In silico identification of potential druggable binding sites on CIN85 SH3 domain

Serena Vittorio ¹,*, Thomas Seidel ², Arthur Garon ², Rosaria Gitto ¹, Thierry Langer ², Laura De Luca ¹,*

- ¹ Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy; <u>svittorio@unime.it</u> (S.V.); <u>rgitto@unime.it</u> (R.G.); <u>ldeluca@unime.it</u> (L.D.L.)
- ² Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; <u>thomas.seidel@univie.ac.at</u> (T.S.); <u>arthur.garon@univie.ac.at</u> (A.G.); <u>thierry.langer@univie.ac.at</u> (T.L.)

*Correspondence: svittorio@unime.it; Tel.: +39-090-676-6465 (S.V.); ldeluca@unime.it; Tel.: +39-090-676-6410 (L.D.L.)

Table of content:

TableS1 List of the residues forming the identified binding sites in CIN85 SH3A and corresponding amino			
acids in the other CIN85 SH3 domains obtained from 3D superimpositionS2			
FigureS1 Superimpositions between some of the NMR derived models contained in 2K9G and some			
of the MD derived conformersS3			

Table S1 List of the residues forming the identified binding sites in CIN85 SH3A and corresponding amino acids in the other CIN85 SH3 domains obtained from 3D alignment.

Binding site	CIN85 SH3A	CIN85 SH3B	CIN85 SH3C
P1	Tyr10, Glu17, Leu18,	Tyr109, Glu116, Leu117,	Tyr278, Glu285, Leu286,
	Ile20, Trp36, Leu47,	Leu119, Trp135, Met146,	Ile288, Trp306, Val317,
	Phe48, Pro49, Phe52	Phe147, Pro148, Phe151	Phe318, Pro319, Phe322
P2	Val2, Glu3, Ala4, Ile29, Trp37, Asp50, Val53, Arg54, Glu55	Arg101, Arg102, Cys103, Val127, Trp136, Ser149, Ile52, Lys153, Glu154	Asp270, Tyr271, Cys272, Leu296, Trp307, Asp320, Val323, Lys324, Leu325
CS1	Tyr10, Asp16, Glu17,	Tyr109, Asp115, Glu116,	Tyr278, Asp284, Glu285,
	Leu18, Ile20, Trp36,	Leu117, Leu119, Trp135,	Leu286, Ile288, Trp306,
	Leu47, Phe48, Pro49, Phe52	Met146, Phe147, Pro148, Phe151	Val317, Phe318, Pro319, Phe322
CS2	Glu3, Ala4, Ile25, Ile26,	Arg102, Cys103, Ile124,	Tyr271, Cys272, Ile293,
	Thr27, Gln40, Ile41,	Ile125, Glu126, Val139,	Val294, Thr295, Glu310,
	Asn42, Lys57	Leu140, Asn141, Ser156	Leu311, Asn312, Pro327
CS3	Asp16, Glu17, Leu18,	Asp115, Glu116, Leu117,	Asp284, Glu285, Leu286,
	Glu38, Gly39, Arg44,	Glu137, Gly138, Lys143,	Glu308, Gly309, Arg314,
	Arg45, Gly46, Leu47	Thr144, Gly145, Met146	Arg315, Gly316, Val317
CS4	Leu18, Thr19, Ile20,	Leu117, Glu118, Leu119,	Leu286, Thr287, Ile288,
	Ser21, Glu24, Ile41,	Lys120, Asp123, Leu140,	Lys289, Asp292, Leu311,
	Asn42, Arg44	Asn141, Lys143	Asn312, Arg314
CS5	Glu7, Phe8, Trp37,	Ala106, Phe107, Trp136,	Ile275, Phe276, Trp307,
	Asp50, Asn51, Phe52,	Ser149, Asn150, Phe151,	Asp320, Asn321,
	Val53, Arg54, Glu55	Ile152, Lys153, Glu154	Phe322, Val323, Lys324, Leu325
CS6	Gly34, Gly35, Trp36,	Glu133, Gly134, Trp135,	Val304, Gly305, Trp306,
	Pro49, Asp50, Asn51	Pro148, Ser149, Asn150	Pro319, Asp320, Asn321
CS7	Asp15, Glu17, Leu18,	Asp114, Glu116, Leu117,	Asp283, Glu285, Leu286,
	Thr19, Arg44, Arg45	Glu118, Lys143, Thr144	Thr287, Arg314, Arg315

FigureS1 Superimpositions between some of the NMR derived models contained in 2K9G and some of the MD derived conformers.

A) Model 1 of 2K9G (blue) superimposed to the representative frame of C2 (violet) (RMSD= 1.090 Å)

B) Model 2 of 2K9G (cyan) overlapped to the representative frame of C27 (yellow) (RMSD= 1.507 Å)

C) Model 3 of 2K9G (green) superimposed to the representative frame of C1 (green) (RMSD= 1.163 Å)

D) Model 5 of 2K9G (pink) superimposed to the representative frame of C26 (palecyan). (RMSD=1.612Å)

E) Model10 of 2K9G (giallo) superimposed to the representative frame of C10 (deepteal) (RMSD= 1.931 Å).

F) Model14 of 2K9G (grey) superimposed to the representative frame of C12 (wheat). (RMSD= 2.498Å)

G) Model16 of 2K9G (cyan) superimposed to the representative frame of C17 (green) (RMSD = 1.777 Å)

H) Model20 of 2K9G (lightblue) superimposed to the representative frame of C6 (magenta) (RMSD = 0.914).