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Abstract: Tissue engineering has been an inveterate area in the field of regenerative medicine for
several decades. However, there remains limitations to engineer and regenerate tissues. Targeted
therapies using cell-encapsulated hydrogels, such as mesenchymal stem cells (MSCs), are capable of
reducing inflammation and increasing the regenerative potential in several tissues. In addition, the
use of MSC-derived nano-scale secretions (i.e., exosomes) has been promising. Exosomes originate
from the multivesicular division of cells and have high therapeutic potential, yet neither self-replicate
nor cause auto-immune reactions to the host. To maintain their biological activity and allow a
controlled release, these paracrine factors can be encapsulated in biomaterials. Among the different
types of biomaterials in which exosome infusion is exploited, hydrogels have proven to be the most
user-friendly, economical, and accessible material. In this paper, we highlight the importance of
MSCs and MSC-derived exosomes in tissue engineering and the different biomaterial strategies used
in fabricating exosome-based biomaterials, to facilitate hard and soft tissue engineering.

Keywords: mesenchymal stem cell; exosome; hydrogel; osteogenesis; angiogenesis; tissue engineer-
ing; biomaterial

1. Tissue Regeneration and MSCs

Bone regeneration for critical size defects is challenging, and even the most commonly
used approaches in bone reconstruction, such as autologous and allogenic bone grafts,
do not meet all the requirements of a bioactive material [1]. For autologous grafts, the
quantity of the harvested bone tissue is limited, and the procedure is sometimes associated
with increased donor site morbidity [1]. Failures due to mechanical instability and im-
munological rejection after the surgery paved the way for the development of alternative
techniques for bone regeneration and defect repair [1]. Tissue engineering deals with the
combined application of principles of life sciences and engineering towards understanding
the structural and functional relationship in physiological and pathological tissues, involv-
ing bioactive materials [2]. A biomaterial can be described as any natural or synthetic
substance or combination of substances that, when applied intimately into a functional
system, autonomously replaces and restores the tissues of the body [3].

This multidisciplinary science uses the properties of a porous biocompatible and
biodegradable material in the form of two dimensional or three-dimensional scaffold or
template upon which the cells are seeded to promote growth in the tissue microenvi-
ronment [2]. Biomaterials either act as an in vitro template to aid in tissue engineering,
with adequate cell–cell interaction and growth factors, or as an aid in transplanting the
regenerated tissue in vivo to integrate structurally and functionally with the system [2]. Bio-
materials commonly encountered in tissue engineering comprise of natural and synthetic
polymers, and ceramics [2]. Three-dimensional hydrophilic polymers, such as hydrogels,
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have emerged as a bioactive scaffold material in the recent past, which are commonly used
in drug delivery and cell encapsulation [4].

Cell-encapsulated hydrogels demonstrate prolonged fundamental and operational
consistency and are widely applied in regenerative therapy [4]. The developments in
cell-encapsulated hydrogel therapies have been improved by the heightened ease of using
mesenchymal stem cells (MSCs) with them [4]. When a combination of stem cells and
hydrogels are used, certain considerations are necessary. For instance, when MSCs are
used in three-dimensional (3D) microenvironments, their differentiation efficiency into
osteocytes, hepatocytes, or adipocytes is increased as compared to two-dimensional (2D)
cultures [4]. MSCs also have shown enhanced differentiation capacity when cultured in
proximity to other cells, such as hematopoietic stem cells (HSCs) and human umbilical vein
endothelial cells (HUVECs) [4]. The cell encapsulation method is also reportedly dependent
on the shape and size of the vehicle that delivers the MSCs [4]. The 3D environment,
whether it is a hydrogel or bioprinted microfluid droplets, is required to be tailored to the
target tissue for optimal tissue regeneration [4].

In this regard, the MSCs’ secretions have gained special attention as a regenerative
tool compared to other cell-based therapies [5]. Initially identified in the 1960s, MSCs
were first described as spindle-shaped cells originating from bone marrow that could
regulate the quiescence and self-renewal of hematopoietic stem cells through the release of
paracrine factors [6]. These cells are rare, heterogenous, and, in addition to bone marrow,
have been successfully isolated from placenta, amniotic fluid (AF), umbilical cord blood
(CB), Wharton’s jelly (WJ), and adipose tissue (AD) [7]. MSCs are easy to isolate from
adult tissues, have a large capacity for ex vivo expansion, and have proven to be efficiently
therapeutic in many diseases [7].

The International Society for Cellular Therapy has released the three minimal require-
ments to define multipotent MSCs: first, MSCs being plastic-adherent; second, expressing
CD105, CD73, and CD90 while not expressing CD45, CD34, CD14 or CD11b, CD79α or
CD19, and HLA-DR surface molecules; and third, having differentiation capacity into
osteoblasts, adipocytes, and chondroblasts in vitro [7–9].

Treating sites of injury using MSCs has its own disadvantages. An estimated more
than 99% of these cells get trapped in the spleen, lungs, and liver [10,11], and those that
do approach the targeted tissue have a low survival time and are predisposed to cause
thrombosis, fever, and tumors [12]. An alternative approach would be to consider the
paracrine mechanisms of MSCs, especially the nanometer vesicles, exosomes, as the source
of biomaterials for tissue repair (Figures 3A and 4) [12]. Recent studies have identified MSC
exosomes as the mediator in carrying the restorative agents [10]. In addition to lowering
the potential risks of cell-based therapy, processing, and storage conditions, exosomes are
less sensitive than MSCs [13]. Exosomes will not self-replicate and consequently would
not cause tumor formation [13].

2. MSCs and Exosomes

Although the benefits of exosomes are well-known, the drawbacks of delivering a
therapeutic dosage of exosomes, especially through systemic injections, may outweigh
their advantages [14]. As for the biological effects of exosomes to be prompted, they are
required to be internalized via endocytosis by the targeted cell, otherwise they rapidly
would be cleared from the blood circulation and may even accumulate in the liver, spleen,
lungs, and gastrointestinal tract [14]. Direct intravenous, intraperitoneal, or subcutaneous
injections of exosomes can mount a reaction by macrophages in the reticuloendothelial
system, leading to their rejection. Bodily and topical applications on skin or ocular surfaces
has shown short half-lives after interacting with sweat, tears, and the epithelial barrier (tight
junctions) [14]. On the other hand, the difficulties in exosome purification and mass-scale
production emanate from the expensive manufacturing protocols that require consistency
and purity of nanometer-sized biomaterials [14]. Therefore, delivering exosomes entails a
more efficient method to elude from being cleared by the host body.
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2.1. Characterization of Exosomes

As demonstrated in Figure 1 and Figure 3B, a plethora of methods are being tested to
isolate and characterize exosomes from different types of cells (Figure 3A). Due to the size
distribution (50–120 nm) and the delicate membranous nature of the exosomes, characteriz-
ing them before their involvement in biomaterials is critical to optimize the desired effect in
the target tissue [15]. These characterizations consist of assays to evaluate the interactions
of the exosomes with the surrounding tissue, surface markers, their proteomics profile,
their morphology, and size [15]. From 1 mL of culture medium, typically less than 1 µg of
exosome proteins could be isolated whereas the suggested therapeutic dosage for humans
would require 100–1000 times this value [14]. Thus, the need for a biocompatible, bioactive,
and biodegradable material for delivering therapeutics with exosomes has brought the
attention of biomedical science to porous hydrogels [14].
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Figure 1. A summary of commonly used methods to characterize exosomes: exosome uptake assay [15], exosome effect
on irradiated-cell viability [15], SiRNA transfection [15], immunoblotting [15], cell surface expression analysis (flow
cytometry) [15], MSC markers colocalization assay [15], exosome binding and colocalization assay [15–17], image acquisition
details [18–20], apoptosis assay [19], quantitative reverse transcriptase polymerase chain reaction assay (RT-qPCR) [21],
nanoparticle tracking analysis (NTA) [21–23], dynamic light scattering (DLS) analysis [16], Western blot analysis [24], relative
quantitative mass spectrometry and nano-liquid chromatography mass spectrometry (nLC-MS) [21], and ELISA [25].

2.2. Exosomes and Biomaterials

Due to the reasons indicated earlier, the most pertinent application of exosomes in
regenerative medicine is by conjoining them with a biomaterial [16]. Several studies have
evaluated this combination; for instance, Shi et al. reported accelerated angiogenesis,
neurogenesis, reepithelization, and collagen formation on investigating a chitosan/silk
hydrogel sponge as a carrier for gingival MSC-derived exosomes [16]. In another study,
human placenta-derived MSC exosomes, when encapsulated in a chitosan hydrogel, have
also shown enhanced angiogenesis and tissue regeneration in a mouse hindlimb [26].

As illustrated in Figure 2, in tissue regeneration, and more specifically during bone
formation, osteoblastic cells begin to proliferate and produce an osteogenic matrix, leading
to the formation of a new bone structure and an increased metabolic demand, which is
reciprocated by an increase in the blood flow rate (BFR) and vascular density (VD) [27]. At
this point, endogenous stem cells or its secreted exosomes have to be recruited to enhance
neovascularization [28]. This recruitment is sensitive and essential, and its efficiency
determines the success rate of procedures such as allograft tissues in bone reconstruction
surgeries [27,28].
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Figure 2. Temporal progression of fracture healing. Healing of a fracture involves a complex series of
processes, which can be broadly divided into three phases: (A) inflammatory phase; (B) soft callus
formation; (C) mineralization of callus and bone remodeling (adapted from Upadhyay et al. [29]).

Perfecting the efficiency of a biomaterial to facilitate osteogenesis and angiogenesis is
the driving force behind several studies incorporating biomaterials and tissue engineering.
Therefore, finding the right cell type to isolate exosomes from (Figure 3A,B) and the
corresponding method to characterize these exosomes are as important as discovering the
suitable method to load them with therapeutics and embed them in the proper hydrogel
(Figure 4). As depicted in Figure 3, exosome donor cells vary from the different types of
cells, such as immature dendritic cells [21,30–32]; model cell lines, such as HeLa and HEK-
293 and murine melanoma cells [30]; human platelet lysate (PL) [33]; and MSCs [34,35], see
also [7,17,36].
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are shown on the surface of the exosome. Right panel: Methods to load the exosomes with therapeutics. Figure adapted
from Hofmann et al. [37].

As shown in Figure 4, methods to load the exosomes with therapeutics include
passive [9] or active methods. Passive methods include incubation with exosomes [30,38]
and incubation with donor cells [38]. Active methods include sonication [4,39], freeze–
thaw cycles [38,39], electroporation [9,19,30], extrusion [38,39], incubation [38,39], click
chemistry [38,39], and antibodies [38,39]. Methods such as chemical-based transfection [30],
transfection of exosome-producing cells [30], and cell activation [30] are among the other
techniques for loading exosomes with therapeutics.

3. Exosomes and Hydrogels

Hydrogels are three-dimensional polymers that are physically or chemically cross-
linked in structure, function as biocompatible scaffolds, and demonstrate a strong affinity
for water [4,40]. Hydrogels possess unique properties that can be exploited towards
versatile biomedical applications, such as in [40,41]:

1. A hydrophilic porous structure—an ability to absorb and retain water while main-
taining structural integrity, allowing the free diffusion of particulate materials.

2. Shear and compressive stress—Young’s modulus and atomic force microscopy of
hydrogels determine the cellular migration and proliferation in biomaterial scaffolds.

3. Volume phase transition or gel-sol transition—depending on the nature and magni-
tude of the external stimuli, such as physical (electromagnetic fields, temperature,
and pressure) and chemical (pH and ions), the hydrogels exhibit reversible volume
changes.

4. Degree of flexibility—the structural lattice of the hydrogels formed by the crosslinked
monomer–polymer networking, with covalent and non-covalent bonds, enhance their
adaptability to the microenvironment, mimicking the tissue.

5. Degradability—the synchronized degradation of the hydrogels to support cellular
growth in the tissue microenvironment.

Owing to this versatility, hydrogels mimic natural tissue, and hence have been widely
applied and constantly modified to enhance different biomedical applications. Augmenta-
tion of the hydrogel scaffolds, to improve cellular migration, proliferation, and differenti-
ation, promotes their application in tissue engineering, regenerative medicine, adhesive
medicine, cell-encapsulation matrices, and drug-delivery systems [40,42,43].
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Hydrogels have been widely used as a carrier for the sustained local drug delivery
of treated exosomes, such as a chitosan/silk hydrogel sponge as a substrate for human
gingival MSC-derived exosomes and human placental-derived MSCs [4,16,44]. The hy-
drophilic and cross-linking behavior of hydrogels facilitate their ability for controlled drug
release, and have proven impactful in the fields of angiogenesis, osteogenesis, oncology,
immunology, and pain management [40].

3.1. Hydrogel-Exosome Encapsulation Strategies

Development of smart biomaterials has unfastened the scope for drug encapsulation.
This has led to efficient and sustained delivery of biomolecules in a site-specific manner,
such as hydrogels. Using hydrogels has facilitated the process of harnessing the therapeutic
benefits of exosomes in bone tissue engineering. There are three common strategies for
encapsulating exosomes into a hydrogel matrix [14].

1. Combining exosomes with polymers followed by addition of crosslinkers to induce
gelation (Figure 5A). This technique was explained by Qin et al., where they used thiolated
hyaluronic acid (HA), gelatin, and heparin as the main components. Bone marrow stem cell-
derived exosomes were incorporated into this polymer and polyethylene glycol diacrylate
(PEGDA) was used as a gelation agent [45,46]. This is based on covalent crosslinking of
the active precursors. They are an attractive choice of exosome and cell encapsulation
since they provide high tunability of the hydrogels, allowing control over the mechanical
properties and degradation rate [47]. However, one common concern arises with the
addition of new compounds, such as the crosslinkers, which can be potentially be cytotoxic
to the biomolecules. One additional advantage with this technique is the use of the
macromolecular monomers usually derived from the biocompatible polymers [48].
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2. Physical incorporation of hydrogels or “breathing” technique (Figure 5B). This
method involves two basic steps. First, the already swollen hydrogel is placed into a
solvent that removes the water present in the hydrogel. The hydrogel is then soaked in
an aqueous solution containing the exosomes, causing the breathing-in of the exosomes
into the porous hydrogel [49]. This technique is based on the simple principle of smart
hydrogels forming swollen structures when kept in water, but on exposure to solvents
with lower polarity becomes collapsed and undergo a phase transition [50]. However, to
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use this technique, the pore size of the hydrogel should be moldable and larger than the
exosomes or the stem cells that need to be encapsulated. Once inside, the loosely attached
exosomes will leach out when exposed to the site of action [49].

3. Mixing of the exosomes with both the polymers in solution and crosslinkers
simultaneously (Figure 5C). This leads to an in situ gelation, allowing targeted delivery of
the exosomes, as described in the study by Wang et al., where they used adipose-derived
exosomes with polypeptides for wound healing and skin regeneration [51]. This is usually
achieved by a dual chamber syringe that can inject the hydrogel components with exosomes
directly to the site. [14,46,48]. In situ gelation can be achieved by several mechanisms, such
as UV irradiation, ion-exchange, pH change, and temperature changes [52]. This technique
is highly notable in filling critical size defects with complex geometries, allowing good
viability of the incorporated biomolecules. These injectable scaffolds will have the desired
native tissue properties, and thus can function without external inducers [53].

3.2. Hydrogel Combinations for Exosome and Stem Cell Encapsulation

Sustained delivery of exosomes has been a widely studied research area in tissue
engineering. Although in its infancy, the potential of hydrogel-based delivery systems is
tremendous. Table 1 summarizes some of the most significant hydrogel-based biomaterial
strategies used to incorporate exosomes and their parent stem cells in hydrogels for various
applications in biomedicine.

Table 1. Summary of the most commonly used hydrogel-based systems incorporating exosomes/stem cells, with their
corresponding applications.

Material Used Type of Cells/Exosomes Application Reference

Adamantane and
β-cyclodextrin-modified hyaluronic

acid (HA) hydrogel

Bone marrow-derived endothelial
progenitor cells Cardiac regeneration [54]

Alginate hydrogel Blood plasma Skin regeneration [55]

Chitosan based hydrogel with
ultrasound treated silk fibroin

Human umbilical cord MSCs derived
exosomes containing miRNA-675 Cardiac/Muscle regeneration [56]

Chitosan biopolymer
(hydrogel-exosome composite)/with

hydroxyapatite nanoparticles

Synovium-derived MSCs with
miRNA-126-3p and exosomes Wound healing [57,58]

Chitosan/Silk hydrogel sponge MSC-derived exosomes Wound healing [16]

Hydroxyapatite-embedded hyaluronic
acid-Alginate hydrogel

Human umbilical cord mesenchymal
stem cells-derived exosomes Bone regeneration [59]

Injectable Chitosan hydrogel MSC-derived exosomes Ischemia [26]

Photoinduced imine crosslinking
hydrogel glue-based
acellular tissue patch

SC-ex (stem cell exosomes) Cartilage regeneration [5]

Polydopamine-coating
polylactic-co-glycolic acid
(PLGA) (pDA) scaffolds

Adipose-derived stem cells (hASCs) Bone regeneration [60]

Polypeptide based FHE hydrogels
(Pluronic F127/OHA/EPL) Adipose-derived MSCs exosomes Wound healing and

skin regeneration [51]

Self-healing methylcellulose
chitosan hydrogel Placental MSC-derived exosomes Wound healing [61]

Thermosensitive chitosan hydrogel hP (human placenta)-derived MSCs Muscle regeneration [62]

To date, HA, gelatin, chitosan, and polypeptide-based hydrogels have been used for
encapsulating exosomes from different cell sources [5,45]. Although the mechanism of
embedding exosomes within hydrogels includes one of the three strategies described in
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Figure 5, minor modifications made to the principal technique improves the fabrication ease
and allows efficient delivery of the exosomes. For example, Liu et al. used a photoinduced
imine crosslinker by reacting the aldehyde groups, generated by the light irradiation of
the O-nitro benzyl alcohol groups, to modified HA and amino acids on gelatin [5]. PGLA
has been largely used as a material of choice for exosome encapsulation and a widely used
biocompatible scaffold for tissue regeneration.

The mussel-inspired technique was used by Lee et al. for immobilization using
pDA (polydopamine) to provide a more efficient coating on the PLGA substrate [63].
They immobilized the bone-forming peptides-1 (BFP-1) using this technique, which al-
lowed a slow release of BFP-1 and showed that combining hASCs and PLGA/pDA can
enhance bone formation [64]. Most recently, Wang et al. described a highly efficient
injectable self-healing hydrogel fabrication using a Schiff base linkage for applications
in severe wound healing [61]. They constructed a methyl-cellulose (MC)–chitosan (CS)
combination of a hydrogel with placental cell-derived exosomes. The MC- and CS-grafted
polyethylene glycol were synthesized using DCC (dicyclohexyl- carbodiimide) and EDC
(1-(3-dimethylaminopropyl)-3-ethylcarbodiimide) reactions. Both these polymer solutions
were mixed together along with exosomes to fabricate the complex hydrogel [61].

Scaffold production, using physical freeze drying and crosslinking methods, have
provided good results in terms of cell encapsulation. However, Chen et al. described fabri-
cation of a 3D-printed decellularized extracellular matrix (ECM) with gelatin methacrylate
loaded with exosomes from MSCs using desktop-stereolithography technology [65]. This
technique allowed the synthesis of radically oriented channels, which provides superior
cartilage regeneration by directing the migration of the chondrocytes and thus repairing
osteochondral defects [65].

Currently, all materials commonly used for exosome encapsulation are naturally
derived owing to their ease of handling and fabrication, higher biocompatibility, and ability
to simulate ECM-like conditions [65]. Although there might be harmful effects due to
the presence of crosslinkers and residual peptides during hydrogel formation, they are
highly formable and can be constructed for patient-specific needs, making them the key
biomaterial for drug delivery and other tissue-regeneration applications [65]. Still, the
challenges in their use include a lack of slow-releasing potential, inability to induce surface
modifications, and timing the delivery of exosomes or bioactive molecules to coincide with
the natural healing and regenerative processes [65].

3.3. Hydrogels and Exosomes in Hard Tissue Regeneration

Inducing hard tissue regeneration with a controlled release of drugs requires the
presence of suitable cells as the foundation [66]. Bone regeneration is based on three key
factors: stem cells, scaffolds, and growth factors [67]. Figure 2 depicts the cascade of events
for healing of a fracture and consists of a complex physical process for delivering drugs and
biomaterials [66]. Amongst the hard tissues, regeneration of cartilage remains challenging
due to its avascular nature [68]. Given the high incidence of age-related diseases, such
as osteoarthritis and injuries, it becomes imperative to look for alternative regenerative
procedures [68].

Scaffolds and grafts have been used for ages for bone regeneration. Especially for hard
tissue repair, artificial grafts and scaffolds offer the advantage of having less morbidity as
there is no need for secondary surgery or donors. They are also cheaper and customizable
to the required needs. There have been numerous advances to inculcate their inductive
nature by fabrication of hybrid biomaterials with multipotential cells and their released
factors. As depicted in Table 2, each biomaterial releases its secretory content at a different
rate, and hence has a different potential clinical use.
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Table 2. Stems cells combined with hydrogel matrices and their corresponding clinical/in vivo uses in hard tissue
regeneration.

Parent Cell Type Assisted Matrix Potential Clinical Use/In
Vivo Experiments Release Kinetics References

hASC PLGA/pDA Calvarial defects in mice 87% in 8 days [60]

hBMSC PCL/GSNO Barrier membrane for
tissue regeneration Not mentioned [69]

hBMSC GelMA Cartilage repair in
osteoarthritis 56% left after 14 days [65]

hGMSCs PLA Rat calvarial defects Not mentioned [70]

hIPSC PIC hydrogel glue Rabbit articular defect 90% left in gel after 14 days [5]

hIPSC B-TCP Calvarial defects in mice Burst release [71]

hUCMSC
Injectable HAP—embedded

in an in situ crosslinked
HA–ALG hydrogel system

Calvarial defects in mice 71.2% in 14 days [59]

hUCMSC (human umbilical cord mesenchymal stem cells); HA–ALG (hyaluronic acid–alginate); HAP (hydroxyapatite); hASC (human
adipose derived stem cells); PLGA (poly (lactic-co-glycolic acid)) with a polydopamine-coating (pDA); hIPSC (human-induced pluripotent
stem cells); PIC (photo-induced imine crosslinking gel); β-TCP (tri-calcium phosphate); hBMSC (human bone marrow stem cell); PCL
(polycapronolactone) with GSNO (S-nitrosoglutathione); GelMA (methacrylate); hGMSCs (human gingival mesenchymal stem cell; PLA
(polylactide).

Exosome-integrated scaffolds helped in restoring the mitochondrial function of de-
grading cartilage in an osteoarthritic cell model. Chen et al. identified the proteins associ-
ated with degrading mitochondrial function through protein enrichment analysis, which
were less expressed in treated cells, leading to the rescue from osteoarthritic degrada-
tion [65]. Additionally, through transwell migration assays, it was found that the MA
matrix with exosomes and ECM proteins had the maximum influence on chondrocyte
migration [65].

Table 2 lists the studies that had tested additional parent cell types and combinations
of assisted matrices with hydrogel compositions. One of the most commonly used compo-
sitions is PLGA, which is applied as a biocompatible scaffold for tissue regeneration. The
challenge with PLGA is its lack of ability for slow-releasing surface modification. Such a
feature becomes essential while timing the delivery of the exosomes or bioactive molecules
to coincide with the natural healing and regenerative process. To overcome this issue,
the release profile of the PLGA polymeric scaffolds was assessed by combining it with
polydopamine (pDA), a mussel-inspired biomaterial that allows higher adhesions [60]. The
exosome burst release from PLGA/pDA was recorded to be significantly slower (8 days)
than the PLGA samples (4 days) [60]. In another study, Yang et al. found better release
kinetics with 71.2% of exosomes being released over 14 days using hydroxyapatite (HAP)
and hyaluronic acid–alginate gel (HA–ALG) hydrogels [59].

Each study entails a specific physiological pathway exploited for osteogenic induction.
For instance, Li et al. used hASC-derived exosomes two days after osteogenic induction
to potentiate the osteogenesis-promoting factor production [60]. In the same study, the
chemotactic and proliferative effect on BMSCs were tested and it was found that during the
phenotypic translation of the MSCs, its chemotactic and proliferative effects may be lost [60].
Another important pathway found to be involved with exosome release from stem cells is
the PI3Akt pathway, as the exosomes derived from human-induced pluripotent stem cells
(hIPSCs), integrated into tricalcium phosphate, were seen to enhance bone regeneration
through the phosphoinositide 3-kinase (PI3Akt) pathway [1,71].
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3.4. Hydrogels and Exosomes in Soft Tissue Regeneration

Soft tissue regeneration is required in cases of delayed wound healing as in diabetic
patients or large soft tissue wounds like burns [72]. Biomaterials for soft tissue wound
healing are required to be able to adapt to the uneven morphology and mobility of the defect
and also to have adhesiveness to the surrounding tissue to offer complete coverage as well
as prevent exposure of the healing site to the environment (Table 3) [72]. The characteristics
of assisted matrices for soft tissue regeneration include having a thermally responsive
gelation, water retaining ability, as well as antibacterial and adhesive properties [51,73].
Hydrogels, such as FHE, offer these properties and, when loaded with exosomes, have
shown enhanced angiogenic potential [51,73]. Regenerative medicine has offered countless
approaches for assisted wound healing [72]. With the recently identified advantages of
exosomes, efforts are being made to integrate past and newer biomaterial scaffolds with
these multiple factor-packed small molecules [72]. Biomaterials for soft tissue wound
healing are required to be able to adapt to the uneven morphology and mobility of the
defect and also to have adhesiveness to the surrounding tissue to offer complete coverage
as well as prevent exposure of the healing site to the environment. This adaptability ensures
the most efficient biomimetics and can be offered by bio-responsive smart materials.

Table 3. Stems cells combined with hydrogel matrices with their corresponding clinical/in vivo uses
in soft tissue regeneration.

Parent Cell Type Assisted Matrix Potential Clinical Use Reference

hASC FHE hydrogel Severe diabetic wound healing [51]
hASC Alginate Skin grafts [74]

hGMSCs Chitin Nerve repair [75]
hGMSCs Chitin Diabetic wound healing [16]

PMSC MC/Chitosan Diabetic wound healing [61]
FHE (Puronic F127), oxidative hyaluronic acid (OHA), and poly-l-lysine (EPL); PMSC (placental mesenchymal
stem cell derived).

As demonstrated in Table 3, Wang et al. studied the effect of both free exosomes
and those encapsulated in an FHE hydrogel on HUVEC cells and found that sustained
release from the hydrogel supported a better growth by being less toxic to the cells and
providing the required stimulus [51,73]. The FHE (F127/OH-EPL) hydrogel offered a
tissue-responsive behavior by having thermally responsive gelation, water retaining ability,
as well as antibacterial and adhesive properties [51,73]. Loading with exosomes has shown
an enhanced angiogenetic potential in a diabetic mice model [51,73]. They successfully
demonstrated good injectability, self-healing, antibacterial activity, and stimuli-responsive
exosome release [51,73]. Similarly, a self-healing hydrogel consisting of a methyl-cellulose–
chitosan hydrogel with placental mesenchymal stem cell (PMSC)-derived exosomes was
also shown to be capable of diabetic wound healing, where neo tissue formation with
similarity to natural skin was achieved [61].

Skin regeneration has long been associated with aesthetic and plastic surgery [76].
Duncan et al. recently added exosomes with polydioxanone (PDO) threads in micro lifting
surgery, which enhanced the bio stimulatory potential, and thus resulted in a faster clinical
outcome [77]. Neural regeneration is also an exciting area where exosomes have been
tested and proven helpful [78,79]. Exosomes from hGMSCs with chitin conduits were
experimented on in a rat model by Rao et al., and the results showed improved repair of
sciatic nerve damage [75].

4. Alternative Methods to Exosome Delivery

Aside from using exosome-embedded hydrogels to achieve a topical and sustained
drug release effect, when exosomes are not encapsulated in hydrogels, they are delivered
intravenously or topically [80]. Sun and co-authors [80] have designed a delivery method
that can topically release exosome at the target sites. They also intravenously injected
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exosomes together with a SonoVueTM microbubble (Bracco Imaging) into mice, and then
targeted the destruction of these microbubbles by ultrasound [80]. They proved that the
ultrasound-targeted microbubble destruction (UTMD) significantly increased the exosome
infiltration and endocytosis. This method can be used as an alternate strategy for exosome
delivery and endocytosis enhancement, but the disadvantage is that the exosomes would
be quickly metabolized by the blood circulation system, causing a low utilization rate of
the exosomes [80].

Multifunctional mesoporous bioactive glasses are also used for delivering therapeu-
tic ions to the site of regeneration [81]. Mesoporous silica nanoparticles (MSNs) as a
drug-delivery system have recently been used for bone tissue engineering [82]. These
nanoparticles have a high specific surface area and pore volume, which allows for high
loading of a drug and the controlled release of the drug from days to even weeks [82].
Among other nanoparticles, using icariin loaded on micro/nano hybrid structured hydrox-
yapatite granules, has shown the potential for repairing femoral defects [83]. In segmental
bone repair, locally applied granulocyte colony-stimulating factor (G-CSF) has shown to en-
hance bone regeneration via neovascularization and osteogenesis [84]. In a similar context,
using a graphene-based miRNA transfection drug-delivery system, Dou and colleague
discovered that the platelet-derived growth factor secreted by pre-osteoclasts (POC) can
enhance bone mineral density, bone volume, and bone vascularization [85].

5. Conclusions

Tissue engineering with its requirements has created several new regenerative tools
and biomaterials. Among the plethora of biomaterials, those combining hydrogels and
stem cell therapy have shown promising results. Due to the numerous advantages of MSCs
and their secretions (i.e., exosomes), several hydrogel formulations, such as PLGA, pDA,
alginate, chitin PLGA/pDA, and FHE, have been reported to induce hard and soft tissue
regeneration.
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Abbreviations

AD adipose tissue
AF amniotic fluid
BFP-1 bone-forming peptides-1
BFR blood flow rate
BMPs bone morphogenetic proteins
CB cord blood
CS chitosan
CSDs critical size defects
DCC dicyclohexyl-carbodiimide
DLS dynamic light scattering
ECM extracellular matrix
EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
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FGF fibroblast growth factor
G-CSF granulocyte colony-stimulating factor
Gel MA methacrylate
GSNO S-nitrosoglutathione
HA hyaluronic acid
HA–ALG hyaluronic acid–alginate
HAP hydroxyapatite
hASC human adipose-derived stem cells
hBMSC human bone marrow stem cell
hGMSCs human gingival mesenchymal stem cell
hIPSC human-induced pluripotent stem cells
HMG-CoA 3-hydroxy-3-methyl-glutaryl coenzyme A
hUCMSC human umbilical cord mesenchymal stem cells
IGF insulin-like growth factor
MBG mesoporous bioactive glasses
MC methylcellulose
MSCs mesenchymal stem cells
MSNs mesoporous silica nanoparticles
NTA nanoparticle tracking analysis
OHA oxidative hyaluronic acid
PCL polycapronolactone
pDA polydopamine
pDA polydopamine-coating
PDGF platelet-derived growth factors
PECL poly (epsilon-caprolactone)
PEGDA polyethylene glycol diacrylate
PIC photoinduced imine cross-linking gel
PLA polylactide
PLGA poly (lactic-co-glycolic acid)
PMSC placental mesenchymal stem cell derived
POC preosteoclast
S1P sphingosine 1-phosphate
TCP tri-calcium phosphate
TGF transforming growth factor
VD vascular density
WJ Wharton’s jelly
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