## **Supplementary Materials:**



**Figure S1.** The expression profiles of *AntiCabs1* in mice and humans. (**A**) *AntiCabs1* exclusively expressed in mouse testis. (**B**) *AntiCabs1* expression in mouse testis at different stages of development. (**C**) *AntiCabs1* expression in human tissues. Total RNA was isolated from mouse tissue samples using a RNAiso Plus kit, and human tissue RNAs were purchased from Takara (Dalian, China). RT-PCR was performed to detect the *AntiCabs1* expression level. The *β-actin* gene was used as a loading control.



**Figure S2.** Generation of *AntiCabs1* KO mice. (**A**) The diagrams of the targeting strategy and genotyping primer sites. (**B**) Validation of the *AntiCabs1* KO mouse model. PCR genotyping was performed on tail genomic DNA with the two primer sets, allowing for the specific recognition of WT (760 bp) and KO (498 bp) alleles. (**C**) Schematic representation of *AntiCabs1*-specific RT-PCR primer. (**D**) Investigation of *AntiCabs1* expression in *AntiCabs1* KO mice. Total RNA extracts from the testis were used to confirm the absence of *AntiCabs1* transcripts (950 and 280 bp PCR products) by RT-PCR with specific two primer sets in KO mice.



**Figure S3.** Testicular and epididymal phenotypes in *AntiCabs1* KO mice. (**A**) Histological analyses of the testis and epididymis sections from WT and *AntiCabs1* KO mice stained with hematoxylin and eosin. (**B**) Testis weight. The weight of the testis and body was weighed by an electronic balance. (**C**) Sperm concentration and (**D**) motility in male WT and KO mice were measured by computer-assisted sperm analysis (CASA) using the sperm collected from the cauda epididymitis. (**E**) Male fertility and (**F**) litter size. Pregnancy and litter size were counted in mating cages with male WT and KO mice over a period of 3 months.



**Figure S4.** *Cabs1* expression is independent on *AntiCabs1*. (**A**) *Cabs1* and *AntiCabs1* overexpression of the H293 cell lines were constructed by transfecting the Enhanced Green Fluorescent Protein (EGFP)-labeled lentiviral vectors, pLV-Cabs1 and pLV-AntiCabs1, respectively. (**B**) Confirmation of *Cabs1* and *AntiCabs1* overexpression of the H293 cell lines. The cells that overexpressed *Anti-Cabs1* and *Cabs1* were used to isolate the total RNA, and then, RT-PCR was performed to amplify the *Cabs1* and *AntiCabs1* transcripts. (**C**) Effect of *AntiCabs1* on Cabs1 protein expression in vitro. Cabs1 expression levels were detected by Western blot after the Cabs1 overexpressed cells were treated with the *AntiCabs1* lentiviral vector for 60, 72, or 96 h. (**D**,**E**) Effect of *AntiCabs1* on *Cabs1* mRNA and protein expressions in vivo. *Cabs1* mRNA expression levels were detected by QPCR. Cabs1 protein expression levels were determined by Western blot in *AntiCabs1* homozygous, heterozygous, and WT mice. Gapdh and  $\beta$ -actin were used as loading controls.



**Figure S5.** The generation and confirmation of *Cabs1* KO mice. (**A**) Three-line KO founder mice were produced. (**B**) Amino acid sequences encoded by wild-type and mutant *Cabs1*. (**C**,**D**) Sanger sequencing of *Cabs1* WT and KO alleles.



**Figure S6.** Schematic diagram of *Cabs1* (**A**) and *AntiCabs1* (**B**) lentivirus gene expression vectors. Vectors were constructed and packed by Cyagen US Inc. (Guangzhou, China).

| Table S1. The | primer | sequences | of the | examined | genes. |
|---------------|--------|-----------|--------|----------|--------|
|---------------|--------|-----------|--------|----------|--------|

| Purpose                    | Sym-<br>bol/ID | Forward Primer                 | Reverse Primer                    | Length(bp) |
|----------------------------|----------------|--------------------------------|-----------------------------------|------------|
| Genotyping primers         | Cabs1          | TGGTGAGCCCCTGTCATTACCTG        | AACAGCTCCATCATCAGGAGCATC          | 756        |
| Sequencing Primers         | Cabs1          | CAATGCTTCAGTCACTATTCTGG        |                                   |            |
| qPCR                       | Cabs1          | AGGTCACCACCATTCCAGACA          | AGTGAGCAGAACAGCATGGG              | 257        |
| PCR_CDS                    | Cabs1          | ATGGCTGAAGATGGATCGC            | TTACATCATGAGATCGTCTGGTTC          | 1176       |
| Genotyping primers_KC      | ) AntiCabs1    | TGTGAACACCACAGATTTGCCTGA       | AGTCTATTTACACCCACAC-<br>TCCCTCTCA | 760        |
| Genotyping pri-<br>mers_WT | AntiCabs1      | GAAATGGCTTCCTTTACTGCTT-<br>GCC | AGTCTATTTACACCCACAC-<br>TCCCTCTCA | 498        |
| qPCR                       | AntiCabs1      | GGGATGAGGTGTGAGCTTGT           | GGGCTGACAACACCATTCCTA             | 128        |
| specific1_PCR              | AntiCabs1      | AATGCCCACAATATTCTTTTTTCT       | AACAAGCTCACACCTCATCC              | 950        |
| specific2_PCR              | AntiCabs1      | TGGGGATGAGGTGTGAGC             | TTGCCCAGGGATGCCACT                | 280        |
| PCR                        | AntiCabs1      | AATGCCCACAATATTCTTTTTTCT       | CTTGCCCAGGGATGCCACT               | 1208       |
| qPCR                       | Ccnyl1         | TGGACATTTTTGATGAGCGGT          | ACCAACGTCACTATTGCACATTC           | 157        |
| qPCR                       | Sept4          | ACGGAATCGCAACAAACTGAC          | TCTTTCTCCCGGATTAGCTTCTC           | 104        |
| qPCR                       | Krt1           | TGGGAGATTTTCAGGAGGAGG          | GCCACACTCTTGGAGATGCTC             | 104        |
| loading control            | β-actin        | GGCTGTATTCCCCTCCATCG           | CCAGTTGGTAACAATGCCATGT            | 154        |