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Abstract: Heart failure is the end-stage of all cardiovascular diseases with a ~25% 5-year survival
rate, and insufficient mitochondrial energy production to meet myocardial demand is the hallmark
of heart failure. Mitochondrial components involved in the regulation of ATP production remain
to be fully elucidated. Recently, roles of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) in
the pathophysiological processes of heart diseases have emerged, implicated by evidence that mi-
tochondrial CNPase proteins are associated with mitochondrial integrity under metabolic stress.
In this study, a zebrafish heart failure model was established, by employing antisense morpholino
oligonucleotides and the CRISPR-Cas9 gene-editing system, which recapitulates heart failure phe-
notypes including heart dysfunction, pericardial edema, ventricular enlargement, bradycardia, and
premature death. The translational implications of CNPase in the pathophysiological process of heart
failure were tested in a pressure overload-induced heart hypertrophy model, which was carried
out in rats through transverse abdominal aorta constriction (TAAC). AAV9-mediated myocardial
delivery of CNPase mitigated the hypertrophic response through the specific hydrolysis of 2′-3′-
cyclic nucleotides, supported by the decrease of cardiac hypertrophy and fibrosis, the integrity of
mitochondrial ultrastructure, and indicators of heart contractility in the AAV9-TAAC group. Fi-
nally, the biometrics of a mitochondrial respiration assay carried out on a Seahorse cellular energy
analyzer demonstrated that CNPase protects mitochondrial respiration and ATP production from
AngII-induced metabolic stress. In summary, this study provides mechanistic insights into CNPase-
2′,3′-cyclic nucleotide metabolism that protects the heart from energy starvation and suggests novel
therapeutic approaches to treat heart failure by targeting CNPase activity.

Keywords: CNPase; heart failure animal model; zebrafish; CRISPR-Cas9; mitochondrial energy pro-
duction

1. Introduction

Heart failure is the end-stage of cardiovascular disease and represents the top threat to
public health worldwide. Despite accomplishments in therapeutics for heart failure, with a
5-year mortality rate of 75%, the prognostic results are far from satisfactory [1]. Cardiac
pathological hypertrophy usually precedes the onset of heart failure and is characterized
by enlarged cardiomyocytes, thickening, and stiff ventricular walls due to pressure over-
load, mutations of sarcomeric proteins, or infarction-induced cardiomyocyte loss [2]. The
deficiency of ATP production plays a central role in the pathogenesis and progression of
heart failure phenotypes [3]. At present, improving myocardial energy homeostasis with
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neuroendocrine systems and heart rate management has emerged as a core strategy for
treating heart failure [4].

Genetic modification, pharmacological and surgical methods have been used in small
animals to decipher the pathogenesis of heart failure and develop new therapies. Zebrafish
are well characterized and widely used cardiovascular disease models based on genotypic
and genotyping similarities. They are suitable for high-throughput chemical screening
and gene manipulation due to their tiny size, relatively low maintenance cost, rapid
development, accessibility for in vivo imaging, and the optical clarity of embryos [5].
Additionally, zebrafish embryos can survive without blood flow by oxygen diffusion,
which makes them excellent models of heart failure [6]. Approximately 25% of mouse
genes are embryonically lethal when knocked out [7], making it difficult to produce viable
murine models for the study of heart failure.

Recently, the roles of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) in the
pathophysiological processes of heart diseases have emerged, as indicated by our group
targeting CNPase enzymatic activity, which might represent a novel therapeutic strategy
for heart failure [8]. As an unconventional PDE, CNPase catalyzes 2′,3′-cyclic nucleotides
as substrates [9], which are reported to impair mitochondrial integrity and accelerate the
opening of the mitochondrial permeability transition pore (mPTP) [10]. As a mitochon-
drial protein, protein–protein interactions between the functional complexes I–V of the
mitochondrial inner membrane and CNPase, leads to the assumption that CNPase might
be involved in mitochondrial respiration and energy production [11]. Increasing shreds
of evidence suggest that CNPase plays a role during ageing through substrate hydrolysis
activity and protein–protein interactions to protect mitochondria from mPTP, and the
antiaging activity of CNPase in heart failure and brain cognition was suggested by two
reports [12,13]. However, CNPase deficiency is potentially embryo lethal, and premature
deaths are quite common among CNPase −/− litters [14]. Thus, suitable genetically modi-
fied animal models, which could be developed as powerful tools to provide direct evidence
of CNPase function in heart failure, are lacking for studying CNPase in cardiovascular
diseases.

There is an unmet need to develop new therapies aiming to decrease the morbidity
and mortality of heart failure. However, there is no direct evidence of whether CNPase
deletion is physiologically deleterious and provokes proarrhythmic, structural changes in
the myocardium that contribute to the pathologies of the heart failure syndrome. Herein,
we investigated the translational implications of 2′,3′-cyclic nucleotide metabolism in
the pathogenesis and progression of heart failure. By morpholino knockdown, a cnpase
deficient zebrafish was established to explore the role of CNPase in the pathogenesis of
cardiac diseases. To better understand the etiology of heart failure, we generated cnpase
heterozygous knockout zebrafish strains. Finally, we assessed the therapeutic value of
CNPase in a pressure-overload rat model, and the effects of CNPase on mitochondrial
metabolism were investigated by the Seahorse cellular energy analyzer. Our results indi-
cate that by targeting CNPase, mitochondrial function could be an effective strategy for
pharmacological approaches to manage heart failure.

2. Results
2.1. A Zebrafish Larvae Model of Spontaneous Dilated Cardiomyopathy Induced by
Morpholino-Mediated Knockdown of CNPase

To explore the role of CNPase in cardiomyopathy development, a translation-blocking
cnpase morpholino (MO) was designed (Figure 1A) and injected onto one-cell stage embryos.
Kaplan–Meier analysis of the survival rate showed that roughly >85% of the cnpase-blocked
larvae were deceased within three days post-fertilization, suggesting that the cnpase loss-of-
function might lead to embryonic or neonatal death (Figure 1B). Notably, the cnpase-blocked
larval zebrafish developed pericardial edema, atrium and ventricle hypertrophy, bradycar-
dia with a reduced ejection fraction, fractional shortening, and cardiac output, which was
highly similar to the pathophysiological state of human heart failure (Figure 1C–H).
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Figure 1. Morpholino-mediated cnpase knockdown results in a heart failure phenotype in zebrafish larvae. (A) The target
sequences of control morpholino and morpholino targeting cnpase. (B) Effects of morpholino injection on the survival rate
of zebrafish embryos over 120 hpf, n = 25~50. hpf, hours post-fertilization. (C) Phenotypes of the tg(myl7:gfp) zebrafish after
cnpase-MO administration at 4 dpf. Arrows indicate the pericardial edema and malformation of body shape. dpf, days
post-fertilization. Scale bar, 1000 µm. (D) cnpase-morpholino administration results in enlarged ventricular and atrium
size. The images were captured by upright fluorescence microscope (Axio Imager A2, Zeiss). Scale bar, 1000 µm. (E–H)
Cardiac function evaluation of zebrafish embryo after MO injection at 4 dpf, n = 25~50. Values are expressed as mean ± SD.
Unpaired t-test, **, p < 0.005; ***, p < 0.001.

2.2. The Generation of a Zebrafish Cardiomyopathy Model by CRISPR-Cas9-Mediated CNPase
Knockout

To establish a stable cardiomyopathy animal model, we herein generated a cnpase
knockout zebrafish strain on a pure AB Tg(flk: egfp) background using the CRISPR-Cas9
gene-editing system. CRISPR-Cas9 founders (F0) were generated in which the first exon
of the zebrafish CNPase ortholog was targeted simultaneously by a pair of sgRNAs
(Figure 2A). Adult founders were inbred to give birth to the offspring, in which indels were
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detected in the PCR amplicons of the region around the target site (Figure 2B,C). We found
that frame-shift indels in the cnpase coding region could create mutant alleles in zebrafish in
which it recapitulates MO phenotypes, excluding the possibility of MO-induced toxic and
off-target effects (Figure 2C,D). Considering that homozygous mutations of CNPase cause
embryo or neonatal lethality, the heterozygous cnpase+/− zebrafish strain was maintained
for future study.

Figure 2. Generation of CNPase knockout zebrafish strain using the CRISPR-Cas9 editing system. (A) Schematic representa-
tion of the knockout strategy using CRISPR-Cas9 by targeting the first exon of cnpase. The cnpase-201, cnpase-209 encodes
CNPase I (45 kDa) and CNPase II (47 kDa), respectively. (B) Sequences of the target site 1 and 2. “AGG” is the protospacer
adjacent motif. (C) The genotyping of cnpase+/− zebrafish confirmed by tail-DNA PCR amplicons. The arrow indicates
where the frame shift begins. (D,E) The cnpase deficient zebrafish exhibits developmental retardation, and cardiac failure
phenotypes. Scale bar, 1000 µm.
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2.3. AAV9-Mediated CNPase Myocardial Delivery Ameliorates Heart Dysfunction

Our group reported that targeting CNPase enzymatic activity might give rise to novel
therapies for heart failure [8]. Thus, the therapeutic potential of CNPase as a new target in
a translational cardiac hypertrophy animal model was explored. Heart hypertrophy was
surgically induced by abdominal aorta constriction in Sprague-Dawley rats. Two weeks
later, CNPase was introduced into the left ventricular myocardium through ultrasound-
guided AAV9 delivery. Four weeks after the AAV9 delivery, the echocardiographic anal-
ysis revealed that the hypertrophic response was less pronounced in the AAV9-CNPase
delivered group, supported by the decrease of left ventricular internal diameter in the
vesicle-delivered group (Figure 3A). Further, the heart dysfunction had recovered upon the
AAV9-mediated gene therapy, wherein the cardiac output (CO), left ventricular ejection
fraction (EF), as well as fraction shortening (FS) were enhanced (Figure 3C–E). No effects
of CNPase expression on heart rate were observed (Figure 3B).

Figure 3. Myocardial CNPase delivery protects the heart from cardiac hypertrophy and dysfunction. (A) Representative
echocardiography images of left ventricles. (B–E) The therapeutic effects of CNPase on heart rate, left ventricular ejection
fraction, fraction shortening, cardiac output. The pressure overload-induced heart hypertrophy was carried out by transverse
abdominal aorta constriction (TAAC) surgery. The AAV9-CNPase vectors (1 × 1012 genome copies) were delivered into the
left ventricular myocardium guided by echocardiography. n = 8 in the sham group, n = 14–16 in the TAAC group. One-way
ANOVA, Tukey’s multiple comparisons test, *, p < 0.05; **, p < 0.005; ***, p < 0.001.
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2.4. AAV9-Mediated CNPase Myocardial Delivery Counteracts the Hypertrophic and Fibrosis
Response

The hallmarks to indicate cardiac hypertrophy were the ratio for heart weight to
body weight (HW/BW) and the ratio of heart weight to tibia length (HW/TL). Our data
demonstrated that the hypertrophic myocardiopathy responses were attenuated upon
the AAV9-CNPase delivery (Figure 4A,B). Figure 4C–E shows that the reduction of car-
diomyocyte size could be responsible for the mitigation of cardiac hypertrophy in the
AAV9-CNPase/TAAC group. The left ventricular section in the pressure overload-induced
group was characterized by an excessive accumulation and a disrupted composition of
extracellular matrix proteins, wherein the AAV9-CNPase administration trimmed the
fibrosis response (Figure 4F,G). Taken together, our findings reveal that in the pressure
overload-induced preclinical model, CNPase expression mitigates cardiac inflammation,
hypertrophy, and failure in response to pressure overload, suggesting CNPase is playing
the role of linking inflammation and hypertrophy in heart.

Figure 4. Cont.
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Figure 4. Myocardial CNPase delivery protects the heart from pressure overload-induced cardiomy-
opathy. (A,B) Effects of CNPase overexpression on the heart weight to body weight (HW/BW) ratio
and the heart weight to tibia length (HW/TL) ratio. (C–E) Effects of CNPase overexpression on
the heart hypertrophy and cardiomyocyte size. Representative images of heart cross sections by
hematoxylin and eosin (H and E) staining and quantitative analysis. Original magnifications, D Â400.
(F,G) Representative images of Masson’s Trichrome stained heart sections and quantification analysis.
The pressure overload-induced heart hypertrophy was carried out by transverse abdominal aorta
constriction (TAAC) surgery. (H) Representative transmission electron micrographs of mitochondria
from the left ventricular myocardium in the AAV9-vehicle/TAAC and AAV9-CNPase/TAAC groups.
Arrows indicating the representative mitochondria, scale bar, 5 µm. N, nucleus. The AAV9-CNPase
vectors (1 × 1012 genome copies) were delivered into the left ventricular myocardium guided by
echocardiography. n = 8 in the sham group, n = 14 in the TAAC-GFP group, n = 16 in the TAAC-
AAV-CNPase group. One-way ANOVA, Tukey’s multiple comparisons test, *, p < 0.05; **, p < 0.005;
***, p < 0.001.

Compromised mitochondrial respiration is a hallmark of cardiac dysfunction. To in-
vestigate mitochondrial ultrastructure, transmission electron microscopic analysis demon-
strated that myocardial fibers were beginning to lose cross striations, damaged mitochon-
dria were associated with cristae lysis, and abnormal internal membrane whorls were
present in the pressure-overload model group (Figure 4H). In comparison, the cardiac
fibromuscular and mitochondrial ultrastructure characteristics were well preserved in the
AAV9-CNPase group, despite the presence of pressure overload (Figure 4H).

2.5. Computational Analysis of the Dynamic Interaction between CNPase and Cyclic Nucleotide
Isomers

The interaction of 2′, 3′-cGMP and CNPase was demonstrated in several studies [8];
however, structural comparisons of 3′, 5′-cGMP binding with CNPase were lacking. To
explain the binding affinity and specificity of cyclic nucleotide isomers with CNPase,
computational analysis of molecular docking, molecular dynamics (MD) simulations, and
binding free energy calculations were carried out as previously reported [8]. Molecular
structures of 2′,3′-cGMP and 3′,5′-cGMP were demonstrated (Figure 5A). Considering the
binding free energy, and docking poses with the highest scores, the conformation and
orientation of CNPase-cyclic nucleotide-binding complexes were determined (Figure 5B).



Int. J. Mol. Sci. 2021, 22, 10806 8 of 15

Figure 5. In silico simulation of the dynamic interaction of CNPase with 2′,3′-cGMP and 3′,5′-cGMP. (A) The chemical
structures of 2′,3′-cGMP and 3′,5′-cGMP. (B) The docking complex of CNPase with 2′,3′-cGMP or 3′,5′-cGMP. (C) The time
course of the root-mean-square deviation (RMSD) of the 2′,3′-cGMP-CNPase (black) and 3′,5′-cGMP-CNPase (red) complex
system in a simulation of 200 ns.

To analyze the composition’s stability and the conformation changes of 2′,3′-cGMP
and 3′,5′-cGMP with CNPase, the root-mean-square deviation (RMSD) was determined
according to previously reported methods [8,15]. After a 200 ns MD simulation, the
complex structure reached the equilibrium state (Figure 5C). However, the overall structural
fluctuations of the 3′,5′-cGMP complex (red line) were larger than those of the 2′,3′-cGMP
complex. In contrast, no apparent molecular distortion in the 2′,3′-cGMP–CNPase complex
was observed during the simulations, further confirming that, compared to 3′,5′-cGMP,
the 2′,3′-cyclic nucleotides are favorable substrates of CNPase (Figure 5C). The binding
energy calculations reveal that the binding capacity of CNPase with 2′,3′-cGMP is favorable,
compared to that of CNPase with 3′,5′-cGMP (Table 1). Since free energy barriers determine
the folding and binding of CNPase with substrates, it could be speculated that the molecular
conformation of CNPase is more accessible to 2′,3′-cyclic nucleotides, rather than 3′,5′-cyclic
nucleotides.

Table 1. Binding free energies (kcal/mol) for CNPase with 2′,3′-cGMP and 3′,5′-cGMP.

System ∆EVDW ∆EELE ∆GGB ∆GSURF ∆GTOT T∆S ∆GBinding

2′,3′-cGMP −41.62 ± 2.52 −138.93 ± 10.81 145.41 ± 8.85 −4.024 ± 0.12 −39.16 ± 4.09 −13.98 ± 4.53 −25.18 ± 6.10
3′,5′-cGMP −23.61 ± 7.85 −151.90 ± 51.86 165.92 ± 47.92 −2.76 ± 0.80 −12.35 ± 6.060 −21.10 ± 5.83 8.76 ± 8.41

∆EVDW, van der Waals energy; ∆EELE, electrostatic interaction energies; ∆GGB, polar solvation free energies; ∆GSURF, surface energies;
∆GTOT, total energies; T∆S, conformational entropy; ∆GBinding, binding energies.

2.6. CNPase Overexpression Improves Mitochondrial Respiration Function in Cardiac
Hypertrophy

As the most energy-demanding organ, the heart relies on mitochondria as the power-
house to produce ATP. The mitochondrial bioenergetics were profiled by the mitoStress
assay using a Seahorse XFe96 cellular energy analyzer (Figure 6A). Our data demonstrated
that the respiratory capacity was decreased upon AngII-induced hypertrophic stress. In
contrast, the mitochondrial bioenergetics were well preserved in CNPase-overexpressed
cells, as suggested by the basal, maximal, and reserved mitochondrial oxygen consumption
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rate (OCR) (Figure 6B–E). Notably, there was an increase of ATP-linked OCR in CNPase-
overexpressed cells compared to the empty vector-transfected cells (Figure 6D).

Figure 6. CNPase expression is essential for mitochondrial integrity, respiration capacity, and ATP production. (A) The
general scheme of the mitochondrial stress test. The mitoStress assay was carried out on a Seahorse XFp extracellular
flux analyzer (Agilent, Santa Clara, CA, USA) to directly measure the oxygen consumption rate (OCR) of cells. H9C2
cells were plated at a density of 2000 cells/well onto a 96-well seahorse microplate and transfected with pcDNA3.1-HA
or pcDNA3.1-HA-CNPase vectors. For the mitoStress assay, programmable injection of selective inhibitors, oligomycin
(2.5 µM), FCCP (1 µM), and rotenone/antimycin (2.5 µM) was performed. The Seahorse data shown are acquired from
8–12 independent replicates per experiment. Oligo, Oligomycin; FCCP, Potent uncoupler of mitochondrial oxidative
phosphorylation; R/A, Rotenone/Antimycin. (B–E) Effects of CNPase overexpression on the basal, maximal and spare
mitochondrial respiration, ATP production, and proton leak. One-way ANOVA, Tukey’s multiple comparisons test,
*, p < 0.05; **, p < 0.005; ***, p < 0.001.

3. Discussion

The mechanism underlying mitochondrial energy production leading to heart failure
is not fully elucidated. We found that zebrafish larvae with morpholino-mediated cnpase
silencing develop a heart failure phenotype, featuring increased ventricular size, impaired
contractility and relaxation, edema, and cardiac arrhythmia. Further, a zebrafish model
with heart failure was developed using CRISPR-Cas9-mediated genetic manipulation. This
animal model could be widely used to define the role of CNPase in mitochondrial energy
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production during heart failure. Finally, AAV9-mediated delivery of CNPase provides
mechanistic insights into CNPase-2′,3′-cyclic nucleotide metabolism that protects the heart
from energy starvation, and suggests novel therapeutic approaches to treat heart failure.

So far, little is known about the pharmacology and implicated application of the
CNPase-2′,3′-cyclic nucleotide metabolic system. In contrast, therapeutic approaches based
on the 3′,5′-cGMP/cAMP system, which give rise to drugs that block specific phospho-
diesterases (PDEs), are still attracting great interest in the scientific research community,
clinical and pharmaceutical industries [16]. However, phosphodiesterase-5 inhibition is
not beneficial for heart failure patients with a preserved ejection fraction [17]. So far, no
PDE inhibitors have been approved for chronic heart failure, except PDE5 inhibitors that
were approved for treating pulmonary arterial hypertension. Nevertheless, clinical trials
and practice are trying to identify new clinical uses of PDE5 inhibitors for treating heart
failure with pulmonary vascular resistance, pulmonary hypertension secondary to left
ventricular HF, and transplantation-related advanced heart failure. Thus, searching for
novel pathophysiological mechanisms and therapies is an urgent need. Recent evidence
suggests that CNPase represents a novel target for maintaining mitochondrial respiration
by preventing mitochondrial calcium overload and mPTP via the hydrolysis of 2′,3′-cyclic
nucleotides [10]. Reports indicate a decline of mitochondrial CNPase enzymatic activity
in the pathophysiological state of heart failure, due to the hyperacetylation or release of
CNPase proteins from mitochondria [8,17].

Antisense morpholino and CRISPR-Cas9-mediated cnpase gene-editing systems were
employed in this study to develop a heart failure zebrafish model (Figures 1 and 2).
Zebrafish deficient in cnpase develop visibly slow heart rates, pericardial edema, and a
distorted cardiac structure (Figure 1C). The survival rate of zebrafish embryos after MO-
mediated cnpase knockdown was lower than that of control MO at a high dose (Figure 1B).
The heart rate, cardiac output, fractional shortening, and ejection fraction were severely
decreased in cnpase MO larvae, suggesting that the zebrafish model with heart failure was
successfully established (Figure 1). Notable pericardial edema suggests the involvement of
CNPase in inflammation activation, that in concert with CNPase expression, is associated
with microglial activation and controls the expression of inflammatory cytokines [18].
This study sheds light on CNPase-2′,3′-cyclic nucleotide metabolism as a new pathophys-
iological mechanism responsible for cardiac remodeling, based on which new therapy
approaches for heart failure could be developed.

Mismatched energy production and demand is the hallmark of heart failure. In this
sense, CNPase represents as novel “energy” therapy target for heart failure beyond the tra-
ditional neurohumoral and hemodynamic modulation approaches. The CNPase-2′,3′-cyclic
nucleotide system is present in the circulating system, and cardiomyopathy could increase
the formation of 2′,3′-cyclic nucleotides through mRNA degradation [19]. AAV9-mediated
CNPase myocardial expression alleviated the pressure overload-induced hypertrophic
response and improved heart function (Figures 3 and 4), possibly by CNPase metabolizing
2′,3′-cyclic nucleotides into adenosine to exert beneficial physiological effects [19,20]. Our
study also explains the binding affinity of CNPase proteins with cyclic nucleotide posi-
tional isomers (Figure 5), concluding that CNPase does not interfere with PDE 3′-5′-cyclic
nucleotide pathways. The cellular mitochondrial analysis indicated that CNPase protects
the hypertrophic heart from energy depletion by preserving the mitochondrial respiration
and ATP production capacity (Figure 6). The presence of 2′-3′-cyclic nucleotides have
been identified in immune cells [21]; however, pieces of evidence of 2′-3′-cyclic nucleotides
triggering inflammation are still lacking. As elucidated by Zhang etc., 2′,3′-cGMP was iden-
tified as a potent endogenous ligand binding to TLR7 family proteins [22], which recognize
virus ssRNAs to activate the NF-κB pathway and produce inflammatory cytokines. TLR7
activation contributes to systemic inflammation, myocarditis and dilated cardiomyopa-
thy [23]. As an agonist of TLR7, abnormal accumulation of 2′,3′-cGMP could contribute
to the inflammatory and fibrotic responses in the pathophysiology of heart failure. This
might give clues how the ability of CNPase to degrade 2′,3′-cGMP versus 3′,5′-cGMP is
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advantageous in heart failure. Taken together, these findings suggest myocardial CNPase
delivery plays a therapeutic role modulating cardiac hypertrophy, energetic dysfunction,
arrhythmia, extracellular matrix remodeling, and inflammation.

Meanwhile, a study of CNPase in the renal system suggests that our understanding
of CNPase is still preliminary. In contrast to this study, CNPase deficiency alleviated the
severity of acute kidney failure during ischemia–reperfusion, and suggested that CNPase
deficiency protects the kidney from oxidation stress by inducing autophagy and removing
damaged mitochondria [24]. Other than 2′-3′-cyclic nucleotide PDE activity, CNPase
proteins could promote lipid raft distribution, tRNA maturation, microtubule assembly,
and a change of mRNA stability and translation [25].

There are a few drawbacks in this study, and further investigation is required to better
elucidate the function and underlying mechanism of CNPase. First, a rescue experiment
is needed to investigate whether the reintroduction of cnpase proteins could rescue the
pathophysiological phenotype, although a second method using the CRISPR-Cas9 system
validated the genotyping and phenotyping of cnpase. Second, in vivo energy expenditure
and metabolic biomarker metrics during CNPase therapy are lacking, and the effects of
CNPase expression needs to be fully determined. Finally, the molecular role and underlying
mechanism of CNPase are not well characterized in this study. So far, a report reveals that
CNPase regulates the epithelial–mesenchymal transition of lens epithelial cells through the
notch signaling pathway [26].

In summary, a zebrafish model with heart failure was developed targeting cnpase
by using morpholino and gene-editing systems. The therapeutic potential of CNPase
was validated in a pressure overload-induced cardiac hypertrophy model by the myocar-
dial introduction of AAV9-CNPase, which ameliorated cardiac hypertrophy, fibrosis, and
dysfunction through increasing cardiac energy production.

4. Materials and Methods
4.1. Zebrafish Husbandry, Microinjection, Fluorescence Analysis of Heart Function

AB wild-type and Tg(myl7:GFP) transgenic strains were purchased from the Institute
of Hydrobiology, Chinese Academy of Sciences and maintained in Zebrafish Aquatic
Housing Systems (Shanghai Haisheng Biotech, Shanghai, China) at 28 ◦C, pH 7.0–8.0,
0.25% salinity, and a light-dark cycle 14L:10D.

Morpholino antisense oligos targeting zebrafish CNPase mRNA were designed and
synthesized (Gene Tools, LLC, Eugene, OR, USA). Embryos were injected (1 ng) at the one-
cell stage by using an ASI pressure injection apparatus (Applied Scientific Instrumentation,
Eugene, OR, USA). MO-injected embryos were grown in a 10-cm dish containing Holt-
freter’s solution at 28 ◦C. The survival curve was plotted using a Kaplan–Meier Survival
Curve.

Heart function was analyzed with fluorescence microscopy (ZEISS Axio Observer
for Life Science Research, Jena, Germany). Zebrafish larvae (4 dpf) were anesthetized in
0.03% tricaine and mounted on 3% methylcellulose. Videos were recorded (15 s, repeated
three times, 488 nm excitation wavelength) and processed using Adobe Bridge CC 2020
and Adobe Premiere Pro V8.1.0.7 software. The width and length of the ventricules were
measured at the end of diastole and systole to obtain cardiac dimensions, based on which
the heart function parameters were obtained [27].

4.2. Animal Husbandry, Abdominal Aortic Constriction Surgery, 2D Ultrasound Analysis of
Heart Function

Sprague-Dawley male rats were bought from the Animal Center of Jinan Pengyue
Laboratory Animal Breeding Co., Ltd. (Jinan, Shandong, China). Rats were housed with
free access to water and standard chow, at room temperature 25 ◦C, relative humidity
40%–60%, and a standard 12 h light–dark cycle (light on/off at 7 a.m./7 p.m.). All animal
studies were conducted according to the Guidance Suggestions for the Care and Use of
Laboratory Animals, formulated by the Ministry of Science and Technology of China. The
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present study was approved by the Jinan University Animal Care and Use Committee
(Ethics code: SCXK-20190306) in March 2019.

Transverse abdominal aortic constriction (TAAC) surgery was performed to induce
cardiac pressure overload, which progressively led to myocardial hypertrophy and dys-
function. Briefly, animals were anesthetized with sodium pentobarbital (45 mg/kg) by
intraperitoneal (i.p.) injection. The abdominal cavity was opened by performing a medial
incision of the abdominal wall to expose the internal organs. After locating the abdominal
aorta, the vessel sheath was dissected to expose the abdominal aorta. A 0.7 mm OD blunted
needle was tied in place with a 3.0 mm suture, after which the needle was withdrawn,
leaving the ligature in place. A diminution in the pulse amplitude and the paleness of the
left kidney demonstrated the success of the ligature. Sham-operated rats were subjected to
the same surgical procedure except that the aorta was not constricted. After 2 weeks, heart
function was analyzed using ultrasound to evaluate the cardiac hypertrophic response.
Guided by contrast echocardiography, the AAV9 (1 × 1012 genome copies) was delivered
into the anterior and posterior left ventricular walls by a 30 G 0.5-inch needle. The total vol-
ume was 100 µL, and the injection was given five times to different positions. Transthoracic
echocardiographic measurement was carried out at 4, 6, and 8 weeks after the surgery.

Cardiovascular phenotyping for cardiac structure and function was assessed using
the Vevo 3100 Preclinical Imaging System (FUJIFILM, VisualSonics, Toronto, OT, Canada),
after rats were anesthetized with 3%, 600 mL/min isoflurane with a Rodent Anesthesia
Machine (GasAnesthesia, Coral Springs, FL, USA). The cardiac structure was visualized by
photoacoustic contrast agents with a Vevo Optical Fibers probe (6 MHz~19 MHz), based on
which, Vevo Lab software was used to analyze the left ventricular ejection fraction, fraction
shortening, and cardiac stroke volume. The echocardiographic measurement was taken for
at least three consecutive cardiac cycles.

4.3. Production, Purification, and Titration of AAV9-CNPase, and Ultrasound-Guided Left
Ventricular Injection

Rat full-length CNPase was subcloned into the AAV transfer plasmid with the
myocardial-specific cTnT promoter. The AAV was packaged and purified through iodix-
anol gradient purification to remove empty capsids (Vigene Biosciences, Jinan, Shangdong,
China). Briefly, the triple plasmids involving AAV-CNPase, AAV9 Rep-Cap, and helper
plasmids were introduced into AAV-293 cells, then the viral particles were harvested by
freeze/thaw of the cell pellet to release the AAV virus. The AAV was stored at –80 ◦C
and titrated by the qRT-PCR method to detect viral ITR genes. The AAV9-GFP virus was
packaged as for the AAV9-CNPase virus except that the AAV9-GFP transfer plasmid was
used during the co-transfection.

4.4. The CRISPR-Cas9 System-Mediated Genome Editing to Develop the CNPase Knockout
Zebrafish Strain

The 20-nt sequence pair (GGAAGTGGCGGCTCAGCAAGAGG, GGAGGAGGAAGCT-
GTGAAAGAGG) targeting the first exon of CNPase was designed by the MIT CRISPR
Tool. The gRNAs were prepared by in vitro transcription (mMESSAGE mMACHINE T3 kit,
AM1348, Life Technologies, Carlsbad, CA, USA) using annealed oligos as the template, then
RNA was purified with isopropanol/sodium acetate and quantified with Nanodrop2000.
The SpCas9 protein was ordered from Novoprotein Scientific Inc., Shanghai, China.

To create mutant alleles in zebrafish, the CRISPR mRNA/gRNA mix (1 nL, 25 pg
sgRNAs, and 300 pg Cas9) was injected into one-cell stage Tg(flk: EGFP) transgenic
zebrafish embryos. The cardiac phenotype was observed in the embryonic stage at 72 hpf.
The homozygous mutant fish were screened from the offspring of the founder fish using
PCR, subcloning, and sequencing.

4.5. Histological and Morphological Analyses

Rat hearts were harvested and arrested in diastole with a 10% KCl solution. Then,
the hearts were washed and fixed in 4% formalin, dehydrated through a graded series
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of alcohols, and embedded in paraffin wax. Subsequently, the left ventricles were cut
into 5 µm thick sections, deparaffinized, and rehydrated before hematoxylin and eosin
(H and E) staining and Masson’s Trichrome staining. The cardiomyocyte cross-sectional
area and fibrosis area fraction were quantified by Image-Pro Plus v.6.0 (Media Cybernetics,
Silver Spring, MD, USA).

Left ventricular tissues were dissected into small cubic pieces (≤1 mm3) and fixed with
2.5% glutaraldehyde, pH 7.4 for 3 h. After being washed in 0.1 M phosphate buffer three
times, the tissues were fixed in 1% osmium tetroxide. Then samples were dehydrated by
graded ethanol with the last dehydration procedure in 90% acetone. All above procedures
were conducted at 4 ◦C. After being embedded in Epon Araldite and fixed, ultrathin
sections (60–80 nm) were sliced using a Leica EM UC7 ultramicrotome (Leica, Wetzlar,
Germany) and stained with 3% uranyl acetate and lead citrate. Images were captured with
a HT7700 transmission electron microscope (Hitachi, Tokyo, Japan).

4.6. Cell Culture, Transient Transfection, and the Mitochondrial Biogenetics Analysis Using a
MitoStress Assay

The rat embryonic cardiomyocyte-derived cell line H9c2 was purchased from the Na-
tional Collection of Authenticated Cell Cultures (Chinese Academy of Sciences, Shanghai,
China). H9c2 cells were cultured in DMEM medium supplemented with 10% fetal bovine
serum and 0.1% penicillin-streptomycin in a humidified incubator with 5% CO2 at 37 ◦C.
The in vitro hypertrophic model was established by AngII (1 µM) and serum starvation for
24 h. The HA-tagged CNPase plasmids were constructed and transiently transfected using
Lipofectamine 2000 as described previously [8].

The Seahorse XF Cell Mito Stress assay was carried out on a Seahorse XFe96 Analyzer
to profile mitochondrial biogenetics kinetics according to the manufacturer’s instructions.
The basal respiration rate was measured in an XF assay medium supplemented with
1 mmol/L sodium pyruvate, 2 mmol/L l-glutamine, and 10 mmol/L glucose. Following
that, the programmable injection of oligomycin (1 µmol/L), carbonyl cyanide (trifluo-
romethoxy) phenylhydrazone (FCCP) (1.5 µmol/L) and rotenone/antimycin A (R/A)
(1 µmol/L) was performed in sequence from ports A, B and C, respectively. The assay was
recorded for 150 min, and the OCR readings were normalized with the protein concentra-
tion.

4.7. In Silico Simulation

The structure of human wild-type CNPase (PDB 1WOJ) was downloaded from the
RCSD Protein Data Bank. Missing residues were modelled on UCSF Chimera 1.13.1 using
the in-built Modeller tool. Molecular dynamic (MD) simulations of CNPase were carried
out in Gromacs 2019.1 on an in-house Linux-based desktop computer. The protonation
states of all protein residues were fixed at pH 7.0 and the simulations were carried out
under a Gromos 54a8 force field. A water cubic box, extended 15 Å from the protein,
was filled with TIP3 water molecules. The cutoff for short range interactions was set to
10 Å. A PME method was used for long-range electrostatic interactions. Periodic Boundary
Conditions (PBS) were applied in all directions. Cl− anions were added to make the system
neutral. Energy minimization was performed using the steepest descent algorithm with
an energy convergence cutoff of 10.0 kJ/mol. Temperature and pressure equilibration
was performed for 0.5-ns position-restrained MD simulations. Three productive MD
simulations per structure were performed for 100-ns with a time step of 2 fs at a constant
1 atm pressure and 310 K temperature. Temperature was controlled using the modified
Beredsen thermostat, and pressure coupling was performed using the Berendsen barostat.
The three MD simulations were concatenate and calculated using built-in utilities installed
on Gromacs [8].

4.8. Statistical Analysis

The results are expressed as the mean± SD. A two-tailed Student’s t-test was used to
assess the differences between two experimental groups, while a one-way ANOVA with



Int. J. Mol. Sci. 2021, 22, 10806 14 of 15

post-hoc Tukey’s test was used for multiple group comparisons. A value of p < 0.05 was
considered statistically significant.
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