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Abstract: The sarcomere as the smallest contractile unit is prone to alterations in its functional,
structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies
like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very
rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-
sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional
effects in correlation to the phenotype and present an integrated model for the development of
genetic RCM.

Keywords: cardiomyopathy; restrictive cardiomyopathy; pediatric; sarcomere; contractile dysfunc-
tion; calcium; aggregation; gene expression

1. The Sarcomere

The sarcomere as the substructure of myofibrils is the contractile unit of striated
muscles i.e. skeletal and cardiac muscle (Figure 1). It forms a symmetric unit with the
M-disc in the center and is bordered by the Z-discs. M-disc and Z-disc provide the anchors
for thin, thick and elastic filaments. The elastic filament is composed of the giant protein
titin spanning half the sarcomere. The thin filament contains mainly filamentous actin and
the regulatory proteins tropomyosin and troponin. The thick filament includes the motor
protein myosin and the regulatory protein myosin binding protein C linking thick and thin
filament. Ca2+-dependent interaction of myosin with actin leads to the gliding of the thin
and thick filaments past each other, the sarcomere is shortened, myocytes and finally the
whole muscle contract [1,2]. The sarcomere consists of a large number of highly organized
proteins besides the proteins of thin and thick filaments and is linked to the extracellular
space and nucleus via the cytoskeleton. In addition, a number of associated proteins
connect the sarcomere to various signaling pathways. Such a complexity is indispensable
to coordinate the contractile function of each cardiomyocyte and adapt the heart’s work
continuously to the momentary demands of the body. Thus, the smooth work routine
of all the sarcomeres within each cardiomyocyte of the heart muscle is pivotal for the
contractile function of the heart and is based on the highly balanced interplay of sarcom-
eric proteins and of the sarcomeres themselves. Apparently, sarcomeric function is very
sensitive to disturbances of any kind. Even one dysfunctional sarcomeric protein, altered
protein-protein interactions, changes in sarcomeric structure and dynamics, alterations in
expression, proteolytic degradation etc., progress to contractile dysfunctions and finally to
cardiomyopathies and heart failure. Sometimes, compensation mechanisms to overcome
the defects are provoked which, however, over time also may become pathological.
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Figure 1. Organization of the contractile machinery. Cardiomyocytes are thickly packed with con-
tractile elements, the myofibrils, which are connected to each other and via the cytoskeleton to the 
extracellular matrix and to the nucleus. Myofibrils are composed of sarcomeres, the smallest con-
tractile units of the cardiac muscle cell. Proteins, whose genes are targets for mutations leading to 
restrictive cardiomyopathy are indicated. cMyBP-C = myosin binding protein C; cTnI, cTnT, cTnC 
= cardiac troponin subunits I, T and C; Sur2A = sulfonylurea receptor isoform 2A; BAG3 = Bcl2-
associated athanogene 3. The figure was created using PowerPoint (Microsoft). 

2. Cardiomyopathies 
Cardiomyopathies are defined as cardiac diseases, in which the heart muscle is af-

fected showing functional and structural defects [3]. According to the classification of car-
diomyopathies as described by Elliott et al., 2008, they can be subdivided into RCM (re-
strictive cardiomyopathy), HCM (hypertrophic cardiomyopathy), DCM (dilated cardio-
myopathy), ACM (arrhythmogenic cardiomyopathy) and unclassified cardiomyopathies 
as for example non-compaction cardiomyopathy (LVNC) (Figure 2). The causes of these 
cardiomyopathies may be genetic/familial or non-genetic and idiopathic. 

2.1. Left Ventricular Non-Compaction Cardiomyopathy 
LVNC seems to be the common cardiomyopathy type in the class of unclassified car-

diomyopathies at least in children [4,5]. The origin of the disease is thought to lie in an 

Figure 1. Organization of the contractile machinery. Cardiomyocytes are thickly packed with con-
tractile elements, the myofibrils, which are connected to each other and via the cytoskeleton to
the extracellular matrix and to the nucleus. Myofibrils are composed of sarcomeres, the small-
est contractile units of the cardiac muscle cell. Proteins, whose genes are targets for mutations
leading to restrictive cardiomyopathy are indicated. cMyBP-C = myosin binding protein C; cTnI,
cTnT, cTnC = cardiac troponin subunits I, T and C; Sur2A = sulfonylurea receptor isoform 2A;
BAG3 = Bcl2-associated athanogene 3. The figure was created using PowerPoint (Microsoft).

2. Cardiomyopathies

Cardiomyopathies are defined as cardiac diseases, in which the heart muscle is affected
showing functional and structural defects [3]. According to the classification of cardiomy-
opathies as described by Elliott et al., 2008, they can be subdivided into RCM (restrictive
cardiomyopathy), HCM (hypertrophic cardiomyopathy), DCM (dilated cardiomyopathy),
ACM (arrhythmogenic cardiomyopathy) and unclassified cardiomyopathies as for example
non-compaction cardiomyopathy (LVNC) (Figure 2). The causes of these cardiomyopathies
may be genetic/familial or non-genetic and idiopathic.
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impaired embryonic development, leading to a sponge-like ventricle and dilation due to 
abnormal trabeculations. In several cases mutations have been identified for example in 
the genes encoding a member of the dystrophin–related protein family, tafazzin, a mito-
chondrial membrane protein involved in cardiolipin metabolism, in dystrobrevin, or in a 
gene encoding lamin, located in the nuclear envelope [6]. But also sarcomeric genes as 
MYH7, ACTC, TNNT2, TPM1, ZASP are affected [7]. TNNT2 seems to be involved in car-
diogenesis in the regulation of atrial septal growth and formation of trabeculae [8]. How-
ever, the mechanism of disease development still is obscure and it is not clear, if and how 
these mutations impair correct embryonic development of the heart. Clinically, LVNC is 
associated with left ventricular dysfunction and severe arrhythmia, sudden cardiac death, 
or embolic stroke due to an enhanced risk of thrombus formation within the trabeculaes. 

 
Figure 2. Classification of cardiomyopathies. LVNC = left ventricular non-compaction cardiomyo-
pathy, ACM = arrhythmogenic cardiomyopathy, DCM = dilated cardiomyopathy, HCM = hyper-
trophic cardiomyopathy, RCM = restrictive cardiomyopathy. The figure was created using Power-
Point (Microsoft). 

2.2. Arrhythmogenic Cardiomyopathy 
ACM has an estimated frequency in the general population of 1:100 to 1:5000. Since 

sudden cardiac death similar to hypertrophic cardiomyopathy may occur as the first man-
ifestation of the disease, there might be an additional number of unreported cases of ACM 
in the general population [9]. The hallmark of ACM is the replacement of ventricular car-
diomyocytes by fibrotic and fatty tissue, which progresses with time. This might affect the 

Figure 2. Classification of cardiomyopathies. LVNC = left ventricular non-compaction cardiomyopa-
thy, ACM = arrhythmogenic cardiomyopathy, DCM = dilated cardiomyopathy, HCM = hypertrophic
cardiomyopathy, RCM = restrictive cardiomyopathy. The figure was created using PowerPoint
(Microsoft).

2.1. Left Ventricular Non-Compaction Cardiomyopathy

LVNC seems to be the common cardiomyopathy type in the class of unclassified
cardiomyopathies at least in children [4,5]. The origin of the disease is thought to lie in
an impaired embryonic development, leading to a sponge-like ventricle and dilation due
to abnormal trabeculations. In several cases mutations have been identified for example
in the genes encoding a member of the dystrophin–related protein family, tafazzin, a
mitochondrial membrane protein involved in cardiolipin metabolism, in dystrobrevin, or
in a gene encoding lamin, located in the nuclear envelope [6]. But also sarcomeric genes
as MYH7, ACTC, TNNT2, TPM1, ZASP are affected [7]. TNNT2 seems to be involved
in cardiogenesis in the regulation of atrial septal growth and formation of trabeculae [8].
However, the mechanism of disease development still is obscure and it is not clear, if and
how these mutations impair correct embryonic development of the heart. Clinically, LVNC
is associated with left ventricular dysfunction and severe arrhythmia, sudden cardiac death,
or embolic stroke due to an enhanced risk of thrombus formation within the trabeculaes.

2.2. Arrhythmogenic Cardiomyopathy

ACM has an estimated frequency in the general population of 1:100 to 1:5000. Since
sudden cardiac death similar to hypertrophic cardiomyopathy may occur as the first
manifestation of the disease, there might be an additional number of unreported cases of
ACM in the general population [9]. The hallmark of ACM is the replacement of ventricular
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cardiomyocytes by fibrotic and fatty tissue, which progresses with time. This might affect
the right or left ventricle, or both, and finally leads to electrical instability and systolic
dysfunction [10,11]. Like the other cardiomyopathies, ACM is genetically heterogeneous.
Thus, for example, variants of proteins of the nuclear envelope like transmembrane protein
43 or lamin A/C have been correlated to ACM. The latter seems to induce mainly right
ventricular and bi-ventricular cardiomyopathy [12,13]. In addition, mutations in PLN
encoding phospholamban have been identified to cause ACM. In the Netherlands, the
phospholamban p.R14del mutation has been declared a founder mutation responsible
for the disease in 10–15% of all ACM patients [14]. Other ACM target genes encode the
cardiac sodium channel and the sarcomeric protein titin [15–17]. Several rare single amino
acid replacements in titin have been identified in different families (p.T8031C, p.A18579I +
p.M33291T, p.A19309S, p.P308471L, p.T2896I). p.T2896I is located in the conserved Ig10
domain within the spring region of titin [16]. Also, nonsense filamin C variants have
been correlated to either DCM or ACM. Recently, a filamin C intronic mutation was
described in three Jewish families leading to reduced filamin C transcripts as well as
aberrant filamin C protein variants [18]. Interestingly, these variants did not show a
mislocalization of proteins such as glycogen synthase kinase-3β or plakoglobin considered
typical for ACM [19]. Mainly, ACM is caused by mutations in genes encoding structural
proteins as desmosomal proteins like plakoglobin, desmoplakin, plakophillin etc., with
increased risk of sudden cardiac death and left ventricular dysfunction [20]. Desmosomes
link desmin to the extracellular matrix. Dysfunctional desmosomes not only affect cell-cell
communication, but also lead to cell death. Such a loss of cardiomyocytes is compensated
finally by substitution with fat and/or fibrous tissue instead of new cardiomyocytes, since
the regeneration capacity of cardiomyocytes is extremely low [21]. The disease usually
manifests in adults or during adolescence. It is very rarely diagnosed in children, probably
because of lacking symptoms. However, an early diagnosis would help to postpone
manifestation of a severe ACM [22–24].

2.3. Dilated Cardiomyopathy

One of the common cardiomyopathies is DCM, which is mainly characterized by
left ventricle dilation, systolic dysfunction and high morbidity. Main causes for DCM are
infections, inflammation or toxins [25]. Also infants might be affected showing either mild
or strong symptoms at diagnosis, but the disease onset in childhood is generally correlated
with a high mortality rate. In a Swedish study, only 8% of the children recovered within
the 25-year follow-up period [26]. Most of them had to undergo a heart transplantation, or
a ventricular assist device or pacemaker was implanted, or they died before any of these
options could be applied. An American study revealed that boys were more affected than
girls and that also the ethnic origin seemed to play a role in disease progression [27]. Less
frequently, DCM may also be caused by genetic defects, though there might be a significant
number of undetected cases. Thus, according to Burkett & Hershberger, idiopathic DCM to
about 50% is due to mutations [28]. The inheritance mainly is autosomal dominant, but
also could be recessive, X-linked or even mitochondrial [29]. More than 60 genes have
been associated to familial DCM [30,31]. The target genes for example might encode the
sarcomeric proteins titin, cardiac troponin T (cTnT) and C (cTnC), actin, myosin heavy
chain (MHC) or ion channels as the voltage gated sodium channel subunit alpha, as well as
structural proteins e.g. lamin, filamin C, desmin [19,21]. One of the most prominent genes
affected in familial DCM is TTN (up to 30% of all familial DCM cases up to date) encoding
titin, the elastic filament of the sarcomere (Figure 1) [32]. Here, mostly truncation mutations
have been observed in up to 25% of young DCM patients [33,34]. Most titin truncations in
DCM patients occur in the A-band region of the sarcomere, whereby penetrance is clearly
age dependent [35,36]. But also missense mutations have been described in TTN leading
to similarly severe DCM as observed in patients with truncated titin. For example, Galan
et al., 2020, recently showed that replacement of functional active cysteine residues in titin,
whose oxidation affects titin stiffness and dynamics, leads to the development of DCM [37].
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2.4. Hypertrophic Cardiomyopathy

The most frequent cardiomyopathy based on gene defects is HCM, whereby more than
1400 mutations in genes mainly encoding sarcomeric proteins have been identified up to
date. Clinically, HCM is characterized by symmetrically or asymmetrically thickened heart
walls, affecting in most cases the septum and/or the left ventricle. Diastolic dysfunction
and a high risk of sudden cardiac death especially in young athletes are hallmarks in HCM.
Histologically, cardiomyocytes appear enlarged and disarrayed and the cardiac muscle
tissue shows fibrosis. In general, the disease manifestation is highly variable. Though
there are also severe cases in young people, often the disease remains asymptomatic and
thus undetected in the young [38–40]. The genes which are affected most in HCM patients
are those encoding for myosin heavy chain (MHC) and cardiac myosin binding protein
C (cMyBP-C). More than 50% of the reported HCM mutations have been detected in
these two genes [41]. In MYH7 (cardiac gene of MHC) and most other genes encoding
sarcomeric proteins, predominantly missense mutations are found leading to single amino
acid replacements in the resulting protein. In MHC, mostly amino acid replacements
in the actin binding domain or the ATPase domain have been identified, affecting force
production [42]. In case of cMyBP-C, mainly truncated proteins are formed, leading to
haploinsufficiency [43]. On the molecular level, when using isolated recombinant protein
fragments of MHC variants in functional assays, MYH7 HCM mutations reduced force
production. In contrast, in animal models and isolated variant MHCs enhanced contractility,
i.e., increased and accelerated force production was observed [44]. The discrepancy of
these observations may be due to effects of post-translational modifications or involvement
of other proteins present in the more complex assay systems such as animal models and
isolated whole cells or even myofibrils. Due to the complexity of the sarcomere and
its interactions, reduced assay systems as reconstituted filaments are not able to reflect
the situation in the sarcomere or even less in a cardiomyocyte or tissue; they just show
dysfunction of the used proteins, but not necessarily the outcome in the cardiomyocyte
or tissue. Thus, the enhancement of contractility fits to the generally observed increased
Ca2+-sensitivity leading to enhanced activation at lower calcium concentrations than in
healthy cardiac muscle [45,46]. Such a hypercontractility is known to lead to energy
(ATP) depletion, but more importantly increase ADP- and decrease phosphocreatine levels,
thereby affecting myosin cross bridges, force production and impairing re-extension [47,48].

2.5. Restrictive Cardiomyopathy

Restrictive cardiomyopathy (RCM) is a lethal, but rare disease which mostly is due to
infiltration, and in a smaller percentage due to genetic disorders. In general, genetic RCM
is characterized by near normal-sized left ventricle with enhanced stiffness and enlarged
atria due to increased end-diastolic pressure in the ventricles. The disease is combined with
an abnormal filling pattern and thus belongs to the diastolic diseases. Systolic function at
least in the beginning of the disease is near normal but might be reduced at later stages of
the disease. Sometimes also a mild hypertrophy is observed, making diagnostic distinction
between RCM and HCM difficult [49].

The far most common cause of infiltrative diseases is amyloidosis that results from
misfolding and deposition of proteins (amyloids) between the muscle fibers and/or within
the walls of coronary arteries. The amyloids induce an enlargement of the heart walls
giving an appearance of hypertrophy. However, the myofibers themselves are not affected
as they are in HCM [50]. Two main types can be distinguished: the light chain (AL) and the
transthyretin amyloidosis (ATTR). The latter type includes a hereditary sub-type caused by
variants of the transthyretin protein, and a more common wild-type ATTR which is clearly
age-related (“senile ATTR”) [51]. Similar as for DCM, the majority of idiopathic RCM cases
are caused by gene defects, though up to date the knowledge on RCM genetics is still very
poor [52,53]. In genetically based RCM, the inheritance usually is autosomal dominant.
Genes with (non-infiltrative) RCM variants include also TNNI3, TNNT2, TNNC1, TPM1,
TTN, MYH7, MYL2, MYBPC3, MPN, DES, FLNC, LMNA, BAG3 (Table 1) and are similar
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to those of DCM, HCM and LVNC [52,54,55]. Most mutations have been identified in
genes encoding for sarcomeric proteins, some in sarcomere associated proteins like small
heatshock proteins such as crystallin αB, or their binding partners such as BAG3 — proteins
whose dysfunction potentially leads to the accumulation of aggregated proteins (Table 1).

Several mutations in genes whose proteins are not directly involved in contractile
function have been described in patients with RCM, among others desmin, filamin C
and crystallin αB [56–60]. Usually, desmin mutations have been associated with DCM,
however, a p.E413K mutation was found in a Polish family with a history of fatal heart
diseases, in which 3 adult (30–60 year old) living members suffered of RCM [56]. Other
family members also in young age suffered from heart disease and dies suddenly, but the
diagnostic confirmation of RCM was not clear. The p.E413K desmin mutation is located in
a conserved region involved in filament assembly which is different to the other mutations
found in DCM patients. In patient muscle biopsies as well as in a cell culture model, desmin
aggregates and disrupted Z-discs have been observed. Also, another desmin mutation
which has been linked to RCM affects a splicing site within the DES gene and leads to
disruption of the filamentous network of the cardiomyocytes [58]. In this case cardiac
symptoms were diagnosed at the age of 46 in a Polish patient. More recently, a homozygous
p.Y122H desmin mutation was identified in a RCM patient aged 19 [57]. This mutation is
located within a region which is involved in the coiled coil formation of desmin dimers,
and leads to abnormal cytoplasmic aggregation of desmin suggesting that this region may
be a hotspot of cardiomyopathy-related mutations.
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Table 1. Overview of mutations in sarcomeric and non-sarcomeric proteins associated with restrictive cardiomyopathy.

Gene/Protein Variant Allele
Origin

No. of Affected
Families (No.

Mutation Carriers)

Age at
Presentation/Onset
(Youngest Patient)

Molecular Effects/Remarks Ref. #

TNNI3/cTnI p.L144Q unknown - 17 years
Myofibrillar disarray, Ca2+-sensitization + incr. basal force, red. maximal force

(in reconstituted filaments), low ATPase inhibition + maximal activity, decreased
incorporation in thin filaments

[52,61,62]

p.L144H familial 1(3) 20–30 years mild hypertrophy [63]

p.R145W familial 2(2) 19 years Low ATPase inhibition, Ca2+-sensitization (reconstituted filaments), decreased
incorporation in thin filaments

[61,62,64]

p.R145Q unknown - 9 years Occurred in combination with R192C [64]
p.S150P familial 1(3) unknown [65]

c.549+2delT De novo - <1 year truncation [64]
p.D168fsX176 unknown 1(1) 23 years unknown [66]

p.R170G De novo - 3 years Ca2+-sensitization (skinned fibers), thin filament instability, impaired interaction
with cMyBP-C and Tpm

[55,67]

p.R170W De novo - 8 months Ca2+-sensitization (skinned fibers), thin filament instability, impaired cMyBP-C
interaction, decreased incorporation in thin filaments

[55,67]

p.R170Q De novo - 15 years Unknown; also associated with HCM in another study [63,68]
p.A171T unknown - 63 years Mild Ca2+-sensitization [52,61]

p.E177fsX209 De novo - 6 years disarray [54]

p.K178E De novo - 3 years Low ATPase inhibition, Ca2+-sensitization (skinned fibers), increased max.
ATPase activity

[52,61]

p.K178del De novo - <11 years unknown [64]
p.D190H familial 1(13) 11 years Ca2+-sensitization (in-vitro ATPase activity), red. cooperativity [52]
p.R192C unknown - 9 years Occurred in combination with R145Q [64]

p.R192H De novo - 16 years Ca2+-sensitization, red. cooperativity (in-vitro ATPase activity), impaired relaxation,
disarray, fibrosis (mouse model), increased incorporation in thin filaments

[52,61]

p.I195fs De novo - 24 years Mild fibrosis and hypertrophy, no aggregation [69]

p.D196H familial 1(10) 41 years 3 members homozygous, heterozygous relatives asymptomatic; fibrosis, mild
hypertrophy, no deposits [70]

p.R204H De novo - 14 years; 3 years unknown [71,72]

TNNT2/cTnT p.I79N familial 1(9) 53 years No disarray (biopsy); fibrosis; Ca2+-sensitization (mice, skinned fibers); also
associated with HCM in other studies

[73,74]

p.E96del De novo - 1 year
Disarray, fibrosis (biopsy); Ca2+-sensitization (skinned fibers, in-vitro ATPase
activity); impaired inhibition (ATPase), impaired relaxation (skinned fibers),

with fetal TnI the effects are less severe
[75,76]

p.E136K familial 1(3) 3.5 years Myocyte vacuolation, no disarray [54]
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Table 1. Cont.

Gene/Protein Variant Allele
Origin

No. of Affected
Families (No.

Mutation Carriers)

Age at
Presentation/Onset
(Youngest Patient)

Molecular Effects/Remarks Ref. #

TNNC1/cTnC p.A8V and
p.D145E familial 1(4) 8 months Compound heterozygosity; HCM to RCM transition; Ca2+-sensitization (fibers),

slow Ca2+_off rate, impaired relaxation
[77–79]

TPM1/Tpm p.E62Q and
p.M281T familial 1(11) 9 years Compound heterozygosity; disruption of sarcomeres (biopsy), reduced Ca2+

transient amplitudes (HL-1 cells)
[80]

TTN/Titin p.Y7621C familial 1(5) 12 years Fibrosis, myofilament degradation, Z-disk distortion [81]
MYH7/MHC p.Y386C De novo - 9 months Mild fibrosis, no disarray (biopsy) [82]

p.R721K familial 1(1) 43 years Together with p.Sur2A-R1186Q; arrhythmia [83]
13bp del De novo - 49 years unknown [84]
p.G768R familial 1(2) 15 months No tissue abnormalities (biopsy), no disarray or fibrosis [85]
p.838L De novo - 5 months Mild disarray, no infiltration (biopsy), arrhythmia [86]

MYBPC3/cMyBP-C p.Q463X familial 1(3) 34 years unknown [87]
p.E334K De novo - 45 years Increased polyubiquitinylation and degradation (cell model) [87,88]

DES/desmin p.Y122H familial 1(1) 19 years Homozygous; impaired intermediate filament assembly, desmin aggregates (iPSC) [57]
735+1G>T familial 1(1) 46 years Myopathy, alternate splicing [58]

p.E413K familial 1(3) 30 years Desmin aggregation, granulofilamentous deposits (biopsy); disruption of
intermediate filaments, aggregation (cell model) [56]

FLNC/filamin C p.A1183L De novo - 6 months perinuclear aggregates (zebrafish skeletal muscle) [59]

p.A1186V De novo - 1.4 years Absence of filamin C and desmin in intercalated discs, Z-line streaming (biopsy);
perinuclear aggregates (zebrafish skeletal muscle) [59]

p.S1624L familial 1(4) 3 years Aggregates, Z-disk disorganization, impaired desmin localization (biopsy, cell model) [89]
p.G2151S familial 1 (2) 15 years Sarcomere disorganization, Filamin C deposits (biopsy) [90]
p.I2160F familial 1 (6) 15 years disrupted Z-disks, impaired desmin localization (biopsy, cell model) [89]

p.V2297M familial 1 (5) 44 years Impaired Filamin C association with sarcomeres (biopsy), reduced contractility
(ESC model) [91]

p.P2298L familial 1 (8) 3 years No deposits, no sarcomeric disarray (biopsy); perinuclear Filamin C and actin
aggregation (cell model) [92]

p.P2301L De novo - 41 years Significant fibrosis, no deposits (biopsy) [90]

p.Y2563C De novo - 1 year Regular sarcomeric structure, no deposits (biopsy); randomly distributed
Filamin C and actin aggregates (cell model) [92]

MYPN/myopalladin p.Q529X familial 1 (3) 7 years

Truncated variant without NEBL and a-actinin binding domains; nuclear
deformations, myofibrillar degeneration, impaired a-actinin localization, CARP

aggregation, Z-disk disruption (biopsy, cell model); nuclear enrichment of
truncated Mypn, impaired MAPK signaling, down-regulation of CARP (mice)

[93,94]

LMNA/Lamin A p.E279RfsX201 familial 1(2) 53 years No infiltration (biopsy) [95]
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Table 1. Cont.

Gene/Protein Variant Allele
Origin

No. of Affected
Families (No.

Mutation Carriers)

Age at
Presentation/Onset
(Youngest Patient)

Molecular Effects/Remarks Ref. #

MYPN/myopalladin p.Q529X familial 1 (3) 7 years

Truncated variant without NEBL and a-actinin binding domains; nuclear
deformations, myofibrillar degeneration, impaired a-actinin localization, CARP

aggregation, Z-disk disruption (biopsy, cell model); nuclear enrichment of
truncated Mypn, impaired MAPK signaling, down-regulation of CARP (mice)

[93,94]

LMNA/Lamin A p.E279RfsX201 familial 1(2) 53 years No infiltration (biopsy) [95]

CRYAB/crystallin
αB p.D109G familial 1(2) 19 years Protein aggregation, Z-disk disruption (biopsy, cell model) [60]

BAG3/Bag3 p.P209L unknown - 8 years Aggregation of BAG3 and desmin, Z-disk alterations, myofibrillar disarray,
undegraded autophagosomes, increased autophagy regulators (biopsy) [96]

ABCC9/Sur2A p.R1186Q familial 1(1) 43 years Together with p.MHC-R721K; arrhythmia [83]
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Pediatric RCM

Cardiomyopathies in children are overall rare, but often they are associated with a
poor prognosis. The most common cardiomyopathies in children are DCM followed by
HCM [27,97]. In children, genetically based RCM is seldom and accounts for less than 5%
of the cardiomyopathy cases. Children with RCM show a rapid disease progression as
well as a high mortality (50% survival within the first two years after diagnosis) [98,99].
Clinical characteristics are similar to RCM in adults, with diastolic dysfunction in absence
of hypertrophy. In addition, pulmonary venous congestion, atrial fibrillation and SA
block may occur, associated with an increased risk for arrhythmia and sudden cardiac
death. [55,98]. Mogenson & Arbustini, 2009, suggested, that children with RCM exhibit
a high risk for ischemia related events (infarcts, scarring, necrosis) even without signs of
heart failure [100].

Several mutations have been detected in children with RCM affecting structural pro-
teins, among which mutations in FLNC seem to be most prominent (Table 1). Filamin
C cross-links actin filaments and is located at costameres, Z-discs and intercalated discs
(Figure 1). The first RCM mutations in FLNC were described by Brodehl et al., 2016, in
two different Canadian families leading to single amino acid replacements in conserved
immunoglobulin domains, p.S1624L and p.I2160F [89]. Tissues of patients with p.S1624L
showed filamin C aggregates and disrupted Z-discs. Members of this family became dis-
eased at an age <10 years. In the family with p.I2160F, no aggregates were detected and the
onset of the disease occurred much later. More recently two de novo mutations in FLNC have
been found in children diagnosed with RCM at the age of 1, 3 and 15 years for the p.A1186V
mutation and 6 months for the p.A1183L mutation [59]. Both mutations cause abnormal
filamin C localization, disruption of Z-disks as well as aggregation. Similarly, a p.P209L
mutation in BAG3, identified in 2018 in an eight year old boy diagnosed with myofibrillar
myopathy and RCM, also caused aggregation of BAG3 and desmin, Z-disc abnormalities
as well as dysregulated autophagy [96]. Though only relatively few mutations have been
thoroughly characterized so far, myofibrillar disarray and protein aggregation seem to
be common features in many mutations analyzed, supporting the idea of an infiltrative
pathomechanism of RCM.

Other targets for RCM mutations are genes encoding sarcomeric proteins. In this
group the main target is TNNI3 encoding cardiac troponin I (cTnI), a sarcomeric regulatory
protein [101]. TNNI3 mutations were found to be predominant in pediatric RCM in a
Chinese study [102]. Here, as well, detailed analyses of the underlying mechanisms are
scarce, most suggesting contractile abnormalities such as increased Ca2+-sensitivity and
impaired relaxation, which also occur in HCM. Interestingly, there seems to be a high rate
of de novo infantile RCM mutations in the TNNI3 gene, though a few de novo mutations
have also been observed in TTN and MYH7 [52,81,86,100].

De novo mutations as disease causing mutations are not easy to identify, especially in
case of missense mutations leading to a single amino acid replacement [103]. Several factors
have to be considered, as for example the localization of the mutation in a disease gene, the
conserved position of the amino acid replacement and the function of the resulting protein,
etc. A number of de novo mutations have been identified in pediatric cardiomyopathies.
They come along with a very fast disease progression and a poor prognosis (Table 1).
Pediatric RCM patients with de novo mutations frequently require a heart transplantation
shortly after diagnosis to prevent premature death. Only a few of the known mutations,
however, have been investigated on the mechanistic level.

3. Molecular Mechanisms in RCM

The knowledge on the molecular mechanism of primary cardiomyopathies is patchy,
especially in RCM. In the beginning, there is just the mutation leading to an altered protein,
which might be expressed at different levels than the wild type protein. When integrated
into the sarcomere or into structures associated to the sarcomere, often the interplay with
other sarcomeric/associated proteins is impaired, as well as protein and sarcomere dynamics,
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resulting in diastolic dysfunction, impaired structural stability, cell-to-cell communication and
increased stiffness. Furthermore, specific signaling pathways are activated via associated pro-
teins altering protein expression and degradation, survival, secretion of autocrine/paracrine
hormones and exosomes, and thereby influence the performance not only of the heart, but
also of other organs. The phenotype is the result of the whole network, including the genetic
heterogeneity [104]. Therefore, a detailed knowledge on the molecular mechanisms of disease
development is pivotal to develop specific therapeutic strategies. However, many of the
mutations, especially those identified in RCM patients have just been described only in one
family member, and further insights into the molecular mechanisms are lacking.

3.1. Contractile Dysfunction
3.1.1. Calcium Signaling

Calcium homeostasis in cardiomyocytes is important for many cellular processes as
for example for the contractility of the cardiac muscle. A nervous impulse induces an action
potential leading to a depolarization of the plasma membrane and opening of voltage gated
calcium channels, the L-type Ca2+-channels located in the T-tubules of the cardiomyocytes.
The influx of Ca2+ opens the ryanodine receptor integrated into the membrane of the
sarcoplasmatic reticulum (SR), which forms the intracellular Ca2+-store. Ca2+ is released
from the SR and triggers muscle contraction via binding to the Ca2+-sensor at the thin
filament, namely cardiac troponin C (Figures 1 and 3). For relaxation, there is a re-uptake
of Ca2+ into the SR via SERCA, a Ca2+-ATPase. In addition, Ca2+ is pumped back into the
extracellular space and into mitochondria.
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Figure 3. Role of Calcium in contractility. Voltage gated Ca2+-channels, located within T-tubuli, open
upon depolarization of the sarcolemma. The resulting Ca2+-influx activates the nearby ryanodine
receptors (RyR) of the sarcoplasmatic reticulum (SR), releasing Ca2+ from the SR. Ca2+ now binds to
the Ca2+-sensor of the sarcomere, cardiac troponin C (cTnC), which forms together with cTnI and cTnT
the troponin complex (see insert). Ca2+-saturation of cTnC triggers conformational changes within the
troponin complex, releasing cTnI from actin. This enables tropomyosin to roll over on the actin filament
to demask the myosin binding sites, and force production occurs. At the same time, Ca2+ is pumped
back into the SR by a phospholamban (PLB) regulated SR Ca2+-ATPase, into the extracellular space by
Na+/Ca2+ exchanger (NCX) and into the mitochondria. As the cytoplasmic Ca2+-concentration reduces,
Ca2+ is released from cTnC, cTnI rebinds to actin and tropomyosin is forced back masking the myosin
binding sites. The muscle relaxes. The figure was created using PowerPoint (Microsoft).
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Alterations in the Ca2+-handling are described as a main factor contributing to the
development of arrhythmia or contractile dysfunction. The overall picture is that most
DCM mutations are correlated with a reduced Ca2+-sensitivity of the filaments, in contrast
most HCM and RCM mutations sensitize the sarcomeres for Ca2+, whereby the changes are
more drastic in RCM than in HCM related mutations [61,105,106]. Increased myofilament
Ca2+-sensitivity usually delays the relaxation process and leads to hypercontractility, en-
hanced energy consumption and enhanced risk for malignant arrhythmia [47,48,107]. An
increased Ca2+-sensitivity of filaments was described for RCM mutations such as p.cTnI-
A171T, -K178E, -D190G in permeabilized cardiomyocytes, and for p.cTnI-L144Q, -R145W,
-A171T, -K178E and -R192H in skinned fibers [61,62]. These variants exhibited shorter
resting sarcomere length, less inhibition capacity and developed less maximal tension. On
the other hand, in rat cardiomyocytes some of the above mentioned variants showed no
changes in Ca2+-sensitivity [62]. These discrepancies are probably dependent on the model
system and assays used. Accordingly, the RCM mutations p.cTnI-R170G/W also exhibited
a substantial increase in the Ca2+-sensitivity in skinned fibers from guinea pigs, but not in
thin filament activation assays using reconstituted thin filaments [67]. Such discrepancies
indicate that more proteins than the basic contractile proteins determine Ca2+-sensitivity. A
more differentiated approach was provided by Sparrow et al., 2019, investigating two dis-
tinct HCM mutations, p.cTnT-R92Q and p.cTnI-R145G, in intact guinea pig cardiomyocytes
using novel Ca2+-sensors [107]. Whereas p.cTnI-R145G directly increased the Ca2+-binding
affinity of cTnC, p.cTnT-R92Q seems to increase the Ca2+-sensitivity via a cooperative
mechanism. Both pathways finally impair relaxation. Davis et al., 2008, also described
a shortened Ca2+-transient decay indicating impaired relaxation, which became more
prominent upon higher pacing frequencies, implying an effect on Ca2+-homeostasis of the
cardiomyocytes [62]. An increase in Ca2+-sensitivity is observed not only with most HCM
and RCM inducing troponin variants but also with pathogenic variants of other sarcomeric
thin and thick filament proteins, e.g., myosin light chain, tropomyosin, myosin heavy chain,
myosin binding protein C [108]. In RCM, the Ca2+-sensitizing effect is usually much more
prominent than in HCM. However, while HCM patients are at a high risk for malignant
arrhythmia and sudden cardiac death (SCD), in RCM patients the risk for SCD is not higher
than in HCM patients and is often due to ischemia [109]. Thus, altered Ca2+ handling is not
the only key factor leading to arrhythmia in HCM. On the other hand, the prominent Ca2+

sensitizing effects in RCM might substantially contribute to the more pronounced ventricle
stiffness [47]. Exceptional ventricle stiffness together with increased diastolic pressures, a
hallmark of RCM, may cause in children ischemia and fatal arrhythmia [110,111].

3.1.2. Cardiac Troponin I and the Interplay of Sarcomeric Proteins in RCM

Cardiac troponin I (cTnI) is the inhibitory subunit of the heterotrimeric troponin
complex (cTn), the main regulatory protein of the thin filament. cTnI binds to the Ca2+

binding subunit cTnC and the tropomyosin binding subunit cTnT within the troponin
complex and forms a molecular switch. Under relaxing conditions, i.e. during diastole,
cTnI strongly binds to actin and tropomyosin and thus blocks the interaction of the myosin
motor domain with actin, thereby inhibiting muscle contraction. Upon Ca2+-binding to
cTnC, cTnI is released from actin/tropomyosin which allows an azimuthal movement of
tropomyosin on the actin filament. The binding sites for the myosin heads are demasked
and force production and contraction are enabled. Furthermore, as we recently reported,
there is a direct interaction between cardiac troponin and cardiac myosin binding protein
C (cMyBP-C), the regulatory protein of the thick filament which connects thick and thin
filament [67]. This interaction implies a coordinated action of the two regulatory proteins,
troponin and cMyBP-C in the regulation of muscle contraction. In addition to that, reg-
ulation of muscle contraction is under hormonal control leading to phosphorylation of
sarcomeric proteins, thereby fine-tuning contractile function. Thus, phosphorylation of
titin modulates passive tension and altered phosphorylation affects Ca2+-sensitivity and
force development [104,112]. cTn and cMyBP-C both are phosphorylated by protein kinase
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A (PKA) upon ß-adrenergic stimulation. In cardiac disease, the phosphorylation patterns
and their effects within the cardiomyocyte may change [113]. Furthermore, pathogenic
protein variants may exhibit altered phosphorylation. For example, PKA phosphorylation
of p.cTnI-R145G, a HCM variant, is suppressed thus uncoupling ß-adrenergic modulation
via cTn [114] Likewise, PKA phosphorylation of p.cTNI-R145W, a RCM variant, leads to
uncoupling of the response however not by itself, but through altered phosphorylation of
additional proteins as titin and cMyBP-C [115]. Additionally, proteins involved in calcium
homeostasis are regulated by phosphorylation, such as the L-type calcium channels, ryan-
odine receptors and phospholamban, the regulator of SERCA activity, as well as cardiac
troponin I at the sarcomere. PKA-dependent phosphorylation on the one hand enhances
the Ca2+-influx into the sarcoplasm and thereby promotes contraction, and on the other
hand accelerates relaxation. These relationships underline that a balanced phosphory-
lation is a prerequisite for contractile function and that alterations in phosphorylation
and/or phosphorylation responses as observed in RCM and other cardiomyopathies lead
to contractile dysfunction [116].

The cardiac troponin I gene is the main target for RCM mutations in the sarcomere [52].
The mutations, mostly leading to single amino acid replacements, are concentrated in cTnI
in the regulatory C-terminal regions of the protein (Table 1, Figure 4) [117]. There are
two actin binding regions in the cTnI C-terminus: the inhibitory domain (aa130–150)
together with the switch domain (aa151–167), and the mobile region (aa168–210). The
inhibitory domain blocks the myosin-actin interaction in the absence of calcium, the
switch domain binds to the N-terminal domain of cTnC during muscle activation, and the
mobile C-terminus is only bound to actin/tropomyosin in the relaxed, i.e. resting state
of the muscle [118,119]. The clustering of RCM mutations in the regulatory C-terminus
implies that interactions of cTnI with actin/tropomyosin/cMyBP-C and dynamics might
play a pivotal role in the contractile dysfunction in cardiomyopathies and contribute to
disturbed sarcomere stability and integrity. In addition, it has been shown for some RCM
mutations in TNNI3 that the incorporation of the variant cTnIs into the thin filament
is impaired. According to Davis et al., 2008, who used a rat and rabbit gene transfer
model and isolated cardiomyocytes for their investigations, mutants located in the cTnI
inhibitory domain such as p.cTnI-L144Q and p.cTnI-R145W are integrated into the thin
filament to a lower extent than the wild type cTnI [62]. In this case, no change in Ca2+-
sensitivity was observed and PKA dependent Ca2+-sensitization was not affected. Thus,
individuals carrying these mutations have a low amount of mutant cTnI incorporated in
their sarcomeres, but nevertheless show a highly disordered relaxation. In accordance, we
recently described that p.TnI-R170W, which is located in the mobile C-terminal domain of
cTnI, was incorporated into reconstituted thin filaments to a lower degree and showed a
reduced binding affinity towards actin and an increased affinity towards tropomyosin [67].
In addition to that, the binding affinity of this cTnI variant for cMyBP-C was increased.
Only in skinned fibers, but not in reconstituted thin filaments, a massive Ca2+-sensitization
and reduction of the cooperative communication along the thin filament was detected
due to this mutation. Moreover, a decreased thin filament stability was detected using
electron microscopic imaging and reconstituted thin filaments. Reconstituted thin filaments
containing p.R170W showed a significantly higher amount of filament breaks, clustering
of filaments and wavy instead of straight filaments (Figure 5). Thus, it appears that
pathogenic cTnI variants impair the interplay between sarcomeric proteins leading to
contractile dysfunction and structural instability, which may contribute to arrhythmia.
Furthermore, reduced incorporation of mutant proteins might lead to an excess of free
protein, potentially leading to aggregation in the cytosol.
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3.2. Protein Aggregation

A hallmark for non-sarcomeric RCM is protein aggregation, a problem known for
non-sarcomeric familial RCM as amyloidosis or glycogen storage disease, where aggregates
are deposited between the myofibrils [50]. In sarcomere-related RCM, the p.Pro209Leu mu-
tation in the BAG3 gene leads to early-onset RCM and myofibrillar myopathy with typical
intra-sarcoplasmic bodies composed of BAG3 protein and desmin aggregates [96]. Alter-
ations of the myofibril integrity and Z-disc structures, as well as an impaired autophagy
were also observed. BAG proteins bind to the Hsp70 ATPase domain and thereby inhibit
activity of these chaperones. The BAG3/Hsp70 complex controls protein aggregation and
may be also in complex with small heatshock proteins as crystallin αB (sHsp5) [120,121]. In
the cardiac muscle, crystallin αB is mainly located in the I band of the sarcomere associated
to titin’s N2BA region, and in the Z-disc associated with desmin, actin and α-actinin,
preventing aggregation of these proteins and stabilizing the myofibrils [122]. Brodehl et al.,
2017, found the first crystallin αB mutation in patients with RCM leading to a dysfunc-
tional crystallin αB and sarcoplasmatic aggregates [60]. The formation of aggregates seems
also a problem in RCM causing filamin C (FLNC) and desmin (DES) mutations [57,89].
Pathogenic mutations in the genes of crystallin αB and desmin leading to aggregate for-
mations have been linked to an impaired protein quality control and autophagy [123].
In addition, HCM mutations in cMyBP-C knock-in mice showed an impairment of the
ubiquitinylation/proteasome system [88,124]. Similar investigations for sarcomeric RCM
mutants are missing. However, it is tempting to speculate that diastolic dysfunction and/or
protein aggregation due to an impaired protein quality control system (protein degradation,
autophagy or expression) both pivotally contribute to the RCM phenotype.

3.3. Gene Expression and Mosaicism

According to Salman et al., 2018, there is a substantial amount of pathogenic intronic
mutations, namely about 10%, which may alter splicing mechanisms [125]. Thereby,
insertions or deletions occur which may alter the reading frame and induce a premature
stop codon leading to a truncated protein. This has been observed e.g. for cMyBP-C HCM
mutations in a study of 400 Italian patients [126]. In addition to single nucleotide variants,
larger gene copy number variations (CNVs) can also lead to loss-of-function mutations
due to exon skipping, premature stop or duplication of exons. CNVs have been identified
in patients with congenital heart disease, HCM, DCM, LVNC and ACM, but only few
studies included RCM [127–129]. In a study by Ceyhan-Birsoy et al., next generation
sequencing-based CNV analysis of a large cardiomyopathy patient cohort revealed no
clinically significant CNVs in any of the 25 RCM patients included [130]. Due to the
relatively low number of cases analyzed and the generally rare occurrence of CNVs, the
involvement of CNVs in RCM cannot be excluded, though.

Truncation of proteins is often caused by frameshift mutations within exons. It is
widely accepted for sarcomeric proteins that truncations cause haploinsufficiency, whereas
missense mutations are integrated into the sarcomere. Thus, truncated cMyBP-C HCM
mutants are expressed in a ratio of 1:5, wild type protein versus mutant, according to
Helms et al., 2014 [131]. It is thought that on mRNA level mutants are formed in the
same amount as wild type. However, there seems to be an imbalance in the translation
of the mutant versus wild type protein, which has been described by Helms et al., 2014,
for several HCM mutations, with protein levels being highly dependent on the type of
mutation. Similar results have been published by Tripathi et al., 2011, who determined
the amount of various myosin heavy chain HCM mutants in soleus muscle and cardiac
muscle [132]. They found reduced amounts of mutant protein to ca. 30–60% of the wild
type protein dependent on the mutation. mRNA transcripts were unaffected indicating
that either translation is downregulated by specific micro-RNAs (miRs) or long non-coding
RNAs (lncRNAs), or the resulting proteins are unstable and disposed. On the other hand,
Montag et al., 2018, showed that also mRNA levels could vary; they determined different
levels of mutant mRNA as well as protein for ß-MHC p.G716R [133]. The mutant mRNA
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was predominant with 89%, while protein was only present to 29.9%. The higher the
imbalance, the earlier the disease will onset and the worse is the prognosis [132]. Similar
observations have been made also for other sarcomeric protein mutants as cMyBP-C [134].
Unfortunately, no similar studies have been performed for RCM mutations up to date, but
it is plausible that this allelic imbalance is not a typical feature of HCM, but also occurs
in other cardiomyopathies. In a mouse model, where different transgenic mice strains
expressed the RCM mutant p.cTnI-R192H at different levels, Li et al., 2013, described a
dose-dependency of diastolic dysfunction, stiffness and premature death [135]. Severity,
mortality and early onset increased with increased levels of mutant protein. Thus, for
pediatric RCM one would assume that mutant to wild type ratios would differ largely
due to the early onset and severity. This imbalance in protein expression could result
in an imbalance of sarcomeric contractile function and contribute to reduced sarcomeric
stability. In fact, we observed breaks and clustering of reconstituted thin filaments with
the infantile RCM mutations p.cTnI-R170G/W, though this might not be typical for RCM
only [67]. Moreover, the pattern of cardiomyocytes showing different amounts of mutant
and wild type proteins might contribute to the dysfunction of the myocardium [136,137].
In different cardiomyocytes of a tissue mRNAs are formed in different amounts at random,
leading to different expression levels of wild type and HCM mutant proteins. Such an
imbalance not only might be responsible for myocyte disarray, but also be the reason for
asynchronous contraction (increased risk of lethal arrhythmia), enhanced stretch stress
with subsequent activation of specific pathways as the fibrotic pathways, death pathways
etc. Similar problems might also occur in other cardiomyopathy types.

4. Problems and Prospects in RCM
4.1. Diversity and Diagnostic Disparity of Cardiomyopathies

Many novel mutations have been detected in the last years and have been correlated to
cardiomyopathies, and in most cases pathogenicity classification was performed according
to the ACMG guidelines, though the strength of evidence is not always fully reported [138].
Furthermore, obtaining strong evidence for pathogenicity is often difficult due to small
family sizes, incomplete segregation analysis and study of family members, as well as lack
of mechanistic investigations, nicely reviewed by Burke et al., 2016 [139].

The boundaries especially between HCM and RCM are not clear [140]. There is also an
overlap with LVNC and even DCM since many sarcomeric disease genes are identical for
RCM, HCM, DCM and LVNC. Thus, one might assume that the positions of the mutations
within the affected genes differ in the various cardiomyopathy types. However, this often
is not the case. Thus, with a few exceptions most of the HCM mutations and the few
known DCM mutations in TNNI3 are also clustered in the regulatory C-terminus of the
resulting cTnI protein [141]. Whereas the p.Y122H and p.E413K desmin RCM mutations are
located in a different domain than the DCM mutations, as discussed above. Furthermore,
different mutations at the same position in a gene may lead to different cardiomyopathy
types. For example, mutations in TNNI3 lead to HCM or RCM, the p.R145G replacement
in cTnI induced HCM, the p.R145W replacement RCM [52,142]. Members of one family
may even develop a different cardiomyopathy type despite carrying the same mutation as
was described for p.cTnI-R145W in a large Korean family [143]. Some members developed
HCM, others RCM, or even no disease phenotype. Nevertheless, p.cTnI-R145W is classified
as a RCM inducing mutation and was first described by Mogensen et al., 2003 [52]. On
the other hand, up to date amino acid replacements at the position R170 in the mobile
C-terminus of cTnI seem to be linked exclusively to RCM. p.R170G/W lead to infantile
severe RCM, and also the p.R170Q exchange, identified in a South African family, was
classified as an RCM mutant with mild focal hypertrophy and early onset [63,67]. In another
earlier study by Kaski et al., 2009, however, p.cTnI-R170Q was identified in children with
HCM with an early onset (<13 y) [68]. Thus, it remains unclear, if the clinical classification
into HCM and RCM is unambiguous, since sometimes also RCM patients develop a mild
hypertrophy.
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Such a diversity in mutation-cardiomyopathy correlations complicates a phenotype
prediction based on a mutation. Surely, the location of the amino acid replacement within
the affected protein is important for the development of a cardiomyopathy. For example,
arginine 170 is located in the second actin/tropomyosin binding site of the regulatory
C-terminus of cTnI. A reduced affinity to this binding site, which is determined by the
type of amino acid exchange, reduces the inhibitory capacity of cTnI, facilitates the in-
teraction of the cTnI switch region with cTnC [67]. This interaction again affects the
calcium affinity of cTnC and calcium sensitivity of the actin-myosin interaction, promoting
contraction and impairing relaxation and affecting energy consumption. Subsequently,
the Ca2+-homeostasis in the cell is disturbed affecting signaling cascades. The resulting
contractile dysfunction might impair the structural integrity of sarcomeres and, in con-
cert with altered protein expression and altered interactions with associated proteins as
well as altered post-translational modifications, might pivotally contribute to the specific
phenotype. In addition, it is thought that modifiers as sex hormones, polymorphisms in
other genes (exons and introns) or even other mutations also contribute to the disease
phenotype [125,144,145]. A specific feature of RCM is protein aggregation. In case of
protein aggregates due to sarcomeric or sarcomere associated protein variants, sarcomere
structure is disrupted leading to contractile dysfunction and stiffness.

4.2. Development of the RCM Phenotype: An Integrated Approach

In summary, a clear differentiation of RCM and HCM based on the underlying muta-
tions and clinical diagnosis is still very difficult. There is a strong need for further detailed
mechanistic studies and broad genetic testing to obtain a better understanding of genotype-
phenotype correlations. Because of the many overlapping characteristics and of familial
HCM and RCM phenotypes within the same family, Burke et al., 2016, proposed that
RCM might be a special, more severe form of HCM, but not an independent cardiomy-
opathy [139]. However, there are distinct clinical specificities of RCM, as for example the
extraordinary stiffness of ventricles and pulmonary hypertension due to the high pressure
in the ventricles. Some molecular features seem to be promising to explain the characteristic
RCM phenotype, such as protein expression, allelic imbalance, aggregation phenomena
connected with impaired protein quality control, and sarcomeric dysfunction including
diastolic dysfunction due to increased Ca2+-sensitivity and ADP accumulation. Taking all
what is known into consideration, RCM might develop in two ways (Figure 6): one starts
from mutant sarcomeric protein with or without altered protein expression in comparison
to the wild type protein. A lower mutant protein level might induce haploinsufficiency,
inducing contractile dysfunction via impaired sarcomeric dynamics, sarcomeric structure
and inter- and extra-sarcomeric protein-protein interactions. Contractile dysfunction in-
cluding disturbed structural integrity of the sarcomere can also be induced by the mutation
itself. An increased protein expression or protein stability might lead to an excess of
mutant protein which has to be degraded. Modifiers, as for example additional intronic
polymorphisms or mutations which might affect gene expression and/or alterations in the
interaction with components of the protein control system, might lead to protein aggre-
gations disrupting sarcomeric structure and inducing contractile dysfunction. All these
features might finally result in enhanced ventricle stiffness and a higher risk of malignant
arrhythmia. Cell-to-cell imbalance could further amplify the effects. The other pathway
involves mutations in non-sarcomeric proteins, leading to protein aggregates between
myofibers which may also affect contractile function, increase stiffness and the risk of
malignant arrhythmia. A detailed understanding of these correlations would be helpful to
develop specific therapies which are missing up to date.
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Figure 6. Factors leading to the development of the genetic RCM. While non-sarcomeric mutations
lead to aggregations and promote cytoskeletal and sarcomeric disarray, sarcomeric mutations may
affect the cardiac function in different ways, depending on their expression levels, stability, tendency
to aggregate and to induce contractile dysfunction. Both finally lead to diastolic dysfunction and
increased stiffness. The figure was created using PowerPoint (Microsoft).

4.3. Therapeutic Options

The current treatment of genetic RCM mainly follows general heart failure manage-
ment, e.g., ACE inhibitors, ß-blockers, Ca2+-desensitizers and anticoagulation therapy. In a
progressed state of the disease, a left ventricular assist device is often used to bridge the
time gap to heart transplantation. Thus, no specific therapy exists for RCM. Therapeutic
options based on the RCM model described here could additionally include targeting trans-
lation of mutant proteins via miRs or lncRNAs, or targeting contractile function using for
example calcium desensitizers as epigallocatechin or ranolazin, as proposed by Mosqueira
et al., 2018, which promotes Ca2+-efflux via NCX and counteracts reduced blood supply,
thus inhibiting malignant arrhythmia [146]. In this study, several HCM mutations in the
MYH7 gene were investigated using isogenic pluripotent stem cell-derived cardiomyocytes
to study their resultant properties. The authors found energy depletion to be a core factor
for hypertrophy and also identified several changes in protein and RNA expression by
transcriptomics. They further propose gene modifiers and lncRNAs as therapeutic tar-
gets. There are few more examples that targeting miRs or lncRNAs might be successful,
too [147,148]. In DCM, fibrosis is a major problem. Zhang et al., 2019, found that miR132
is reduced in cardiomyocytes of DCM rat models [149]. miR132 mainly regulates the
PTEN gene. Upregulation of miR132 or silenced PTEN repressed fibrosis via the PI3/Akt
pathway. Up to date, no such studies exist for RCM therapy using lncRNA or miRs/siRNA,
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and only few studies concerning the effects of the calcium desensitizer epigallocatechin.
Zhang et al., 2015, showed in a restrictive mouse model that epigallocatechin could restore
diastolic function [150]. Thus, the sarcomere is also a promising target for drugs. Espe-
cially for pediatric RCM, it would be helpful at least to postpone the time point for heart
transplantation.

As formation of protein aggregates also seems to be an important feature in RCM,
similar therapeutic approaches as implemented for e.g. amyloidosis may also be con-
ceivable for treatment of RCM. Here, the formation of aggregates could be reduced or
prevented e.g. by tetramere stabilization with Tafamidis or Diflunisal, or by disruption of
oligomeres again by epigallocatechin or by doxycycline and taurosodeoxycholic acid [151].
Furthermore, the use of monoclonal antibodies directed against the aggregated protein
might be an option, as recently proposed by Popkova et al., 2020, for the treatment of amy-
loidosis [152]. A stimulation of ubiquitinylation and HDAC6 for the disposal of aggregates
in autophagosomes or lysosomes is also conceivable [153,154].

5. Conclusions

Cardiomyopathies, a complex of cardiac diseases classified into five main forms, result
from inherited and acquired causes. Inherited cardiomyopathies are caused by mutations
often, but not exclusively, located in genes encoding for sarcomeric proteins. While many
studies have been conducted on the more common HCM and DCM, data on the rarer RCM
remain scarce. Though RCM has distinctive clinical features such as increased myocardial
stiffness and atrial dilation, in many cases the phenotype is not clear or shows features of
e.g. both HCM and RCM, making proper classification difficult.

On the molecular level, there seem to be two particular mechanisms involved in RCM,
which can occur alone or in conjunction. On the one hand, strongly increased myofilament
Ca2+-sensitivity and altered protein-protein interactions of the contractile proteins are
the most common functional alterations observed in inherited RCM. On the other hand,
infiltrative processes including aggregation and impaired protein quality control have
mostly been described for mutations in non-sarcomeric proteins, but no such studies have
been performed with sarcomeric proteins. Moreover, additional factors apart from the
genetic mutation can influence the severity, prognosis, and the clinical phenotype of the
disease. So far, it is not clear which mechanism (or combination of mechanisms) finally
determines the manifestation of RCM vs. other cardiomyopathy phenotypes.

Further mechanistic studies are thus crucial for a deeper understanding of the phenotype-
genotype linkage. Furthermore, they could provide the basis for the development of specific
therapeutic approaches for RCM, taking into account both the contractile as well as the
infiltrative mechanisms.

Additionally, other genes and variants than those known today might also be associ-
ated with RCM. Thus, genetic testing of RCM patients with a probably heritable disease
and relatives should generally be performed, especially in the young, as well as of patients
with idiopathic RCM or in cases of unexplained cardiac death. In familial cases, the greatest
possible coverage of the family by genetic testing might help to uncover additional variants
modifying the manifestation of different phenotypes among family members. Definitely,
still more data is needed to understand RCM on the genetic and mechanistic level.
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