In silico identification of potential druggable binding sites on CIN85 SH3 domain

Serena Vittorio ${ }^{1, *}$, Thomas Seidel ${ }^{2}$, Arthur Garon ${ }^{2}$, Rosaria Gitto ${ }^{1}$, Thierry Langer ${ }^{2}$, Laura De Luca ${ }^{1, *}$
${ }^{1}$ Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy; svittorio@unime.it (S.V.); rgitto@unime.it (R.G.); ldeluca@unime.it (L.D.L.)
2 Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; thomas.seidel@univie.ac.at (T.S.); arthur.garon@univie.ac.at (A.G.); thierry.langer@univie.ac.at (T.L.)
*Correspondence: svittorio@unime.it; Tel.: +39-090-676-6465 (S.V.); ldeluca@unime.it; Tel.: +39-090-676-6410 (L.D.L.)

Table of content:

 FigureS1 Superimpositions between some of the NMR derived models contained in 2K9G and some of the MD derived conformers

Table S1 List of the residues forming the identified binding sites in CIN85 SH3A and corresponding amino acids in the other CIN85 SH3 domains obtained from 3D alignment.

Binding site	CIN85 SH3A	CIN85 SH3B	CIN85 SH3C
P1	Tyr10, Glu17, Leu18, Ile20, Trp36, Leu47, Phe48, Pro49, Phe52	Tyr109, Glu116, Leu117, Leu119, Trp135, Met146, Phe147, Pro148, Phe151	$\begin{gathered} \hline \text { Tyr278, Glu285, Leu286, } \\ \text { Ile288, Trp306, Val317, } \\ \text { Phe318, Pro319, Phe322 } \\ \hline \end{gathered}$
P2	Val2, Glu3, Ala4, Ile29, Trp37, Asp50, Val53, Arg54, Glu55	$\begin{gathered} \text { Arg101, Arg102, Cys103, } \\ \text { Val127, Trp136, Ser149, } \\ \text { Ile52, Lys153, Glu154 } \end{gathered}$	$\begin{aligned} & \text { Asp270, Tyr271, Cys272, } \\ & \text { Leu296, Trp307, Asp320, } \\ & \text { Val323, Lys324, Leu325 } \end{aligned}$
CS1	Tyr10, Asp16, Glu17, Leu18, Ile20, Trp36, Leu47, Phe48, Pro49, Phe52	Tyr109, Asp115, Glu116, Leu117, Leu119, Trp135, Met146, Phe147, Pro148, Phe151	Tyr278, Asp284, Glu285, Leu286, Ile288, Trp306, Val317, Phe318, Pro319, Phe322
CS2	Glu3, Ala4, Ile25, Ile26, Thr27, Gln40, Ile41, Asn42, Lys57	Arg102, Cys103, Ile124, Ile125, Glu126, Val139, Leu140, Asn141, Ser156	Tyr271, Cys272, Ile293, Val294, Thr295, Glu310, Leu311, Asn312, Pro327
CS3	Asp16, Glu17, Leu18, Glu38, Gly39, Arg44, Arg45, Gly46, Leu47	Asp115, Glu116, Leu117, Glu137, Gly138, Lys143, Thr144, Gly145, Met146	Asp284, Glu285, Leu286, Glu308, Gly309, Arg314, Arg315, Gly316, Val317
CS4	Leu18, Thr19, Ile20, Ser21, Glu24, Ile41, Asn42, Arg44	Leu117, Glu118, Leu119, Lys120, Asp123, Leu140, Asn141, Lys143	$\begin{gathered} \text { Leu286, Thr287, Ile288, } \\ \text { Lys289, Asp292, Leu311, } \\ \text { Asn312, Arg314 } \\ \hline \end{gathered}$
CS5	$\begin{gathered} \text { Glu7, Phe8, Trp37, } \\ \text { Asp50, Asn51, Phe52, } \\ \text { Val53, Arg54, Glu55 } \end{gathered}$	Ala106, Phe107, Trp136, Ser149, Asn150, Phe151, Ile152, Lys153, Glu154	$\begin{gathered} \text { Ile275, Phe276, Trp307, } \\ \text { Asp320, Asn321, } \\ \text { Phe322, Val323, Lys324, } \\ \text { Leu325 } \end{gathered}$
CS6	Gly34, Gly35, Trp36, Pro49, Asp50, Asn51	Glu133, Gly134, Trp135, Pro148, Ser149, Asn150	Val304, Gly305, Trp306, Pro319, Asp320, Asn321
CS7	Asp15, Glu17, Leu18, Thr19, Arg44, Arg45	Asp114, Glu116, Leu117, Glu118, Lys143, Thr144	Asp283, Glu285, Leu286, Thr287, Arg314, Arg315

FigureS1 Superimpositions between some of the NMR derived models contained in 2K9G and some of the MD derived conformers.

A) Model 1 of 2 K 9 G (blue) superimposed to the representative frame of C 2 (violet) (RMSD= 1.090 Å)

B) Model 2 of 2 K 9 G (cyan) overlapped to the representative frame of C 27 (yellow) (RMSD= 1.507 Å)

C) Model 3 of 2 K 9 G (green) superimposed to the representative frame of C 1 (green) (RMSD= $1.163 \AA$ A)

D) Model 5 of 2K9G (pink) superimposed to the representative frame of C26 (palecyan). $(\mathrm{RMSD}=1.612 \AA)$

E) Model10 of 2K9G (giallo) superimposed to the representative frame of C10 (deepteal) ($\mathrm{RMSD}=1.931 \AA$).

F) Model14 of 2K9G (grey) superimposed to the representative frame of C12 (wheat). (RMSD= $2.498 \AA$)

G) Model16 of 2K9G (cyan) superimposed to the representative frame of C17 (green) (RMSD = $1.777 \AA$ A)

H) Model20 of 2K9G (lightblue) superimposed to the representative frame of C6 (magenta) ($\mathrm{RMSD}=0.914$).

