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Abstract: Interaction of cannabinoid receptor type 1 (CB1) and GABAergic neuronal activity is
involved in drug abuse-related behavior. However, its role in drug-dependent Pavlovian conditioning
is not well understood. In this study, we aimed to evaluate the effects of a CB1 agonist, JWH-210,
on the development of conditioned place preference (CPP)-induced by methamphetamine (METH).
Pretreatment with a synthetic cannabinoid, JWH-210 (CB1 agonist), increased METH-induced CPP
score and METH-induced dopamine release in acute striatal slices. Interestingly, CB1 was expressed
in glutamate decarboxylase 67 (GAD67) positive cells, and overexpression of CB1 increased GAD67
expression, while CB1 knockdown reduced GAD67 expression in vivo and in vitro. GAD67 is known
as an enzyme involved in the synthesis of GABA. CB1 knockdown in the mice striatum increased
METH-induced CPP. When GAD67 decreased in the mice striatum, mRNA level of CB1 did not
change, suggesting that CB1 can regulate GAD67 expression. GAD67 knockdown in the mouse
striatum augmented apomorphine (dopamine receptor D2 agonist)–induced climbing behavior and
METH-induced CPP score. Moreover, in the human brain, mRNA level of GAD67 was found to be
decreased in drug users. Therefore, we suggest that CB1 potentiates METH-induced CPP through
inhibitory GABAergic regulation of dopaminergic neuronal activity.

Keywords: cannabinoid receptor type 1; impulsivity; conditioned place preference; glutamate
decarboxylase 67; methamphetamine

1. Introduction

Cannabinoids act on the endocannabinoid system primarily through binding cannabi-
noid receptor type 1 (CB1), to modulate memory, emotions, and pain [1–4]. In the hotplate
test, ∆9-Tetrahydrocannabinol (∆9-THC), a representative cannabinoid accounting for the
major psychoactive component in marijuana, induced analgesia in CB1+/+ mice, but not in
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CB1−/− mice [5]. Administration of ∆9-THC also induced a significant decrease in spatial
learning and memory in the radial arm maze; however, microinjection of rimonabant, a
CB1 antagonist, dorsal to the hippocampus reduced memory impairment [5]. In a clinical
study, exposure to ∆9-THC induced anxiety, which was correlated with CB1 expression [6].
Moreover, ∆9-THC from natural cannabinoids and synthetic cannabinoids have varying
effects, which are typically similar to those of marijuana [7–9].

Centrally, marijuana affects the dopamine system, which is involved in motivation,
reward, and recognition [10–12]. Synthetic cannabinoids are potent CB1 agonists and exert
∆9-THC–like effects [13]. Although dopaminergic neurons do not express CB1, activation
of this receptor is involved in regulation of the dopamine system [14]. Several studies have
observed that both synthetic and naturally-occurring cannabinoids induce dopaminergic
neuron activity and dopamine release [14–17]. Furthermore, ∆9-THC treatment dose-
dependently increases the activation of dopaminergic neurons in the ventral tegmental area
(VTA). However, pretreatment with SR141716A, a CB1 antagonist, partially, or completely,
inhibits ∆9-THC-induced dopaminergic neuron activation in the VTA [16]. Additionally,
cocaine-induced dopamine release is attenuated in CB1−/− mouse striatal slices compared
with CB1+/+ mouse striatal slices [18]. Taken together, these studies indicate that CB1 may
regulate dopaminergic neuron function. Moreover, prior treatment with ∆9-THC enhances
subsequent nicotine self-administration in rats [19]. These “gateway drug effects” suggest
that lasting changes to CB1 may play a key role in the rewarding effects of nicotine and
other abused drugs [19].

CB1 is found on the terminals of central GABAergic and glutamatergic neurons in
various brain regions where they mediate inhibition of neurotransmitter release [20–23].
Disrupted CB1 signaling is associated with psychological and emotional disorders includ-
ing anxiety, depression, and schizophrenia [24,25]. Especially, decreased CB1 expression
on GABAergic neurons results in increased impulsivity [26].

GABA is synthesized in GABAergic neurons from glutamate by the enzyme glutamic
acid decarboxylase 1 or 2 (GAD1/GAD67 or GAD2/GAD65) [27]. While glutamate par-
ticipates widely in cellular metabolism, including protein synthesis, GABA functions as a
neurotransmitter. Hence, it is synthesized only in GABAergic neurons [28]. GABA can also
inhibit the activity of dopaminergic neurons in the substantia nigra via the striatonigral
and pallidonigral pathways [29]. Meanwhile, ∆9-THC decreases the extracellular levels of
GABA in the prefrontal cortex of rats, while increasing glutamate and dopamine levels in
this region [30].

There are hundreds of cannabinoid receptors agonists with varying affinities for CB1
that can be used as potential targets for addictive drugs [31]. In this study, we investigated
whether the synthetic cannabinoid JWH-210, which has a high affinity for CB1, increases
the dependence liability of other abused drugs, such as methamphetamine (METH) [32].
In addition, we also investigated how CB1 agonist affects neurotransmitters, such as
dopamine, which are involved in impulsive behaviors and psychological dependence that
may result from substance abuse.

2. Results
2.1. JWH-210 Binds to CB1 In Vivo

Employing an in vitro receptor-binding assay, we previously reported that JWH-210
binds to CB1 [33]. However, to the best of our knowledge, there are no studies showing
the interaction of JWH-210 and CB1 in vivo [34]. To determine if JWH-210 binds CB1
in vivo, we performed competitive binding assays using T1117, a fluorescent AM-251
analog. T1117 fluorescence is increased upon binding with CB1 and quenched upon
dissociation. JWH-210 competes with T1117 for CB1 binding, and decreasing fluorescence
signals from the unbound T1117 indicate specific CB1 binding of JWH-210 in competitive
binding assays [35]. In this study, we found that intra-cerebrovascular administration of
T1117 induced fluorescence signals that lasted at least 40 min. JWH-210 (0.1 mg/kg i.p.)
injection increased areas where T1117 relative fluorescence decreases, while vehicle did
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not have any difference [Figure 1; CB1 ligand condition: F (1,6) = 24.824, p = 0.002; drug
condition: F (1,6) = 16.845, p = 0.006; interaction: F (1,6) = 24.824, p = 0.002]. These results
indicate that JWH-210 binds to CB1 in vivo, and its binding strength is strong.
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Figure 1. Displacement of fluorescent CB1 ligand binding in vivo by JWH-210. CB1 ligand (T1117; 10 µL, 5 mM in
DMSO, i.c.v) was administered 15 min before JWH-210 (0.1 mg/kg, i.p.). Arrows indicate fluorescent CB1 ligand and
drug (vehicle or JWH-210) injection time (0 and 15 min, respectively). Data are expressed as the mean ± S.E. (n = 2–3)
and were analyzed using two-way ANOVA followed by Bonferroni post-hoc t-test (** p < 0.01 vs. each before drug
administration group; ## p < 0.01 vs. Vehicle/After drug administration group). I.C.V.: intracerebroventricular injection.
I.P.: intraperitoneal injection.

2.2. JWH-210 Exhibits CB1 Agonist Activity

A previous study showed that acute administration of CB1 agonists suppresses loco-
motor activity in animals [36]. Therefore, we examined whether JWH-210 affects locomotor
activity. A single administration of 0.1 mg/kg JWH-210 significantly reduced the locomotor
activity compared to vehicle [Figure 2A; drug condition: F (2,27) = 10.351, p < 0.01; time:
F (11,297) = 41.08, p < 0.01; interaction: F (22,297) = 1.830, p = 0.014]. Furthermore, we
investigated which CB receptor is associated with JWH-210-induced hypolocomotion. To
this end, mice were treated with rimonabant (CB1 antagonist, 1 mg/kg, i.p.) or AM630
(CB2 antagonist, 3 mg/kg, i.p.) prior to JWH-210 (0.1 mg/kg, i.p.) injection and locomotor
activity test was subsequently measured. Results show that JWH-210-induced hypoloco-
motion was recovered by rimonabant, while AM630 did not interfere with the effect elicited
by JWH-210 [Figure 2B; drug condition: F (3,23) = 5.279, p = 0.006; time: F (11,253) = 9.882,
p < 0.01; interaction: F (33,253) = 0.84, p = 0.72] [Figure 2C; F (3,23) = 5.708, p = 0.005]. These
results suggest that JWH-210 functions as a CB1 agonist in vivo.
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Figure 2. Effects of JWH-210 on behavioral tests. (A) Mice were injected with either vehicle or JWH-210 (0.05 or 0.1 mg/kg,
i.p.). Locomotor activity was measured at 5 min intervals for 60 min. Data are expressed as the mean distance traveled ± S.E.
(n = 10) and were analyzed using two-way RM ANOVA followed by Bonferroni post-hoc t-test [** p < 0.01 vs. vehicle
group; # p < 0.05 and ## p < 0.01 vs. vehicle group (at the same time point)]. (B,C) Mice were injected with either vehicle or
rimonabant (CB1 antagonist, 1 mg/kg) or AM630 (CB2 antagonist, 3 mg/kg) 30 min prior to JWH-210 (0.1 mg/kg, i.p.)
injection. (B) Locomotor activity was measured at 5 min intervals for 60 min. Data are expressed as the mean distance
traveled ± S.E. (n = 6–7) and were analyzed using two-way RM ANOVA followed by Bonferroni post-hoc t-test [* p < 0.05 vs.
vehicle + vehicle group (at the same time point); # p < 0.05 vs. rimonabant + JWH-210 group (at the same time point)].
(C) Total locomotor activity was measured for 60 min. Data are expressed as the mean total distance traveled± S.E. (n = 6–7)
and were analyzed using one-way ANOVA followed by Holm–Sidak post-hoc t-test (* p < 0.05 vs. vehicle + vehicle group;
# p < 0.05 vs. vehicle + JWH-210 group; $ p < 0.05 vs. rimonabant + JWH-210 group). (D,E) Mice were injected with either a
vehicle or JWH-210 (0.1 mg/kg, i.p.) once every day for 5 days, and then behavior tests were performed. (D) The cumulative
frequency of jumping events (%) was measured by CAR test. Data are expressed as the differences between vehicle group
and JWH-210 group curves, and were analyzed using Fisher’s exact test (* p < 0.05). (E) The sensorimotor gating was
measured by PPI test. Data are expressed as the mean ± S.E. (n = 10) and were analyzed using two-way RM ANOVA
followed by Bonferroni post-hoc t-test [** p < 0.01; # p < 0.05 and ## p < 0.01 vs. vehicle group (on the same dB)].

2.3. Five-Day Administration of JWH-210 Affects Impulsivity and Sensorimotor Gating

We performed CAR assays to investigate changes in JWH-210-induced impulsivity.
Administration of JWH-210 for five days caused mice to jump off a platform significantly
more than control mice within the ten-minute assay period. Eight of thirteen JWH-210-
pretreated mice jumped, while two of thirteen vehicle-pretreated mice jumped, therefore,
administration of JWH-210 significantly increased impairment of CAR (Figure 2D; Fisher’s
exact test, p = 0.041). Increased jumping induced by JWH-210 was inhibited by pretreatment
with rimonabant (Figure S3). These results suggest that JWH-210 increases impulsivity.
Cannabinoid abuse is related to schizophrenia and abnormal sensorimotor gating responses
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in PPI assays. Administration of JWH-210 for five days significantly decreased PPI com-
pared to vehicle administration [Figure 2E; drug condition: F (1,18) = 17.144, p < 0.01; dB:
F (3,54) = 28.337, p < 0.01; interaction: F (3,54) = 2.097, p = 0.111]. These results indicate that
JWH-210 decreases sensorimotor gating.

2.4. Pretreatment of JWH-210 Increases METH-Induced CPP

To assess the effects of JWH-210 on the development of Pavlovian conditioning in-
duced by METH, we performed CPP assays. METH (0.3 mg/kg) significantly induced
CPP in mice pretreated with vehicle or JWH-210 (0.1 mg/kg, for 5 days), moreover, mice
pretreated with JWH-210 showed even higher CPP than mice pretreated with vehicle
[Figure 3A; pretreatment drug condition: F (1,36) = 3.808, p = 0.059; CPP drug condition:
F (1,36) = 23.206, p < 0.01; interaction: F (1,36) = 0.988, p = 0.327]. However, the 1 mg/kg
METH-induced CPP did not differ significantly from METH-induced CPP following JWH-
210 pretreatment, possibly because 1 mg/kg METH already induced the maximum CPP
(Figure S4A). Moreover, pre-administration of JWH-210 also increased CPP score induced
by para-chloroamphetamine (PCA), which is a substituted amphetamine (Figure S4B).
These results indicate that JWH-210 increases METH-induced Pavlovian conditioning.

2.5. JWH-210 Treatment Increases KCl-Induced Dopamine Release and METH-Induced
Dopamine Efflux

METH induces dopamine release and thereby increases the extracellular dopamine
concentration in the striatum. METH-induced enhancement of dopamine release is as-
sociated with behavioral alterations such as CPP [37]. Furthermore, highly impulsive
rats are more sensitive to the rewarding effects of stimulants such as amphetamine [38].
Additionally, striatal dopamine release is associated with impulsivity and sensorimotor gat-
ing [39]. Therefore, we investigated whether JWH-210 is involved in regulating dopamine
levels in the striatum. While basal dopamine levels were not different between JWH-210-
and vehicle-treated mice, KCl-induced dopamine release was higher in brain slices of
mice treated with JWH-210 compared to vehicle-treated mice [Figure 3B; pretreatment
drug condition: F (1,13) = 0.462, p = 0.509; Time: F (17,221) = 31.246, p < 0.01; interaction:
F (17,221) = 1.425, p = 0.126.]. JWH-210 administration also augmented METH-induced
dopamine release [Figure 3C; pretreatment drug condition: F (1,18) = 3.170, p = 0.092;
Time: F (17,306) = 12.939, p < 0.01; interaction: F (17,306) = 0.908, p = 0.565]. Taken to-
gether, these findings suggest that JWH-210 increases KCl-induced dopamine release and
METH-induced dopamine efflux.

2.6. Administration of JWH-210 Reduced CB1 Expression in Mice Striatum

To identify the mechanism underlying increased dopamine release in JWH-210 pre-
treated mice, we measured the levels of dopamine-related proteins. JWH-210 treatment
did not have any effects on the levels of dopamine-related enzymes, including Th (tyrosine
hydroxylase), Slc6a3 (dopamine transporter), Slc18a2 (vesicular monoamine transporter 2),
Drd1a (dopamine receptor D1a), Drd2 (dopamine receptor D2), Maoa (monoamine oxidase
A), and Maob (monoamine oxidase B) in the striatum (Table S1). Given that we found that
CB1 are expressed on GABAergic neurons but not dopaminergic neurons (Figure S5), we
investigated whether JWH-210 treatment affects CB1 and GAD67 expression. To assess the
changes in CB1 mRNA level in mice treated with JWH-210 for five days, we conducted
qPCR using mice striatum samples. One day after the final JWH-210 injection, mRNA
levels of CB1 and GAD67 decreased (Figure 3D). Further, protein expression of CB1 and
GAD67 was also reduced in the striatum of JWH-210-treated mice as compared to that
of the vehicle-treated mice, especially, these expressions were further decreased in JWH-
210/METH-treated mice [Figure 3E; F (3,8) = 48.064, p < 0.001]. These results suggest that
five-day treatment with JWH-210 decreases CB1 expression in GABAergic neurons.
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Figure 3. Effects of JWH-210 on METH-induced CPP, KCl-induced dopamine release, or METH-induced dopamine efflux
and CB1 and GAD67 expression in mice striatum. Before starting the CPP test, acute brain slices, and dissecting the
brain, mice were injected with either a vehicle or JWH-210 (0.1 mg/kg, i.p.) once every day for 5 days. (A) 0.3 mg/kg
METH-induced CPP scores (s) was measured by CPP test. Data are expressed as the mean ± S.E. (n = 13) and were analyzed
using two-way ANOVA followed by Bonferroni post-hoc t-test (* p < 0.05 and ** p < 0.01 vs. each vehicle group; # p < 0.05
vs. vehicle/METH group). (B) 50 mM KCl-induced dopamine release or (C) 500 µM METH-induced dopamine efflux in
brain striatal slices were measured by using HPLC. Data are expressed as the mean ± S.E. (n = number of mice) and were
analyzed using two-way RM ANOVA followed by Bonferroni post-hoc t-test [* p < 0.05, ** p < 0.01, and ** p < 0.01 vs. each
basal level (at 30 min); # p < 0.05 and ## p < 0.01 vs. vehicle group on the same time]. (D) Mice striatum were collected after
1 day following the final injection. mRNA levels of CB1 and GAD67 were detected by qPCR and normalized relative to the
amplification of GAPDH in the mice striatum. Data are expressed as the mean ± S.E. (n = 5–9, Student’s t-test; * p < 0.05
and ** p < 0.01 vs. vehicle group). (E) Mice striatum were collected after CPP test. The protein expression of CB1 and
GAD67 was detected by Western blotting using specific antibodies and normalized to the relative amplification of GAPDH.
Data are expressed as the mean total distance traveled ± S.E. (n = 5) and were analyzed using one-way ANOVA followed
by Holm–Sidak post-hoc t-test (* p < 0.05 and ** p < 0.01 vs. VV group; ## p < 0.01 vs. VM group; $ p < 0.05 vs. JV group,
$$ p < 0.01 vs. JV group). METH: methamphetamine. VV: vehicle + vehicle group. VM: vehicle + methamphetamine group.
JV: JWH-210 + vehicle group. JM: JWH-210 + methamphetamine group.

2.7. CB1 Regulates GAD67 Expression in Cultured Primary Neurons

To investigate the role of CB1 in regulating GAD67 levels, we overexpressed or
knocked down CB1 in cultured mouse primary neurons. The cultured neurons were
transduced using CB1 ORF lentiviral particles and treated with 0.1 µM JWH-210 for 24 h.
The expression of GAD67 and CB1 were lower in JWH-210-treated primary neurons
compared to vehicle-treated neurons (Figure 4A). Further, GAD67 expression was rescued
by CB1 overexpression (Figure 4B). For the knockdown experiment, we treated the cultured
neurons with CB1 shRNA and measured mRNA level of GAD67. CB1 shRNA treatment
reduced CB1 levels (Figure 4C) and suppressed mRNA level of GAD67 (Figure 4D). These
results suggest that CB1 plays a role in regulating GAD67 expression.
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Figure 4. Effects of CB1 knockdown on GAD67 expression in primary cultured neurons and METH-induced CPP.
(A) Vehicle group was treated with vehicle (5% DMSO, 5% tween-20, 90% PBS) as the same amount of JWH-210 for
24 h. JWH-210 group was treated with 0.1 µM JWH-210 for 24 h. Mock + JWH-210 and CB1 overexpression (OE) + JWH-210
groups were treated with mock or CB1 ORF lentiviral particles (5 MOI) for 24 h before treatment with vehicle or 0.1 µM
JWH-210 for 24 h. Immunostaining of CB1, Myc, and GAD67 was performed with specific antibodies (Scale bar: 200 µm).
(B) Cultured neurons were treated with control or CB1 shRNA lentiviral particles. mRNA levels of (C) CB1 and (D) GAD67
were confirmed by using qPCR with each specific primer and normalized to the relative amplification of GAPDH. Data are
expressed as the mean ± S.E. (n = 6; Student’s t-test; * p < 0.05 and ** p < 0.01 vs. vehicle group). (E) After CB1 knockdown,
0.3 mg/kg METH-induced CPP scores (s) was measured by CPP test. Data are expressed as the mean ± S.E. (n = 8) and
were analyzed using two-way ANOVA followed by Bonferroni post-hoc t-test (* p < 0.05 and ** p < 0.01 vs. each saline group;
### p < 0.001 vs. Control shRNA/METH group). OE: overexpression. TUJ1: beta-tubulin III. METH: methamphetamine.

2.8. CB1 Knockdown Increases METH-Induced CPP

To assess the role of CB1 and GAD67 in the development of METH-induced Pavlovian
conditioning, we performed CPP assays. METH-induced CPP was higher in the CB1 knock-
down mice compared to control-injected mice [Figure 4E; CB1 condition: F (1,28) = 5.230,
p = 0.030; CPP drug condition: F (1,28) = 75.056, p < 0.01; interaction: F (1,28) = 22.514,
p < 0.01]. These results indicate that CB1 regulates METH-induced Pavlovian conditioning.

2.9. Apomorphine-Induced Climbing Behavior and METH-Induced CPP Increase with
GAD67 Knockdown

The dopamine receptors D1 and D2 play a critical role in the development of CPP-
induced by abused drugs [40–43]. Therefore, to elucidate the role of GAD67 in regulating
dopamine receptor activity, we performed apomorphine-induced climbing behavior tests
in GAD67 knockdown mice. Apomorphine is a dopamine D1 and D2 receptor agonist
and climbing behavior represents a unique response to striatal dopamine receptor stimu-
lation. First, we confirmed that the levels of GAD67 were reduced in the striatum three
days after GAD67 siRNA injection (Figure 5A). Importantly, the level of CB1 was un-



Int. J. Mol. Sci. 2021, 22, 10486 8 of 19

changed (Figure 5B). GAD67 knockdown mice showed increased apomorphine-induced
climbing behavior [Figure 5C; GAD67 condition: F (1,75) = 16.898, p < 0.01; climbing be-
havior drug condition: F (1,75) = 44.920, p < 0.01; Time: F (2,75) = 3.609, p = 0.032; GAD67
condition × climbing behavior drug condition interaction: F (1,75) = 21.652, p < 0.01; GAD67
condition × time condition interaction: F (2,75) = 0.772, p = 0.466; climbing behavior drug con-
dition × time condition interaction: F (2,75) = 2.030, p = 0.138; GAD67 condition × climbing
behavior drug condition × time interaction: F (2,75) = 0.839, p = 0.436]. Meanwhile,
GAD67 knockdown mice had no changes in locomotor activity compared with control
mice (Figure 5D). Therefore, these results suggest that GABAergic dysfunction plays a
role in dopaminergic neuronal activity in the striatum. To evaluate a role of GAD67 in
the development of Pavlovian conditioning induced by METH, we conducted additional
CPP assays. Stereotaxic injection of GAD67 CRISPR/Cas9 gRNA vector decreased GAD67
expression in the striatum (Figure 5E). Furthermore, our vector was expressed in D1 and
D2 positive striatal medium spiny neuron (Figure S6). These results suggest that direct or
indirect pathways are disrupted by GAD67 knockdown. However, GAD67 knockdown
alone did not impact CPP, rather METH-induced CPP was increased in GAD67 knock-
down mice [Figure 5F; GAD67 condition: F (1,37) = 1.357, p = 0.251; CPP drug condition:
F (1,37) = 33.397, p < 0.01; interaction: F (1,37) = 2.968, p = 0.093], indicating that GAD67 is
involved in METH-induced Pavlovian conditioning.

2.10. GAD67 Levels in the Human Frontal Cortex Are Significantly Correlated with Drug Use
Severity Ratings

To study the correlation between GAD67 and drug use, we performed RNA-seq
analysis in samples from the frontal cortex of drug users. The samples were grouped as
follows: “None” indicates no history of drug use, “Social” indicates a history of light drug
use, “Past” denotes a history of moderate or heavy drug use in the past, and “Present”
describes a history of recent moderate or heavy drug use (Figure 6A). GAD67 levels were
lower in groups with a history of drug use compared to the group without prior drug use
(Figure 6B). The major biological processes (gene ontology) significantly enriched in the
genes that correlated with the severity ratings are listed in Table S2. These results suggest
that GAD67 is associated with drug abuse.
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 Figure 5. Effects of GAD67 knockdown on CB1 expression in mice striatum, apomorphine-induced climbing behavior,
locomotor activity, and METH-induced CPP. Mice were injected with either scrRNA or GAD67 siRNA by stereotaxic
injection into the right striatum. Experiments were started 3 days after stereotaxic injection. The protein expression of (A)
GAD67 and (B) CB1 was detected by Western blotting with each specific antibody and normalized to β-actin or GAPDH.
Data are expressed as the mean ± S.E. (n = 4–5 for each group; Student’s t-test; * p < 0.05 and not significant (N.S.) vs.
vehicle group). (C) Climbing behavior was measured after administration of saline or apomorphine (1 mg/kg, i.p.). Data
are expressed as the mean ± S.E. (n = number of mice) and were analyzed using three-way RM ANOVA and two-way RM
ANOVA followed by Bonferroni post-hoc t-test (** p < 0.01 vs. siRNA-Saline group, ## p < 0.01 vs. scrRNA-Apomorphine
group, ++ p < 0.01 and + p < 0.05 vs. siRNA-Saline group in each time zone, @ p < 0.05 vs. siRNA-Apomorphine group
in each time zone). (D) Locomotor activity was measured for 60 min without any drug challenge. Data are expressed
as the mean ± S.E. (n = 5–6 for each group; Student’s t-test; not significant (N.S.) vs. vehicle group). (E) The mice were
stereotaxically injected with control or GAD67 gRNA CRISPR/Cas9 vectors. The mice striatum sections (10-µm-thick) were
reacted with GAD67 antibody. Original magnification is ×200. (F) After GAD67 knockdown, 0.3 mg/kg METH-induced
CPP scores (s) was measured by CPP test. Data are expressed as the mean ± S.E. (n = 9–14 for each group) and were
analyzed using two-way ANOVA followed by Bonferroni post-hoc t-test (* p < 0.05 and ** p < 0.001 vs. each saline group;
# p < 0.05 vs. Control vector/METH group). METH: methamphetamine.
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(A) The number of cases in each drug use severity ratings. (B) The mean RNA-sequencing read counts of GAD1/GAD67
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correlation test. The normal line is the plot of regression analysis and the dotted lines represent the 95% confidence intervals
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3. Discussion

Our previous reports using CPP and self-administration tests suggest that JWH-210
has a rewarding effect [34]. Moreover, JWH-210 administration augmented METH-induced
CPP in the present study, which may be associated with Pavlovian conditioning [44].
Cannabis treatment can predispose individuals to substance dependence and have long-
lasting changes on the response to other drugs [19]. For example, cannabis exposure
increases the sensitization and self-administration of heroin and morphine [45]. Our results
suggest that JWH-210 enhances the rewarding effects of other abused drugs, such as METH.
Abused drugs, including cannabis, can increase synaptic dopamine levels in the striatum,
possibly mediating the motivating and rewarding effects of these compounds [46–48].
Interestingly, we reported that JWH-210 induces CPP at doses of 0.05 and 0.1 mg/kg,
while higher doses, such as 0.5 and 1.0 mg/kg, induce conditioned place aversion [34].
Furthermore, we previously demonstrated that dopamine release in the nucleus accumbens
is increased by 0.1 mg/kg JWH-210; however, is decreased at a dose of 1.0 mg/kg [49].
In the present study, pretreatment with 0.1 mg/kg JWH-210 augmented KCl-induced
dopamine release and METH-induced dopamine efflux in mouse striatum slices.

Dopamine upregulation in the striatum is associated with impulsivity. Specifically,
ventral striatal dopamine transporter availability is associated with lower trait motor impul-
sivity in healthy adults [50]. Impulsivity may then contribute to increased vulnerability to
drug abuse [51]. In the present study, JWH-210 increased impulsivity in mice, evidenced by
more frequent jumping events in the CAR assays. These results suggest that JWH-210 has
a stimulatory effect on dopaminergic neuronal transmission at doses capable of inducing
CPP and impulsivity.

CB1 mediates the behavioral and psychoactive effects of ∆9-THC in animals and
humans [34,52,53]. Alterations in CB1 expression levels may mediate the long-term effects
of cannabinoids [54]. We demonstrated that mRNA and protein levels of CB1 in the
mouse striatum are decreased by JWH-210 administration. Furthermore, we showed that
JWH-210-induced hypolocomotion is associated with the CB1 receptor. GAD67 was also
reduced by JWH-210 injection, and exposure of METH further decreased these genes
levels. The relationship between CB1 and GAD67 has been demonstrated in several
previous studies. ∆9-THC reduces CB1, GAD67, and GABA levels in the prefrontal cortex
of rats [54]. CB1 and GAD67 are co-expressed in mouse and rat striatal neurons [55]. In
our study, CB1 and GAD67 were co-localized in primary cultured striatal neurons, and
CB1 and parvalbumin were co-localized in primary cultured VTA neurons (Figure S5B).
Parvalbumin is expressed in GABAergic interneurons and VTA GABA interneuron are
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implicated in reward consumption [56]. Therefore, reduced CB1 expression in GABAergic
neurons may mediate the effect of JWH-210 on the dopaminergic system. We observed
that GAD67 and CB1 expression were reduced by JWH-210, but GAD67 levels were
rescued with CB1 overexpression in primary cultured neurons. Interestingly, when CB1
was knocked down in primary cultured neurons, mRNA level of GAD67 also decreased;
however, the reciprocal relationship was not observed. Meanwhile, although the precise
mechanisms underlying the regulation of CB1 on GAD67 levels remains unclear, it is
well known that CB1 activation decreases GABAergic neurotransmission, therefore, CB1
reduction by synthetic cannabinoid administration may induce homeostatic regulation of
GAD67 expression. Taken together, these results suggest that JWH-210-induced reduction
of CB1 in GABAergic neurons decreased GAD67 and disrupted inhibitory regulation of
dopaminergic neurons in striatum, consequently increasing dopamine release.

Reduced GABA or GAD67 levels are reportedly involved in mental disorders, such
as schizophrenia, and substance use disorders [57–59]. In this study, GAD67 levels were
observed to be lower in groups with a history of drug use compared to those with no prior
use. In previous studies, inhibition of the indirect pathway from striatum to VTA and SN
was reported to cause dopamine neuronal activation induced by abuse drugs [60,61]. In
our study, we suggest that GAD67 knockdown disrupts the D2-mediated indirect pathway
through the GABAergic interneuron, at least in part, in SN and, consequently, increases
dopamine release. Low expression levels of GAD67 could disinhibit dopaminergic neuronal
activity, consequently increasing dopamine release-induced by abused drugs. Therefore,
reduced GAD67 levels may be associated with vulnerability to drug abuse. Our in vivo
study also revealed that CB1 or GAD67 knockdown led to increased METH-induced
CPP, suggesting that decreased CB1 levels may play a role in METH-induced CPP and
in elevated dopamine release via regulation of GAD67 expression. In addition, knocking
down GAD67 in the striatum increased apomorphine-induced climbing behavior. Since
postsynaptic dopamine receptor activation in striatum evokes climbing behavior, decreased
GAD67 levels may affect the formation of postsynaptic dopamine receptor sensitization as
well as influence presynaptic dopamine release.

Taken together, we suggest that CB1 may play a role in the regulation of GAD67
expression through dopamine D2 receptor. Thus, JWH-210 may increase vulnerability to
stimulants in mice through the regulation of dopamine release and dopamine receptor
sensitization, which is likely related to reduced expression of CB1 and GAD67.

4. Materials and Methods
4.1. Animals

All experimental procedures were approved by the Animal Ethics Committee and
the National Institute of Food and Drug Safety Evaluation (1601MFDS-10) and complied
with the National Institutes of Health Guide for the Care and Use of Laboratory Animals
(National Research Council, NRC, 1996). Male C57BL/6J mice (7 weeks old) were obtained
from Charles River Laboratories Japan (Yokohama, Japan). Experiments began after a
1-week acclimatization period. Animal holding rooms were maintained at a temperature
of 21–24 ◦C and 40–60% relative humidity with a 12-h light/dark cycle (lights on 08:00 to
20:00). The animals received a solid diet and tap water ad libitum.

4.2. Drugs

The synthetic cannabinoid JWH-210 (Figure S1) was purchased from Cayman Chemi-
cal (Ann Arbor, MI, USA). METH hydrochloride (HCl), rimonabant HCl, apomorphine
HCl, AM630 were obtained from Sigma-Aldrich (St. Louis, MO, USA), and were dissolved
in saline immediately prior to the experiments. JWH-210 was dissolved in vehicle (saline
containing 5% Tween 80 and 5% DMSO), (R)-(+)-limonene (Sigma-Aldrich, St. Louis, MO,
USA) was dissolved in saline containing 4% Tween 80, and apomorphine was dissolved
in saline containing 0.1% ascorbic acid immediately prior to use. Other chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise noted.
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4.3. In Vivo Imaging

To investigate the distribution of JWH-210 on the central nervous system, we con-
ducted imaging analysis using T1117, a fluorescent form of the CB1 ligand AM-251 (Bio-
Techne Corporation, Minneapolis, MN, USA). Mice were anesthetized with pentobarbital
(50 mg/kg, i.p.) and placed in a stereotaxic apparatus. The stereotaxic coordinates of the
cerebral ventricle were 0.3 mm anterior to bregma, 1.0 mm lateral to the sagittal suture,
and 2.5 mm ventral to the brain surface. T1117 was injected into the right cerebral ventricle
(intracerebroventricular injection; 10 µL, 5 mM in DMSO). Fifteen minutes later, JWH-210
was injected intraperitoneally (i.p., 0.1 mg/kg body weight). The fluorescent signal was
measured using an IVIS spectrum in vivo imaging system (PerkinElmer, Waltham, MA,
USA). The signal was measured in the presence and absence of JWH-210. While imaging
was in progress, the mice remained unconscious and mice’s heads were immobilized. The
signal area was targeted to a specific color using Adobe Photoshop® CC 2018 (Adobe,
Park Avenue, CA, USA). The value of the signal area was measured using the ImageJ
1.53k (Wayne Rasband, National Institutes of Health, Bethesda, MD, USA) and was the
percentage based on the value for 10 min prior to vehicle administration.

4.4. In Vivo CB1 and GAD67 Knockdown

Mice were injected with control or CB1 shRNA lentiviral particles (GFP tagged, Ori-
gene, Rockville, MD, USA), scramble or GAD67 siRNA (siRNA No. 1360538, 1360539,
and 1360540; Bioneer, Daejeon, Korea), control or GAD67 CRISPR/Cas9 gRNA vector
(eGFP tagged, Macrogen, Seoul, Korea) to induce CB1 or GAD67 knockdown. Mice were
anesthetized with pentobarbital (50 mg/kg, i.p.) and placed in a stereotaxic apparatus.
The stereotaxic coordinates of the striatum were 0.2 mm anterior to bregma, 2.0 mm lateral
to the sagittal suture, and 4.5 mm ventral to the brain surface. Seven days before siRNA
injection, a stainless-steel guide cannula (AD-8, Eicom, Tokyo, Japan) was implanted into
the brain at the above coordinates. Mice were injected at a rate of 1 µL/min with a 10 µL
Hamilton microsyringe as follows: control or CB1 shRNA delivery solution (5.4 × 104 TU
shRNA in 2 µL), scramble or GAD67 siRNA delivery solution [300 pM siRNA with jetSI
(Polyplus Transfection, New York, NY, USA) in 1 µL], or control or GAD67 gRNA delivery
solution [0.4 µg vector with in vivo-jetPEI (Polyplus Transfection, New York, NY, USA) in
1.5 µL]. After injecting the solution, wait 1 min, then slowly raise the needle and remove
it from the brain. The hole in the skull was closed using dental acrylate (Ortho-jet Lang
Dental Manufacturing Company, Wheeling, IL, USA), and the incision site was closed
using tissue adhesives (3M™ Vetbond Tissue Adhesive: 1469SB, 3M, St. Paul, MN, USA).
Antibiotic ointment was applied to the incision site once every 2 days. After recovery for
7 days, the mice were subjected to behavioral tests.

4.5. Locomotor Activity

To investigate the effects of cannabinoids on locomotor activity, mice were adminis-
tered vehicle or JWH-210 (0.05 or 0.1 mg/kg, i.p.). The drugs were administered without
adaptation in the test cage. Locomotor activity was immediately measured at 5 min
intervals for 60 min using an automatic tracking system (Panlab, Barcelona, Spain). To in-
vestigate the mechanism underlying JWH-210-induced hypolocomotion, mice were treated
with vehicle or rimonabant (CB1 antagonist, 1 mg/kg, i.p.) or AM630 (CB2 antagonist,
3 mg/kg, i.p.). Mice were adapted in the test cage for 30 min after vehicle or antagonists ad-
ministration. Locomotor activity was immediately measured at 5 min intervals for 60 min
after administration of vehicle or JWH-210 (0.1 mg/kg, i.p.) to mice. To investigate the
effects of GAD67 knockdown on mouse movement, mice were injected with the scrRNA
or GAD67 siRNA stereotaxically as described above. After adaptation to the test cage for
60 min, locomotor activity was measured at 10 min intervals for 60 min using an automatic
tracking system.
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4.6. Cliff Avoidance Reaction Test

To evaluate impulsivity, we performed the cliff avoidance reaction (CAR) test. Mice
were treated with either vehicle or rimonabant HCl (CB1 antagonist, 1 mg/kg, i.p.) 30 min
before treatment with vehicle or JWH-210 (0.1 mg/kg, i.p.) once per day for 5 days. On
day 6, cliff avoidance and jumping events were evaluated in the CAR test. Mice were
placed on a round platform (an inverted glass container 13 cm wide and 20 cm tall), and
behavior was measured for 10 min.

4.7. Prepulse Inhibition Test

Cannabinoids may impair sensorimotor gating functions. Therefore, we studied the
effect of JWH-210 on prepulse inhibition (PPI). Mice were treated with either vehicle or
JWH-210 (0.1 mg/kg, i.p.) once per day for 5 days. On day 6, PPI was evaluated using a
startle/PPI box (Panlab, Barcelona, Spain) (Figure S2A). The mice were allowed to habituate
for 10 min with 65 dB background noise. The PPI trials consisted of a prepulse (20 ms burst
of 69-, 73-, 77-, or 81-dB white noise), followed by the startle stimulus (120 dB, 40 ms white
noise) 100 ms after the prepulse. Each of the four prepulse trials (69, 73, 77, or 81 dB) were
presented 10 times. There are 6 type of trials, which are 4 different prepulse-pulse trials, the
startle pulse alone trials, the prepulse alone trials to be pseudorandomized and displayed
10 times each. The 60 different trials were performed pseudo-randomly, ensuring that each
trial was presented 10 times and that no two consecutive trials were identical. The resulting
movement of the animal in the startle chamber was measured for 100 ms after the startle
stimulus onset (sampling frequency 1 kHz). Data were rectified, amplified, and recorded
by a computer, which calculated the maximal response over the 100-ms period.

4.8. Conditioned Place Preference Test

To elucidate the effect of drug reward behavior, we performed CPP test with unbiased
and counterbalanced trials. The experiment consisted of three methods in pretreatment
stage, and CPP tests consisted of four phases (Figure S2B): (1) pre-conditioning phase,
(2) pre-test phase, (3) conditioning phase, and (4) post-test phase. The time spent in each
compartment was recorded and used to determine the preference for each compartment
for 15 min. The CPP scores (s) were calculated from the changes between the post-test and
pre-test phases.

4.9. Acute Brain Slices and Dopamine Measurement

To confirm the association between dopamine release and augmented CPP, we mea-
sured dopamine release in acute brain slices. Mice were treated with vehicle or JWH-210
(0.1 mg/kg, i.p.) once per day for 5 days (Figure S2A). On day 6, striatal slices (400 µm)
were prepared using a tissue chopper. Slices were washed with chilled saline (pH 7.4)
and perfused in a Brain/Tissue Slice Chamber System (BSC-ZT, Harvard Apparatus, Hol-
liston, MA, USA) with Krebs-Henseleit buffer (K-H buffer; 1.2 mM KH2PO4, 2.5 mM
NaHCO3, 1.2 mM MgSO4·7H2O, 11.7 mM D-glucose, 4.2 mM KCl, and 10 µM pargyline)
bubbled with 95% O2/5% CO2 at 33–34 ◦C at a rate of 100 µL/min (Figure S2C). Slices
were then incubated with 50 mM KCl or 500 µM METH buffer (base: K-H buffer), and all
perfusates were collected every 5 min in chilled tubes containing 50 µL 0.1 M perchloric
acid buffer. Samples were filtered through a 0.22 µm syringe filter, and the dopamine level
was measured. Briefly, 20 µL the sample was injected into an HPLC EiCOMPAK SC-5ODS
column (3 µm, 2.1 × 150 mm, Eicom, Tokyo, Japan) with 83% 0.1 M acetic acid-citric acid,
17% methanol, 190 mg/L sodium 1-octanesulfonate, and 5 mg/L EDTA·Na, pH 3.5 mobile
phase for 10 min at a rate of 230 µL/min.

4.10. Mouse Primary Neuronal Culture

Neurons were prepared from the VTA and striatum of C57BL/6J mouse embryos
(E16). After removing the cerebrum, the VTA and striatum were dissociated into single-
cell suspensions with a cell strainer (100 µM pore size, BD Biosciences, San Jose, CA,



Int. J. Mol. Sci. 2021, 22, 10486 14 of 19

USA). The cells were seeded on poly-L-lysine coated coverslips and plated at a density
of 2.5 × 104 cells per cm2 in neuron culture medium (Sumitomo Bakelite, Tokyo, Japan)
with 5 µM Ara-C (Sigma-Aldrich, St. Louis, MO, USA) and 1× antibiotic-antimycotic
(Invitrogen, Carlsbad, CA, USA). The cells were incubated in the culture medium in a
humidified incubator at 37 ◦C and 5% CO2.

4.11. In Vitro CB1 Knockdown/Overexpression

We performed CB1 knockdown or overexpression in primary cultured neurons to
study the relationship between CB1 and GAD67. CB1 human open reading frame (ORF)
clone lentiviral particles (c-Myc tagged) were obtained from Origene (Rockville, MD, USA)
for CB1 overexpression. Lentiviral particles (5 MOI) were added to primary cultured
neurons at days in vitro (DIV) 5 and the neurons were incubated for 24 h for transduction.
After transduction, the neurons were treated with control or JWH-210 (0.1 µM) for 24 h
and analyzed by immunocytochemistry/immunofluorescence. Mouse control and CB1
shRNA lentiviral particles (2 MOI) were added to primary cultured neurons at DIV 5
and incubated for 16 h for transduction. Media was changed after transduction, and the
neurons were incubated for another 48 h. After incubation, neurons were analyzed by
immunocytochemistry/ immunofluorescence and qPCR.

4.12. Immunocytochemistry/Immunofluorescence

Immunocytochemistry/immunofluorescence was done as described previously [62].
The cultured cells were incubated with the following primary antibodies: β-tubulin III
(TUJ1) (1:300, Abcam, Cambridge, MA, USA), CB1 (1:300, Abcam, Cambridge, MA, USA),
GAD67 (1:300, Abcam, Cambridge, MA, USA), c-Myc (1:300, Abcam, Cambridge, MA,
USA), and GFP (1:300, Abcam, Cambridge, MA, USA) at 4 ◦C overnight. Then, cells were
incubated with secondary antibodies conjugated to Alexa Fluor 405, 488, or 594 (1:500,
Invitrogen, Carlsbad, CA, USA) at RT for 1–2 h. Finally, cells were incubated with DAPI
(2 mg/mL stock, 1:1000, Sigma-Aldrich, St. Louis, MO, USA) at RT for 5 min. Images were
captured using a Leica DM5500B microscope and Leica DFC495 camera (Leica Microsys-
tems, Wetzlar, Germany). LAS-AF (version 3.1.0 build 8587, Leica Microsystems, Wetzlar,
Germany) software was used to merge single monochromatic fluorescent micrographs.

4.13. Quantitative Real-Time PCR (qPCR)

For mRNA quantification, total RNA was extracted from mouse brains using a
total RNA extraction kit (iNtRON Biotechnology, Seongnam, Korea). Complementary
DNA (cDNA) was synthesized from total isolated RNA using a SuperScript III first-
strand synthesis kit (Invitrogen, Carlsbad, CA, USA). Quantitative real-time PCR was
performed with an iCycler iQ5 Real-Time Detection System (Bio-Rad, Hercules, CA, USA)
using SYBR GreenER qPCR SuperMix Universal (Invitrogen, Carlsbad, CA, USA) and
the following primers: mouse CB1, forward 5′-GTACCATCACCACAGACCTCCTC-3′

and reverse 5′-GGATTCAGAATCATGAAGCACTCCA-3′; mouse GAD67, forward 5′-
GTGCTGCTCCAGTGTTCTGCCATC-3′ and reverse 5′-AATCCCACAGTGCCCTTTGCTTT
CC-3′; and mouse GAPDH, forward 5′-TGTCAAGCTCATTTCCTGGT-3′ and reverse 5′-
CTTACTCCTTGGAGGCCATG-3′. Results were normalized to GAPDH and quantified
relative to expression in control samples. For relative quantification, the 2−∆∆CT formula
was used, where:

−∆∆CT = (CT,target − CT,GAPDH) experimental sample− (CT,target − CT,GAPDH) control
sample.

4.14. Western Blotting

Mice brain were prepared as previously described [63]. Briefly, mice brain homoge-
nized with RIPA buffer (Thermo Fisher Scientific, Rockford, IL, USA), and incubated on
ice for 60 min, and centrifuged at 13,000 rpm for 20 min at 4 ◦C. An equal amount of total
protein (30 µg) was subjected to SDS-PAGE (12%), and the membranes were incubated
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with the following primary antibodies: CB1 (1:500, Abcam, Cambridge, MA, USA), GAD67
(1:1000, Abcam, Cambridge, MA, USA), β-actin (1:1000, Abcam, Cambridge, MA, USA),
and GAPDH (1:500, Cell Signaling Technology, Danvers, MA, USA). The membranes were
then incubated with horseradish peroxidase-conjugated anti-rabbit and anti-mouse sec-
ondary antibodies (1:5000, Sigma-Aldrich, St. Louis, MO, USA). Immunoreactivity was
visualized with an ECL Plus detection system (GE Healthcare, Chicago, IL, USA). The
relative density of the protein bands was analyzed with ImageJ.

4.15. Climbing Behavior

To study the role of dopamine receptor activity induced by GAD67 knockdown,
climbing behavior was measured. Three days after GAD67 siRNA injection, mice were
moved into cylindrical cages (diameter, 12 cm; height, 14 cm) with the floor and walls
consisting of metal bars (0.2 cm diameter; separated by 1 cm gaps) and covered with
a lid. After a 10-min acclimation period, apomorphine (1 mg/kg, i.p.) or vehicle (i.p.)
was injected. The time spent for climbing was measured for 1, 10, 20, and 30 min after
drug administration.

4.16. Immunohistochemistry/Immunofluorescence

Mice were euthanized by CO2 inhalation and perfused with phosphate-buffered
saline (PBS, pH 7.4) with heparin and 4% para-formaldehyde (PFA) in PBS (pH 7.4) at
the end of the behavior tests. The mice brains were processed and made into brain
sections (10 µm) in the same way as in a previous study [63]. Before staining, the brain
sections were air-dried for 3 h. After two 10-min washes in PBS (pH 7.4), the brain
sections were incubated at 60 ◦C citrate buffer (10 mM citric acid, pH 7.4) for 30 min,
incubated with the following primary antibodies: GAD67 (1:300, Sigma Aldrich, St. Louis,
MO, USA), GFP (1:200, Abcam, Cambridge, MA, USA), dopamine receptor D1 (DRD1;
1:200, Novusbio, Centennial, CO, USA), and dopamine receptor D2 (DRD2; 1:200, Merck
Millipore, Burlington, MA, USA) and secondary antibody conjugated to biotinylated goat
anti-mouse IgG-horseradish peroxidase (HRP) (1:500, Santa Cruz, CA, USA) or Alexa Fluor
488 and 594 (1:500, Invitrogen, Carlsbad, CA, USA) [64]. The brain sections were evaluated
on a light microscopy (Microscope Axio Imager.A2, Carl Zeiss, Oberkochen, Germany,
×200) or a confocal microscope (LSM980, Carl Zeiss, Oberkochen, Germany, ×200).

4.17. Ethical Approval of the Human Study

Ethical approval for the Stanley Brain Collection was obtained through the Institu-
tional Review Board (IRB) of the Uniformed Services University of the Health Sciences,
Bethesda, MD, who determined that IRB approval was not needed (during the collection
period of 1998–2004) because the human subjects were deceased and all work was being
done on de-identified specimens that were simply numbered. Consent to donate the spec-
imens was obtained from next-of-kin and witnessed by two people who signed a form
verifying the fact. Subsequently, the next-of-kin was contacted and interviewed to obtain
further information about the deceased. These studies were carried out in accordance with
the declaration of Helsinki, after approval by the Human Research Ethics Committee at the
University of New South Wales (#HREC07261).

4.18. Human RNA-Seq Data

RNA-Seq data used in our previous study [65] was reanalyzed in this study. Briefly, the
RNA-Seq data was generated from the human brain of 113 individuals with schizophrenia
and unaffected controls. The samples are from the SMRI tissue collections; the Neuropathol-
ogy Consortium (NPC), the Array Collection (AC), and the New Stanley Collection (NSC).
Mapping the RNA-seq reads, quantifying the mapped reads and normalization of the
mapped reads were performed as previously described [65].
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4.19. Correlation Analysis between RNA-Seq Data and the Severity Ratings of Drug Use

Qualitative ratings (on a 0 to 5 scale) are used for severity of drug use of all SMRI
cases [66]. Since the ratings of two cases were not available, the two samples were excluded
in this analysis. Correlation analysis was performed between normalized RNA-seq data
and the severity ratings of drug use. p-values less than 0.01 were considered significant.

4.20. Functional Annotation

DAVID (http://david.abcc.ncifcrf.gov/home.jsp, Accessed date: 9 October 2019) was
used to identify the biological processes that were significantly over-represented by genes
correlated with the severity of drug use in the frontal cortex. p-values less than 0.05 were
considered significant.

4.21. Data Analysis

The data represent the mean± standard error (S.E.). Data were analyzed with Pearson
correlation test, Fisher’s exact test, Student’s t-test, one-way, two-way, three-way, and
two-way repeated measures (RM) analysis of variance (ANOVA) followed by Bonferroni
or Holm–Sidak post-hoc t-test using SigmaPlot 14 software (Systat Software, San Jose,
CA, USA).

5. Conclusions

In the present study, we examined the effect of JWH-210, a CB1 agonist, on METH-
induced reward. We found that pretreatment of JWH-210 augmented METH-induced
drug reward in CPP test, and KCl-induced dopamine release or METH-induced dopamine
efflux in mouse striatum. At this time, CB1 and GAD67 levels in mouse striatum were
decreased by repeated administration of JWH-210. Interestingly, expression of GAD67
was affected by level of CB1. Based on these results, we measured METH-induced CPP
score in mouse, which is CB1 or GAD67 knockdown in striatum. As a result, knockdown
of CB1 or GAD67 increased METH-induced CPP. Moreover, in the human brain, mRNA
level of GAD67 was found to be decreased in drug users. Our study suggests that CB1
potentiates METH-induced CPP through inhibitory GABAergic regulation of dopaminergic
neuronal activity.
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