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Abstract: Persistent inflammatory reactions in microglial cells are strongly associated with neu-
rodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid,
has been found to improve inflammatory conditions in several animal models. It has also been
observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a
vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study,
we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells.
Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide
(LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR,
while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins,
were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed
via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the
LPS-induced increase in the mRNA levels of Il-1β, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH
inhibited the phosphorylation of TAK1, IKKα/β, and NF-κB p65 proteins as well as NF-κB nuclear
translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar
to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB
signaling pathway.
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1. Introduction

Microglia are brain-resident macrophage cells that act as the first immune defense in
the brain and are responsible for maintaining central nervous system (CNS) homeostasis
conditions [1,2]. They are sensitive cells that can be transformed to have distinct charac-
teristics that could be either favorable or harmful, depending on the duration and type
of stimulus [3]. Upon activation by dangerous stimuli, such as brain injury or infection,
microglia become active and produce various pro-inflammatory cytokines, including IL-1β,
IL-6, and TNF-α [4]. When the stimulus is temporal, cytokine production can be controlled
to return to the normal physiological state [5]. However, when such dangerous stimuli
persist, the overproduction of inflammatory cytokines results in a cycle that further induces
neuroinflammation [6,7]. This condition may cause neuronal cell loss, which can promote
neurodegenerative pathogenesis. In a previous study, it was observed that the injection of a
lipopolysaccharide (LPS), which a Gram-negative bacterial endotoxin, is capable of induc-
ing microglial activation, which is often followed by neuron cell degradation in the animal
brain, leading to cognitive impairment [8,9]. Moreover, elevated levels of inflammatory
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cytokines have also been confirmed in the cerebrospinal fluid of patients with neurological
diseases [10,11].

Additionally, LPS binds to TLR4 in the cell membrane to activate inflammatory tran-
scription factors, such as nuclear factor-κB (NF-κB) [12]. The essential mechanism asso-
ciated with NF-κB activation is the phosphorylation and inducible degradation of IκBα
protein, resulting in the nuclear internalization of NF-κB [13]. This IκBα event is triggered
by the phosphorylation (activation) of its kinase, the IKK complex, which consists of IKKα

and IKKβ as catalytic subunits, and NEMO as a regulatory subunit. IKK phosphorylation
itself results from IRAK1-TRAF6 activation, which conveys signals via the TAK1 complex
after LPS stimulation [14]. Furthermore, NF-κB modulates the expression of the mRNA
of numerous genes that are involved in inflammatory response [15]. Therefore, target-
ing the NF-κB signaling pathway may be a beneficial therapeutic strategy for inhibiting
inflammation-mediated disorders.

Geranylgeraniol (GGOH), which consists of four isoprene units, is a natural isoprenoid
present in edible grains and vegetable oils [16–18]. Previous studies have revealed that
its exogenous administration shows an anti-inflammatory effect in a mouse model of
mevalonate kinase deficiency and inhibits NF-κB activation in hepatocarcinogenic rat
models [19,20]. It has also been reported that GGOH inhibits the expression of LPS-induced
pro-inflammatory markers in rats, macrophagic THP-1 cells, and amino bisphosphonates-
treated RAW264.7 cells [21–23]. Furthermore, it has been suggested that GGOH is required
to maintain endotoxin tolerance in peritoneal macrophages and counter IL-1β production in
peripheral blood mononuclear cells from patients with mevalonate kinase deficiency [24,25].
These findings indicate that GGOH may modulate inflammation in the peripheral system.

In CNS models, GGOH and geranylgeranyl-pyrophosphate (GGPP), a GGOH deriva-
tive, are reported to protect cultured neuron cells from the detrimental effects of statin
administration [26,27]. In vitro experiments performed in previous studies have also in-
dicated that low isoprenoid levels are associated with the accumulation of intracellular
amyloid β (Aβ) [28,29]. Moreover, it has been observed that the suppression of ger-
anylgeranyl products in statin-treated microglia triggers the upregulation of TNF-α [30].
Additionally, continuous GGOH synthesis in neuron cells is also suggested to be required
for long-term potentiation and learning [31]. These findings suggest that isoprenoids, in-
cluding GGOH, exert a positive effect in the CNS, especially in the regulation of mevalonate
pathway (MVP). However, the function of GGOH, independent of MVP regulation in the
CNS model, has not yet been adequately studied. Furthermore, the chemical structure of
GGOH is similar to that of the side chain of menaquinone-4 (MK-4), a vitamin K2 sub-type,
which we previously reported as showing the ability to inhibit NF-κB activation in MG6
cells (Figure 1) [32]. These facts prompted us to investigate whether GGOH possesses an
anti-inflammatory effect that is similar to that of MK-4 in microglial cells.
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Therefore, the aim of this study was to elucidate the anti-inflammatory effect of
GGOH against LPS-induced inflammation in mouse-derived MG6 microglial cells, which
is a confirmed cell line that is used as a microglial activation model [33,34]. By clarifying
the molecular action of GGOH, we hope to lay a preliminary foundation for further
investigation, especially regarding the association between GGOH and microglial cells.

2. Results
2.1. GGOH Inhibited the Upregulation of Pro-Inflammatory Cytokine Expression in MG6 Cells

First, an examination of the effect of GGOH on MG6 cell viability was performed. The
results obtained revealed that GGOH administration at concentrations up to 10 µM did not
affect the viability of the MG6 cells. However, a higher concentration (100 µM) markedly
reduced the viability of the cells (Figure 2a). Hence, we set 10 µM as the maximum working
dose in subsequent experiments.

Pro-inflammatory cytokines are the major downstream products of inflammatory
signaling. Here, we evaluated the anti-inflammatory action of GGOH by measuring
pro-inflammatory cytokine mRNA expression levels resulting from the action of LPS
following GGOH pre-treatment. As shown in Figure 2b–d, LPS administration for 3 h
significantly upregulated the expression of interleukin-1β (Il-1β), interleukin-6 (Il-6), and
tumor necrosis factor-α (Tnf-α) mRNA. However, pre-treatment with GGOH, especially
at a concentration of 10 µM, markedly downregulated the mRNA expression levels of
these pro-inflammatory cytokines by 2.5-, 1.3-, and 3.9-fold, respectively, compared with
LPS-only treatment (Figure 2b–d). Furthermore, GGOH pre-treatment also inhibited the
expression of cyclooxygenase-2 (Cox-2), which is a mediator of the inflammatory process
(Figure 2e). Specifically, it effectively suppressed inflammatory cytokine expression after
24 h of administration, while its administration for less than 24 h had diverse effects
on the expression levels of Il-1β, Tnf-α, and Il-6 (Figure 2f–h). Therefore, in subsequent
experiments, MG6 cells were incubated with GGOH for 24 h. The inhibition of pro-
inflammatory transcriptional expression indicated that GGOH had an anti-inflammatory
effect in LPS-induced inflammation in MG6 cells.
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measured via quantitative reverse transcriptase-PCR, normalized to Eef1a1 (the internal standard), 
and expressed as fold-changes relative to control cell values or the values corresponding to 
LPS-only treated MG6 cells. Data are presented as the mean ± S.E.M, n = 3; # p < 0.05 vs. untreated 
control; * p < 0.05 vs. LPS-only treated group). 
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Figure 2. Suppression of pro-inflammatory cytokine mRNA expression by geranylgeraniol (GGOH).
(a) MG6 cells pre-treated with GGOH at different concentrations for 24 h. Cell viabilities were
evaluated using the WST-1 method. (b–e) Pro-inflammatory cytokine mRNA expression levels in
MG6 cells pre-treated with GGOH at different concentrations for 24 h followed by LPS (10 ng/mL)
treatment for 3 h. (f–h) Pro-inflammatory cytokine mRNA expression levels in MG6 cells pre-treated
with GGOH (10 µM) at different times followed by LPS treatment (10 ng/mL) for 3 h. Closed bar,
LPS-only treated groups; open bar, GGOH pre-treated groups. The mRNA levels were measured via
quantitative reverse transcriptase-PCR, normalized to Eef1a1 (the internal standard), and expressed
as fold-changes relative to control cell values or the values corresponding to LPS-only treated MG6
cells. Data are presented as the mean ± S.E.M, n = 3; # p < 0.05 vs. untreated control; * p < 0.05 vs.
LPS-only treated group).

2.2. Mitigation of NF-κB Activation in MG6 Cells by GGOH

Transcription factors primarily drive the production of pro-inflammatory media-
tors [13,15]. Specifically, NF-κB is a transcriptional factor that is widely known to be
triggered during LPS administration. Given that GGOH administration inhibited the
expression of pro-inflammatory cytokines, we characterized the underlying molecular
mechanism by assessing the expression of NF-κB signaling pathway-related proteins. First,
the optimum LPS administration time required to induce NF-κB activation in MG6 cells
was determined. As shown in Figure 3a, LPS induced the phosphorylation of TAK1,
IKKα/β, and the p65 subunit of NF-κB after 30 min of administration. However, 1 h of
LPS administration resulted in a more prominent result. Hence, 1 h was applied as the
optimal time required for LPS administration in the Western blot experiments.

The GGOH pre-treatment group showed a significantly reduced capacity compared
with the LPS-only treatment group with respect to TAK1, IKKα/β, and p65 phosphory-
lation based on their total protein levels (Figure 3b). We also examined the IκBα profile
given that IκBα sequesters NF-κB in the cytoplasm in an inactive form. During activa-
tion, IκBα was phosphorylated and degraded by the proteasome, leading to the release of
NF-κB. It was also observed that LPS triggered IκBα degradation in MG6 cells by 0.4-fold
compared with the control group, while markedly enhancing IκBα phosphorylation. Con-
versely, GGOH notably inhibited IκBα degradation and phosphorylation, as shown in
Figure 3b. These results indicated that GGOH arrested the NF-κB signaling pathway in
LPS-induced inflammation in MG6 cells, contributing to the inhibition of pro-inflammatory
cytokine expression.
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Figure 3. Inhibition of the expression of NF-κB-related proteins by geranylgeraniol (GGOH). MG6 cells were pre-treated
with GGOH for 24 h followed by LPS treatment (10 ng/mL) for 1 h. (a) Western blot images and quantification of
phosphorylated TAK1, IKKα/β, and the p65 subunit of the NF-κB signaling pathway after different LPS administration
times. (b) Western blot images and quantification of phosphorylated and total TAK1, IKKα/β, p65, and IκBα levels. The
ratio of phosphorylated to total TAK1, IKKα/β, p65, and IκBα proteins in the presence of GGOH pre-treatment is also
shown. Total cell lysates were collected and subjected to Western blot analysis. Data are presented as the mean ± S.E.M,
n = 3, normalized to the total protein levels detected based on α-tubulin. # p < 0.05 vs. untreated control; * p < 0.05 vs.
LPS-only treated group or LPS-only at 0 min).

2.3. Inhibition of the Nuclear Translocation of NF-κB by GGOH

NF-κB activation is associated with nuclear translocation. Upon LPS administration,
NF-κB enters the nucleus from the cytosol, binds to its DNA binding site, and activates
pro-inflammatory downstream transcription [35]. Thus, we monitored whether GGOH
also affects this phenomenon by evaluating the fluorescence distribution and cytoplas-
mic/nuclear blotting in the MG6 cells. Figure 4a shows representative images of the
distribution of the p65 subunit of NF-κB p65 in MG6 cells. Under normal conditions, p65
was found to be primarily located in the cytoplasmic area (Figure 4a first panel). However,
LPS triggered its nuclear translocation, as indicated by the intense p65 staining in the
nuclear area (Figure 4a second panel, left and right photos). The latter phenomenon was re-
duced by GGOH pre-treatment (Figure 4a third panel). Next, this microscopic observation
was verified by measuring NF-κB p65 levels in MG6 cytoplasmic and nuclear fractions.
This analysis showed no significant variation in cytoplasmic p65 levels (Figure 4b). How-
ever, it was observed that LPS treatment significantly increased p65 levels by eight-fold in
the nuclear fraction, while GGOH administration markedly mitigated this effect (Figure 4c).
Hence, the results of our blotting experiment showed consistency with the microscopy
observations, which indicated that GGOH functionally inhibited NF-κB translocation in
MG6 cells.
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2.4. LPS-Induced Disappearance of IRAK1 in MG6 Cells and Its Reversal by GGOH

Upon LPS binding to TLR4, the recruitment of upstream regulators, including IRAK1,
which interacts with TRAF6 and plays an important role in downstream NF-κB signaling
occurs. Initially, the effect of a single LPS administration on the expression levels of
IRAK1 and TRAF6 in MG6 cells was examined. As shown in Figure 5a, LPS treatment
induced the disappearance of IRAK1 and TRAF6 bands in a time-dependent manner. Next,
the evaluation of the effect of GGOH on this process after 1 h of LPS treatment showed
that while LPS administration markedly reduced IRAK1 expression compared with that
in the control group, GGOH pre-treatment significantly inhibited this effect (Figure 5b).
However, TRAF6 expression, which was reduced by LPS administration, did not show
any significant changes following GGOH pre-treatment (Figure 5b). An investigation to
determine whether this situation was associated with the mRNA levels of both proteins
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revealed that GGOH pre-treatment did not change Irak1 and Traf6 mRNA expression levels
compared with LPS treatment (Figure 5c). These results suggest that GGOH is involved
upstream of NF-κB signaling in a transcriptionally-independent manner.
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Figure 5. Reversal of LPS-induced NF-κB upstream protein expression by geranylgeraniol (GGOH)
administration. MG6 cells were pre-treated with GGOH for 24 h followed by LPS treatment
(10 ng/mL) for 1 h. (a) Western blot images and quantifications of IRAK1 and TRAF6 expres-
sion levels after different LPS administration times. (b) Western blot images and quantifications
of IRAK1 and TRAF6 expression levels in the presence of GGOH followed LPS treatment for 1 h.
(c) Irak1 and Traf6 mRNA expression levels after 1 h of LPS treatment. Total cell lysates were col-
lected and subjected to Western blot analysis or qRT-PCR. Data are presented as the mean ± S.E.M,
n = 3, normalized to total protein levels detected based on α-tubulin or Eef1a1 as internal standards.
# p < 0.05 vs. untreated control; * p < 0.05 vs. LPS-only treatment or LPS in 0 min.
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2.5. Attenuation of LPS-Induced Pro-Inflammatory Cytokine Expression by GGOH and Other
Isoprenoid Analogues

A previous study showed that GGOH but not other isoprenoid analogs significantly
control LPS-induced Il-6 mRNA expression in THP-1 cells [36]. Therefore, in this study,
an evaluation of the effects of isoprenoid analogues, GGOH, farnesol (FOH), and phytol
(POH), on LPS-induced pro-inflammatory cytokine expression in MG6 microglial cells was
performed. The results obtained showed that GGOH and FOH effectively downregulated
the expression of pro-inflammatory cytokines in MG6 cells, while POH inhibited the
expression of Tnf-α, Il-6, and Cox-2, but not Il-1β (Figure 6a–d). Apart from the cell-
specific effect of GGOH, this finding demonstrated the potential positive effects of the
administration isoprenoids, i.e., not only GGOH, but also other analogues, on LPS-induced
pro-inflammatory cytokine expression.
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Figure 6. Suppression of pro-inflammatory cytokines mRNA upregulation by isoprenoid analogues.
MG6 cells were administered isoprenoid analogues (10 µM) for 24 h followed by LPS treatment
(10 ng/mL) for 3 h. (a–d) Pro-inflammatory cytokine mRNA expression following pre-treatment
with isoprenoid analogues. mRNA levels were measured via qRT-PCR, normalized to the level of
Eef1a1 (the internal standard), and expressed as fold-changes relative to the LPS-only treated group.
Data are presented as the mean ± S.E.M, n = 3; * p < 0.05 vs. LPS-only treatment group. GGOH,
geranylgeraniol; FOH, farnesol; and POH, phytol.

2.6. Effect of GGOH Treatment on M2 Phenotype Polarization in MG6 Cells

As previously reported, microglia exist in two distinct phenotypes, namely, the M1
and M2 types, depending on the stimulus [3]. The M1 type represents pro-inflammatory
phenotypes that generate inflammatory cytokines and reactive oxygen species (ROS), while
the M2 type is characterized by the production of matrix-deposition or anti-inflammatory
and wound-healing substances [7]. Figure 2 shows that LPS administration triggered M1
type polarization in MG6 cells by upregulating pro-inflammatory cytokine expression. To
determine whether GGOH pre-treatment engendered the M2 type status in MG6 cells, we
evaluated the expression of M2 markers by measuring their mRNA levels. As shown in
Figure 7, we did not find any significant difference between the GGOH-pre-treated and
the control groups with respect to the expression of M2 markers, including interleukin-10
(Il-10), transforming growth factor-β (Tgf-β), arginase 1 (Arg1), and Ym-1. However, it was
observed that GGOH induced the expression of inflammatory zone 1 (Fizz1). Furthermore,
we also analyzed the expression of markers corresponding to the Mox phenotype, which
is a newly defined microglial activation state that is characterized by the upregulation of
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nuclear factor erythroid 2-related factor 2 (Nrf2) target genes [37]. Even though increasing
tendencies were observed in this regard, there was no significant upregulation of the mRNA
expression levels of glutamate-cysteine ligase catalytic subunit (Gclc), heme oxygenase 1
(Ho-1), or NAD(P)H quinone dehydrogenase 1 (Nqo-1) following GGOH administration
(Figure 8).
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Figure 7. Non-regulation of the expression levels of M2 and Mox phenotype markers following
geranylgeraniol (GGOH) administration. MG6 cells were pre-treated with or without GGOH (10 µM)
for 24 h. Thereafter, mRNA expression levels were measured via qRT-PCR, normalized to the level of
Eef1a1 (the internal standard), and expressed as the fold-change relative to the values corresponding
to the control cells. Data are presented as the mean ± S.E.M, n = 3; # p < 0.05 vs. control.
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Figure 8. Possible molecular mechanism by which geranylgeraniol (GGOH) inhibited LPS-induced
inflammation in MG6 cells. LPS induced NF-κB activation via the subsequent phosphorylation of
TAK1, IKKα/β, p65, and IκBα, which triggered IκBα degradation and p65 nuclear translocation.
However, GGOH administration inhibited IKKα/β phosphorylation, which possibly modulate the
downstream signaling cascade. Additionally, it also reduced TAK1 phosphorylation and attenuated
upstream signaling events, especially IRAK1. Even though further investigation is necessary, there is
a possibility that GGOH interferes with the interaction between IRAK1 and NEMO, thereby reducing
IKK phosphorylation effectivity.

3. Discussion

In this study, we demonstrated that GGOH pre-treatment effectively ameliorated
LPS-induced inflammation in mouse-derived MG6 microglial cells. The anti-inflammatory
action of GGOH was achieved via the inhibition of the NF-κB signaling pathway, as
indicated by the lowering effects of this isoprenoid on the expression of pro-inflammatory
markers. Additionally, FOH and POH administration also inhibited pro-inflammatory
cytokine expression, and GGOH administration did not cause MG6 cells to show either the
M2 or Mox phenotype.

It is well known that NF-κB signaling plays essential roles in the complex molecular
mechanisms that regulate immune cell inflammation, including microglial cell inflam-
mation. Additionally, NF-κB signaling induces the transcription of the pro-inflammatory
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cytokines that are responsible for chronic inflammation under perpetuating stimulation [38].
Previous studies have also shown that GGOH can minimize the expression of inflammatory
markers in rat plasma and liver, human macrophage-like cells, and medulloblastoma cell
lines [21,22,26]. Here, we showed that GGOH pre-treatment downregulated NF-κB target
genes, including Il-1β, Il-6, Tnf-α, and Cox-2 in MG6 cells. Thus, our results confirmed previ-
ous findings regarding the anti-inflammatory action of GGOH. The results also supported
the hypothesis that GGOH might be beneficial in peripheral and CNS models. Furthermore,
GGOH also effectively inhibited these inflammatory signals after a 24 h pre-incubation,
while incubation for a shorter period only reduced Tnf-α mRNA levels. A similar pattern
was observed in THP-1 macrophage-like cells [22]. Apart from the different synthesis
kinetics of these genes, we expected that the anti-inflammatory properties of GGOH would
have an indirect effect. This might be due to the conversion of GGOH into its metabolites
or the production of anti-inflammatory compounds during the pre-incubation period.

By comparing the NF-κB p65 protein levels in the cytoplasmic and nuclear fractions
and performing fluorescence imaging, it was clearly observed that GGOH inhibited NF-κB
signaling in MG6 cells. Additionally, it was observed that the nuclear entry of NF-κB
resulted from IκBα protein phosphorylation, which led IκBα to proteasomal degradation
and NF-κB liberation. In this study, we also showed that GGOH administration inhibited
IκBα phosphorylation induced by LPS while maintaining its integrity. Furthermore, it was
unclear whether GGOH could directly affect the polyubiquitination of IκBα and 26S protea-
some activity, given that our experiments did not involve ubiquitin–proteasome inhibitors.
However, we observed that GGOH reduced the phosphorylation level of IKKα/β, which
are the subunits of the kinase that propagates IκBα phosphorylation. Reportedly, the kinase
activity of the IKK complex is attained after the phosphorylation of two serine residues in
the activation loop of α/β subunits without any phosphorylation at the C terminus [39,40].
Therefore, the possible mechanism by which GGOH reduced IKKα/β phosphorylation
was the interaction and oxidation of Cys-179 in IKKβ, as previously reported for other
terpenoids [41].

Furthermore, our results also showed that GGOH inhibited TAK1 phosphorylation,
which facilitated IKK complex phosphorylation. This prompted us to investigate the
upstream regulators, including IRAK1 and TRAF6. Previously, it was considered that
signaling via TLRs, such as LPS induces K48 polyubiquitination on IRAK1, leading to its
degradation by the proteasome [42,43]. However, the results of another study showed
that TLR-mediated ubiquitination of IRAK1 is realized by K63 instead of K48, which does
not induce IRAK1 proteasomal degradation [44]. Additionally, K63-linked polyubiquitin
mediates the binding of IRAK1 in the IRAK1–TRAF6 complex to NEMO, which is present
as the IKK regulatory subunit and causes the unmodified IRAK1 band to be poorly detected.
Conversely, K63 ubiquitination also facilitates TRAF6 and TAK1 linking via the TAB2/3
platform. This behavior might cause TAK1 and IKK colocalization to further phosphorylate
the IKK complex [45].

The results of our experiments showed that LPS induced the IRAK1 band disappear-
ance, while GGOH maintained its appearance. However, we did not observe any significant
differences between LPS and GGOH with respect to the TRAF6 profile. Additionally, no
significant differences were observed with respect to Irak1 and Traf6 mRNA levels, indicat-
ing that GGOH functioned in a transcriptionally independent manner. Although further
investigations are urgently needed in this regard, there was a possibility that GGOH
interfered with the K63–ubiquitin activity between IRAK1 and NEMO in LPS-induced
inflammation in MG6 cells. Furthermore, we speculated that an interruption between
IRAK1 and NEMO would affect the effectiveness of IKK phosphorylation. Nevertheless,
our results suggested that GGOH probably attenuates upstream signaling, which inhibits
further signal transduction.

In this study, we demonstrated that GGOH administration for 24 h did not effectively
induce the expression of M2 phenotype markers in MG6 cells, except Fizz1 expression.
Arg1 and Fizz1 are the M2 markers that are important in inflammatory resolution and tissue



Int. J. Mol. Sci. 2021, 22, 10543 12 of 17

repairs [46–48]. It was unclear whether GGOH only strongly induced Fizz1 expression.
Nevertheless, there were also increasing tendencies in other markers, although without
statistical differences. How GGOH regulates M2 polarization warrants further study.
GGOH also did not upregulate Nrf2 target genes (i.e., the Mox phenotype). In this regard,
we surmised that the positive effect of GGOH was obtained preferably by its conversion
into its derivatives rather than on the generation of anti-inflammatory factors within
24 h of pre-incubation, as mentioned above. Our speculation is also supported by a
previous finding that NF-κB is inhibited by diterpenoid derivatives from geranylgeranyl
pyrophosphate [49].

In general, we observed that GGOH, FOH, and POH exert a similar inhibitory effect
on pro-inflammatory mRNA upregulation in MG6 cells. However, POH alone did not
downregulate Il-1β mRNA expression. In previous studies, it has been considered that
several factors affect the anti-inflammatory properties of isoprenoids, including their
intracellular concentration, enzymatic interaction, phosphorylation to the pyrophosphate
form, and association with other molecular pathways [23,50]. In this study, we believe
that these isoprenoids can penetrate MG6 cells. However, whether they are associated
with similar molecular pathways or not still requires clarification. Additionally, the results
of this study extend our previous findings that GGOH, with a structure that is similar to
that of the MK-4 side chain, exerts an effect on LPS-induced inflammation in MG6 cells
that is a similar effect to that of MK-4 [32]. Therefore, it is likely that in addition to the
naphthoquinone ring, the isoprene backbone also contributed to the anti-inflammatory
effect of the isoprenoid. This outcome might reinforce the discovery of the potential of
isoprenoids as NF-κB inhibitors [49].

To date, the pharmacokinetics of GGOH administration in humans has not been
reported yet. There are also no reports citing GGOH concentration in the brain after its
administration. In addition to these unknown facts, the function of exogenous GGOH
has also not been sufficiently clarified. These notwithstanding, it has been reported that
GGOH is required for hippocampal long-term potentiation, learning, and the rescuing
of inflammatory markers in neuronal cells and animal models [19–21,26,31]. However,
based on experiments involving cells, it has been reported that isoprenoids stimulate Aβ

generation [51]. Further investigations have also suggested that the modification of Aβ is
affected by changes in internal cholesterol levels rather than the concentration of isoprenoid
products [52]. Moreover, isoprenoids exert harmful effects when they are administered at
relatively high concentrations in non-neuronal cell lines [53]. Nonetheless, our data, which
support the positive effects of GGOH, might facilitate the discovery of its new physiological
aspects.

This study also had some limitations owing to the fact that it was based on a single
cell-based experiment. Therefore, further analysis using human microglia as well as in vivo
experiments are needed to confirm the current results and determine the optimum and
safe dose. Additionally, in this experiment, we still limited our focus on the dynamic of
NF-κB by GGOH. Thus, a wide-ranging proteomic analysis is also worth considering to
intensify the understanding of GGOH molecular action.

Overall, this study collectively suggested that the attenuation of NF-κB signaling
contributed to the anti-inflammatory action of GGOH on LPS-induced inflammation in
MG6 cells, which is similar to the effect of MK-4. Therefore, these results represent a good
starting point for further analysis to discover the function of GGOH and develop potential
prodrugs that modulate inflammation in the CNS.

4. Materials and Methods
4.1. Materials

GGOH was obtained from Sigma-Aldrich (St. Louis, MO, USA). Farnesol (FOH) and
phytol (POH) were purchased from Wako Pure Chemicals (Osaka, Japan). Furthermore, to
obtain stock solutions at a concentration of 100 mM, these reagents were all completely
dissolved in 99.5% ethanol. The final ethanol concentration in the cell medium was adjusted
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to 0.1% v/v. LPS (Escherichia coli serotype O111: B4) provided by Sigma-Aldrich was
dissolved in phosphate buffer saline at 400 µg/mL and stored at −20 ◦C until further use.

4.2. Cell Cultures and Treatment

The murine microglial cell line MG6 was obtained from RIKEN Cell Bank (Tsukuba,
Japan) and Sigma-Aldrich, respectively [54,55]. These cell lines were cultured in a DMEM
medium (Sigma-Aldrich) containing 10% fetal bovine serum (Biowest, Nualliè, France),
penicillin (100 units/mL), and streptomycin (100 µg/mL). The MG6 cells were also supple-
mented with 100 µM β-mercaptoethanol (Wako Pure Chemicals) and 10 µg/mL human
recombinant insulin (Gibco Thermo Fisher Scientific, Waltham, MA, USA). Furthermore,
the cells were maintained in a humidified atmosphere incubator with 5% CO2 at 37 ◦C
and passaged when they reached approximately 80% confluency. This was followed by
the pre-treatment of the MG6 cells with GGOH for 24 h, which was followed by treatment
with LPS (10 ng/mL) for 3 h, unless otherwise stated.

4.3. Cell Viability Assay

Cell viability was evaluated using water-soluble tetrazolium salt-1 (WST-1) assay.
Specifically, the cells were seeded in a 96-well plate and administered with ethanol 0.1%
(v/v) as the control and with GGOH at 0.1, 1, 10, and 100 µM for 24 h. After the incubation
period, the WST-1 premix reagent (Takara Bio Inc., Shiga, Japan) was added, and absorbance
indicating cell viability was measured at 450 nm, with a reference wavelength of 630 nm.

4.4. RNA Extraction and Quantitative RT-PCR Assay

Total RNA was isolated from MG6 cells using ISOGEN reagent (Nippon Gene, Tokyo,
Japan) according to the manufacturer’s protocol. Then, the quantity of RNA was measured
by determining the absorbance at 260 nm. Four micrograms of RNA were used to synthe-
size cDNA by denaturing them with oligo-dT primers and dNTPs at 65 ◦C for 5 min in a
TaKaRa PCR Thermal Cycler Dice system (Takara Bio). Then, the mixture was incubated
again with an RT buffer mixture containing 50 mM Tris-HCl (pH 8.3), RNaseOUT RNase
inhibitor, and SuperScript III reverse transcriptase for 60 min at 50 ◦C, which was followed
by 15 min incubation at 70 ◦C. Quantitative RT-PCR was performed using a CFX Connect
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The cDNA aliquot was
amplified using the gene-specific primers listed in Table 1 and the TB Green Premix Ex Taq
solution (Takara Bio). The expression level of each gene was normalized to the eukaryotic
elongation factor 1α1 (Eef1a1) gene.

Table 1. Oligonucleotide sequences of the primers used in quantitative RT-PCR.

Gene Forward Primer Reverse Primer

Il-1β CTGTGTCTTTCCCGTGGACC CAGCTCATATGGGTCCGACA
Tnf-α GACGTGGAACTGGCAGAAGAG TCTGGAAGCCCCCCATCT
Il-6 AGAGGAGACTTCACAGAGGATACC AATCAGAATTGCCATTGCACAAC

Cox-2 TGAGTACCGCAAACGCTTCT CAGCCATTTCCTTCTCTCCTGT
Irak1 GCCAGCCAAAGAACTTGATAGAA TACTCTGCTTGCCTTGCTCACA
Traf6 GGAATCACTTGGCACGACACTT GGACGCAAAGCAAGGTTAACAT
Agr1 CAGAAGAATGGAAGAGTC CAGATATGCAGGGAGTCA
Fizz1 CTGATGAGACCATAGAGATTATCGTG GCACAGGCAGTTGCAAGTATCTCC
Gclc GGCTCTCTGCACCATCAC TCTGACACGTAGCCTCGG
Ho-1 CCTTCCCGAACATCGACAGCC GCAGCTCCTCAAACAGCTCAA
Nqo-1 TTCTGTGGCTTCCAGGTCTT AGGCTGCTTGGAGCAAAATA
Ym-1 AGAAGGGAGTTTCAAACCTGGT GTCTTGCTCATGTGTGTAAGTGA
Il-10 TGAATTCCCTGGGTGAGAAGCTGA TGGCCTTGTAGACACCTTGGTCTT
Tgf-β TAAAGAGGTCACCCGCGTGCTAAT ACTGCTTCCCGAATGTCTGACGTA
Eef1a1 GATGGCCCCAAATTCTTGAAG GGACCATGTCAACAATTGCAG
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4.5. Immunoblot Analysis

To prepare whole-cell extracts, MG6 cells were lysed in cold buffer containing 50 mM
Tris-HCl (pH 7.5), 5 mM EDTA, 150 mM NaCl, 0.1% SDS, and 1% NP-40. The lysis
buffer was supplemented with proteinase and phosphatase inhibitors (Roche Applied
Science, Mannheim, Germany). Thereafter, the protein amount was determined using the
Lowry method and denatured in SDS gel loading buffer. Equal amounts of proteins were
separated using 10–20% SDS-polyacrylamide gel (Wako Pure Chemicals) and transferred
via a semi-dry transfer cell (Bio-Rad) into a PVDF membrane (Millipore, Billerica, MA,
USA). After blocking with TBS-T containing 3% bovine serum albumin (Sigma-Aldrich),
the membranes were incubated overnight at 4 ◦C with the following primary antibodies:
anti-phospho-NF-κB p65 (Ser536), anti-NF-κB p65, anti-phospho-IκBα (Ser32), anti-IκBα,
anti-phospho-IKKα/β (Ser176/180), anti-IKKβ, anti-phospho-TAK1 (Thr184/187), anti-
TAK1, and anti-IRAK1 all from Cell Signaling Technology (Danvers, MA, USA), as well
as anti-TRAF6 from Funakoshi (Tokyo, Japan). Furthermore, the protein bands were
visualized using Immobilon Western Detection Reagent (Millipore) using the ChemiDoc
Imaging System (Bio-Rad, Richmond, CA, USA), and densitometric analysis was performed
using Image Lab 6.1 (Bio-Rad) normalized to α-tubulin (Sigma-Aldrich) or anti-lamin (Cell
Signaling Technology) as the loading control.

4.6. Cytoplasmic-Nuclear Fractionation

MG6 cells were first lysed in a buffer containing 320 mM sucrose, 3 mM CaCl2,
0.1 mM EDTA, 1 mM dithiothreitol (DTT), 2 mM MgCl2, and 0.5% NP-40 in the presence
of proteinase and phosphatase inhibitors. After 20 min, the mixtures were centrifuged at
600× g for 15 min. Thereafter, the supernatants were immediately transferred to a pre-
chilled tube as the cytoplasmic fraction. Conversely, the pellets were washed three times
with cytoplasmic buffer without NP-40, and after washing, they were mixed with nuclear
lysis buffer containing 20 mM HEPES (pH 7.9), 1.5 mM MgCl2, 0.2 mM EDTA, 420 mM
NaCl, 1 mM DTT, 0.3% NP-40, and 25% glycerol. Then, the mixtures were incubated in ice
and vortexed for 15 s every 10 min for 40 min. Finally, the mixtures were centrifuged at
13,000× g for 10 min. Then, the supernatants were collected as the nuclear fractions and
stored at −80 ◦C until further use.

4.7. Immunocytofluorescence

The treated MG6 cells were fixed in 4% formaldehyde/PBS for 15 min and permeabi-
lized for 5 min using 0.25% Triton X-100/PBS. Thereafter, the samples were blocked with
4% fetal bovine serum (Gibco) for 1 h. This was followed by incubation overnight at 4 ◦C
with p65 primary antibody (Cell Signaling Technology), followed by secondary antibody
incubation using Alexa Fluor 555 (Invitrogen, Waltham, MA, USA) at 25 ◦C for 1 h. Then,
nuclear staining was performed using 1 µg/mL Hoechst 33258. Finally, the samples were
visualized under a fluorescence microscope (Olympus IX81; Olympus, Tokyo, Japan).

4.8. Statistical Analysis

Statistical analysis was performed using SigmaPlot v12.5 (San Jose, CA, USA). After
the normality test, the data were analyzed using one-way analysis of variance followed by
multiple comparison tests using the Dunnett or Tukey–Kramer test. Student’s t-test was
used to compare two independent groups. Statistical significance was set at p < 0.05.
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