical studies are ongoing, and
many vaccine candidates for treating breast cancers are currently in clinical trials. Some
vaccine candidates in the advanced stage of clinical trials are showing promising results in
treating breast cancer. The vaccine candidates for managing HER2-positive breast cancers
are progressing well with promising results. A single-agent E75 peptide-based vaccine
candidate is being studied in a phase III clinical trial and in combination with trastuzumab
in a phase II study. Active immunotherapy could be an effective treatment regimen for
managing breast cancer along with other therapies such as surgery, radiation, chemother-
apy, endocrine therapy, and monoclonal antibodies. Active immunotherapy has the ability
to produce antibodies for specific TAA, which promotes long-lasting effects. However,
until now, no therapeutic vaccines have been approved by the US FDA for treating breast
cancer. The success of cancer vaccines depends on a better understanding of the tumor
microenvironment, including immune-suppressing pathways and tumor-evading path-
ways, the discovery of specific tumor-associated antigens, effective vaccine formulations,
etc. There is promising efficacy data regarding the treatment of breast cancer by designing
personalized vaccines based on TTAs and genetic mutations. In the case of personalized
medicine, effective molecular stratification of breast cancer, vaccine formulation, and cost-
effective vaccine manufacturing process need to be considered. In addition, clinical trials
combining immunotherapy with other treatments that might produce an effective and
synergic treatment regimen for breast cancer patients need to be explored.

While therapeutic cancer vaccines have shown some promise, they have not shown
significant clinical benefits compared to immunotherapy such as immune checkpoint block-
ade. Hence, combination strategies with immune checkpoint inhibitors and antiangiogenic
therapies have been proposed. Clinical trials consisting of large cohorts of patients are nec-
essary to evaluate therapeutic efficacy of the proposed vaccine therapies [33]. Considering
the cost of cancer drugs and the survival rate, mutation of proteins that are involved in
cancer development, and resistance pathways, therapeutic vaccines have promise in the
future of cancer therapy.
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BC breast cancer
CMV cytomegalovirus
COX-2 cyclooxygenase 2
CTL cytotoxic T lymphocytes
CY cyclophosphamide
DCs dendritic cells
DOX doxorubicin
ECD extracellular domain
EGFR epidermal growth factor receptor
ER estrogen receptor
FDA Food and Drug Administration
GM-CSF macrophage colony-stimulating factor
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