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Abstract: Skeletal muscle is the principal contributor to exercise-induced changes in human metab-

olism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood 

and human skeletal muscle during an exercise activate different signaling pathways and induce the 

expression of many genes in working muscle fibres, the systematic understanding of signaling–

metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still 

elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy 

metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expres-

sion regulation of genes with early and delayed responses was developed based on a modular mod-

eling approach and included 171 differential equations and more than 640 parameters. The inte-

grated modular model validated on diverse including original experimental data and different ex-

ercise modes provides a comprehensive in silico platform in order to decipher and track cause–

effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle. 

Keywords: mathematical model; skeletal muscle; physical exercise; Ca2+-dependent signaling  

pathway; transcriptome; RNA sequencing; regulation of expression; BioUML 

 

1. Introduction 

Skeletal muscle tissue comprises about 40% of total body mass in lean adult humans 

and plays a crucial role in the control of whole-body metabolism and exercise tolerance. 

Regular low-intensity exercise (aerobic or endurance training) strongly increases vascular 

and mitochondrial density and oxidative capacity, improving fat and carbohydrate me-

tabolism. These adaptations lead to an enhancement of muscle endurance performance 

and reduce the risk associated with the morbidity and premature mortality of chronic 

cardiovascular and metabolic diseases [1,2]. 

Acute aerobic exercise induces significant metabolic changes in the working skeletal 

muscle, which in turn activate numerous signaling molecules. Changes in the content of 

Ca2+ ions in skeletal muscle play a fundamental role in the regulation of the activity of 
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contractile proteins and enzymes involved in energy metabolism. In addition, a contrac-

tion-induced increase in the content of Ca2+ ions in the myoplasm significantly affects the 

activation of some signaling proteins: Ca2+/calmodulin-dependent kinases (CaMKs), cal-

cineurin, Ca2+-dependent protein kinase C, etc. [3]. Increasing the intensity of contractile 

activity more than 50% of maximal pulmonary O2 consumption rate (V′O2max) induces a 

linear increase in the activity of AMPK, the key energy sensor of the cell activated by an 

increase in the AMP/ATP ratio, Ca2+-dependent kinase CaMKKII, and a decrease in the 

level of muscle glycogen [4]. In muscle cells, activated AMPK changes the level of phos-

phorylation of several dozens of different signaling proteins [5–7]. Thus, Ca2+ and AMPK 

play a key role in the regulation of various intracellular signaling cascades, as well as the 

gene expression induced by exercise. 

Dramatic changes in the expression of hundreds of genes were observed during the 

first hours of recovery after acute intensive aerobic exercise in untrained skeletal muscle 

[8–10] as well as in muscle adapted to regular exercise training [8,10,11]. These changes 

are associated with muscle contraction per se and with system factors, e.g., humoral fac-

tors, neuronal activity, feeding mode, and circadian rhythms. On the basis of the analysis 

of differentially expressed genes between exercised and contralateral non-exercised 

vastus lateralis muscle, the contractile activity-specific transcriptome responses at 1 and 4 

h after the one-legged exercise were identified in our previous study [12]. It was shown 

that the most enriched biological process for the transcriptome response is transcription 

regulation, i.e., an increase in the expression of genes encoding transcription factors and 

co-activators. The study demonstrated that genes encoding transcription factors such as 

NR4A, AP-1, and EGR1 were actively expressed 1 h after the termination of the exercise, 

while other transcription regulators such as PPARGC1A, ESRRG, and VGLL2 were highly 

expressed at 4 h. Both sets of transcription factors modulate muscle metabolism. We sug-

gest that gene expression in early and late stages of the recovery after the termination of 

the exercise can be regulated in different ways [13]. Obviously, these molecular mecha-

nisms are complex, but we assume that each considered gene has a constitutive transcrip-

tion rate independent of the presence of considered transcription factors, while fine-tun-

ing regulation by them ensures diverse expression dynamics of genes with early and de-

layed responses to an exercise and recovery. For example, the activation of CREB- and 

CRTC-like transcription factors by the upstream Ca2+-dependent signaling pathway ena-

bles the expression increase of early response genes such as NR4A2, NR4A3, while the 

transcription activation of genes with delayed response such as PPARGC1A is provided 

through initial transcription regulation by the same CREB- and CRTC-like factors and 

translation of the X factor, which is an intermediate regulator. Moreover, conducted bio-

informatics analysis of the transcriptomics [12] and ChIP-seq data from the GTRD data-

base revealed potential candidates for this X factor regulating expression of the 

PPARGC1A gene. 

It is worth noting that although advancement in the development of high-throughput 

experimental techniques and generation of diverse omics data for human skeletal muscle 

during endurance exercise enabled us to unveil key participants of the cellular response 

and adaptation to stress/various stimuli [8–12], the systematic understanding of signal-

ing–metabolic pathway relationships with downstream genetic regulation in exercising 

skeletal muscle is still elusive. Detailed mechanistic and multiscale mathematical models 

have been constructed to provide a powerful in silico tool enabling quantitative investi-

gation of the activation of metabolic pathways during an exercise in skeletal muscle [14–

16]. Here, we propose a modular model of exercise-induced changes in metabolism, sig-

naling, and gene expression in human skeletal muscle. The model includes different com-

partments (blood, muscle fibers with cytosol and mitochondria) and allows one to quan-

titatively interrogate dynamic changes of metabolic and Ca2+- and AMPK-dependent sig-

naling pathways in response to aerobic cycling or knee extension exercises of various in-

tensity in slow- and fast-twitch vastus lateralis muscle fibres (type I and II, respectively), 
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as well as downstream regulation of genes with early and delayed responses in a 

whole/mixed fiber type skeletal muscle. 

The model modules are hierarchically organized and presented according to meta-

bolic, signaling, and gene expression levels. To build the model, we used the BioUML 

platform [17] that is designed for modular modelling of complex biological systems. The 

effectiveness of both this approach and the BioUML platform was previously confirmed 

by the development of complex modular models of apoptosis [18] and the cardio-vascular 

system [19]. 

2. Materials and Methods 

This section consists of two subsections. Firstly, the suggested approach for modular 

construction of complex biological models, their reproducibility, and practical applica-

tions using the BioUML platform are described. Afterwards, the main points of the inte-

grated model construction are presented. 

2.1. BioUML Platform 

BioUML (Biological Universal Modeling Language, https://ict.biouml.org accessed 

on 24 September 2021) [17] is an integrated platform for modeling and analysis of complex 

biological systems. It supports main standards in systems biology, modular and visual 

modelling, fast simulation, parameter estimation, and a number of numerical methods, as 

well as integration with Jupyter Notebook for reproducible research. Together, these 

cover all needs for modeling complex biological systems. 

2.1.1. Systems Biology Standards 

It is very important to provide interoperability and reproducibility of mathematical 

models of complex biological systems [20,21]. For this purpose, the BioUML platform sup-

ports the main standards used in systems biology. 

 SBML—Systems Biology Markup Language [22] serves for a formal description of 

mathematical models. BioUML supports all versions of SBML from l1v2 to the latest 

l3v2, including “comp” [23]. 

 SBGN—Systems Biology Graphical Notation [24] is used for visual description of 

model elements (complexes, compartments, molecule types, reactions, etc.). BioUML 

completely supports SBGN Process Description diagrams and uses them to visually 

represent SBML models. We also support the XML markup language SBGN-ML 

(https://github.com/sbgn/sbgn/wiki/SBGN_ML accessed on 24 September 2021), 

which facilitates the exchange of SBGN diagrams between tools. 

 Antimony—human-readable text format, which supports most of the SBML features 

[25]. BioUML automatically processes it into an SBML diagram in SBGN notation. 

BioUML supports import and export into antimony format. 

However, these standards are not sufficient for some tasks. Thus, we suggest exten-

sion of the SBGN Process Description diagram type and Antimony format and demon-

strate how they can improve the construction of complex biological models using visual 

modelling. These extensions supported by the BioUML platform will be described below. 

2.1.2. Visual Modelling 

Representation of investigated systems as graphical diagrams by means of software 

supporting visual modeling can significantly facilitate the procedures of the model recon-

struction. 

Following a paradigm of visual modelling, a user creates mathematical models as 

visual diagrams. Each component of the diagram corresponds to a particular mathemati-

cal object of the model (variable, reaction, metabolite, equation, etc.). Users may addition-

ally edit those elements by changing their properties (i.e., initial value of a variable, kinetic 
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law for the reaction, etc.). Based on this visual representation as well as on defined prop-

erties of diagram elements, BioUML automatically generates a program code that is em-

ployed to simulate the model dynamics. The current BioUML version generates highly 

optimized Java code and uses its own state-of-the-art simulation engines. 

2.1.3. SBGN Process Diagrams Extension 

Graphical notation is a crucial component of visual modeling that allows one to for-

mally and completely build a model. A visual model can be presented by some types of 

diagrams enabling the description of diverse aspects of the structure and function of a 

complex system with different levels of details. This formal graphical representation is a 

basis for automatic code generation by specialized tools to simulate the model. 

We devised an extension (Table 1) for the Process Diagram type from the SBGN 

standard [24] to provide the possibility of graphical representation of mathematical ele-

ments used in SBML format: equations, events, functions, and constraints [22]. We also 

added glyphs to represent tabular data that are used for defining the dynamics of the 

mathematical variables of the model. Tabular data may be translated into spline curves or 

a constant piecewise function. Furthermore, tabular data may be used, for example, for 

defining experimental conditions—training regimen for physical exercises. 

Although SBGN notation already has tag elements that denote the module interface 

(ports in SBML terminology), in our diagrams we have three different types of ports (see 

below). 

Table 1. Glyphs for new entities for the SBGN Process Diagram. 

Element Name Glyph Description 

Equation 

 

Mathematical equations of the model: 

 assignments; 

 initial assignments; 

 algebraic equations; 

 differential equations. 

Event 

 

Events describing instant changes made to model variables when a 

specified condition is satisfied, i.e., when trigger expression changes 

its value from “false” to “true”. 

Function 
 

Function receives argument values, calculates, and returns result of 

the given expression. 

Constraint 
 

Constraint is checked during the simulation. If it is violated, simula-

tion is either stopped or an error message is shown depending on 

solver settings. 

Tabular data 

 

Tabular element is used to calculate model variables based on tabular 

data. In this example, the time column is used for the time variable; 

x_value and y_value columns are used for x and y, respectively. The 

tabular element is either translated to a spline approximating tabular 

data or a piecewise constant function. 
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Interface ports 

 

Although SBGN notation already has tag elements that denote the 

module interface (ports in SBML terminology), in our diagrams we 

have three different types of ports: contact ports (gray), input ports 

(green), and output ports (red). 

2.1.4. Modular Diagrams 

Modularity could be considered a principle of biological organization [26,27]. There-

fore, a modular approach to the modeling of complex biochemical systems has been ac-

tively developing in the last decades [28,29]. 
In the framework of a modular approach, the investigated system is viewed as a set 

of interconnected subsystems (modules). Each module is a mathematical model that can 

be considered and simulated independently. Integration of these modules constitutes a 

more complex model of the whole system. Modules may leverage different mathematical 

formalisms and scales. They can be created, validated, and improved independently and 

may be viewed as replaceable parts. 
For visual modelling of modular models, we developed a special diagram type that 

allows us to specify connections between modules. For this purpose, each module speci-

fies variables that can be used to connect it with other modules. This subset of variables is 

called the module interface and is represented by ports (Table 2). 
Ports can be of three types: 

 Input—mathematical variable associated with input ports that is calculated outside 

of the module and used in the module. 

 Output—mathematical variable associated with contact ports can be modified inside 

the module as well as outside (e.g., using differential equations). 

 Contact—mathematical variable associated with output ports calculated inside the 

module and may be used in other modules. In other words, it is a shared variable 

that can be simultaneously changed by several modules. 

Besides this, modular diagrams can include all mathematical elements and tabular 

data suggested in Table 1. 

Table 2. Glyphs and arcs for modular diagrams. 

Element Name Glyph Description 

Module 

 

Module encapsulates the mathematical model (submodel) of a particular 

subsystem forming the hierarchic structure of the model. 

Port 

 

Ports represent the interface of the module through which it can be con-

nected with other modules or with the hierarchical model itself. The color 

of the port defines its type: output (red), input (green), contact (gray). 

Connection 

 

Connections can be established between ports to aggregate modules with 

each other. Directed connections are established between output and input 

ports, with undirected connections between contact ports. 
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Bus 

 

Buses are auxiliary elements that can be used as intermediate points in 

connections. They decrease the number of intersections between connec-

tions and make the structure of the model more clear. 

2.1.5. Visual Modular Modelling 

Module ports are used on two levels (Figure 1): 

 when creating model that will be used as a part of another model (i.e., module), a 

modeler specifies the module inputs, outputs, and contacts and links them to corre-

sponding module entities or variables; 

 on a modular diagram, a modeler links several modules together using previously 

defined ports. 

Let us consider a simple example demonstrating this approach (Figure 1). First, we 

will develop a simple module M1 that consists of one biochemical reaction where two 

molecules A and B form the complex A:B. We are suggesting that the concentration of 

entity A can be changed in other reactions due to participation in other modules. To spec-

ify this, we will create port A of type “contact” (grey pentagon). The concentration of the 

A:B complex is solely defined in module M1, and we will create a port A:B of type “out-

put” (red pentagon) that is represented as input in module M2. 

Then, we will create module M2 that will also include one reaction where complex 

A:B catalyzes the phosphorylation of protein C (C{p}). Herein, we will define port A:B as 

input (green pentagon) for this module and port C{p} as output. 

Module M3 also comprises one bimolecular reaction where C[p} catalyzes the trans-

formation of A into A_1. X and Z are chemical substances that are the reactant and prod-

uct, respectively. Similarly, we will specify C{p} as input, and A port will be a contact 

while the A concentration is also changed in the reaction from module M1. 

Finally, let us form these three modules into a modular model (Figure 1b,c). We will 

connect corresponding ports to each other (Figure 1b). 

 inputs and outputs: A:B for M1 and M2, C{p} for M2 and M3; this is a directed con-

nection so it is depicted by an arrow; 

 contacts—A for M1 and M3; this is an undirected connection while concentration A 

is changed simultaneously by two reactions from these modules and so it is depicted 

by the line. 

More complex modular diagrams may contain a large number of connections that 

form many intersections. To skip this intersection, we introduce the concept of a bus 

(white circle in Figure 1c): a port is connected to the named bus, and a diagram may con-

tain several clones of such a bus. Figure 1c demonstrates how the connection of two A 

ports can be replaced by a connection with two clones of bus A. 
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Figure 1. Modular model example. (a)—inner structure of modules (SBGN). M1-M3 designate cor-

responding modules; two green rectangles A and B in M1 correspond to molecules A and B which 

form the complex A:B, while grey and red pentagons in M1 designate contact port for A and output 

port for A:B, respectively; two green rectangles C and C_p in M2 correspond to protein C and phos-

phorylated form of the protein, while green and red pentagons in M2 designate input port for A:B 

and output port for C_p, respectively; two green rectangles A and A_1 in M3 correspond to mole-

cules A and A_1, while green and grey pentagons in M3 designate input port for C_p and contact 

port for A, respectively; two purple circles X and Z in M3 mean the additional substrate and product 

of the bimolecular reaction, correspondingly that is catalyzed by phosphorylated form of the protein 

C (green rectangle), (b,c)—modular diagram in two equivalent variants: without or with buses 

(white circles). Buses serve for cosmetic purposes only. 

Numerical calculations for modular models may be performed in two ways: 

 Flattening—a modular model may be transformed into a non-modular model by ag-

gregating all elements of all modules with automatic resolving of established connec-

tions between variables [18]. 

 Agent-based simulation. Each module is simulated independently with its own sim-

ulator and formalism. The implemented scheduler coordinates the interactions by 

sending and receiving the numerical values of connected variables [19]. 

To simulate the presented integrated modular model, we employ a flattening ap-

proach while all modules use the same mathematical formalism and contain sets of ordi-

nary differential equations (ODEs) and discrete events (i.e., hybrid models). The BioUML 

platform automatically transforms the modular model into a “flat” hybrid model with the 

same formalism by aggregating all equations and events from all modules and resolving 

connections. For more details, see [18,19]. 

2.1.6. Antimony—Extension and Synchronization with Visual Depiction 

Antimony provides a convenient human-readable text format that supports most of 

the SBML features. Herein, we suggest an extension for the Antimony format to specify 

reaction components to which type of SBGN Process Diagram they correspond, as well as 

some other properties. 

The suggested format is as follows: 

@entity_id.property = value  
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The proposed extension is quite similar to the idea of annotations in SBML format 

where SBML-enabled software can store any auxiliary information. Similar to Java anno-

tations, we suggest sign @ for this purpose. 

Currently, the BioUML platform supports the following properties in annotations: 

 sbgnType—defines the SBGN entity type (unspecified, macromolecule, nucleic acid 

feature, perturbing agent, simple chemical or complex). All those entities correspond 

to mathematical variables in the model. 

 sbgnViewTitle—defines additional properties of an SBGN entity such as whether it 

is multimer if it has units of information or state variables. If an entity is a complex, 

it also defines the inner elements of the said complex. We used Transpath conven-

tions to denote entities and complexes in text formats. Here are some examples: 

o Complex comprising two entities A and B is denoted as “A:B”. 

o Entity A with state variable p (phosphorylated) is denoted as “A{p}”. 

o Multimer entity A is denoted as “(A)3”. 

o A more advanced example: “(A{p})3:B{r}{p}:C”. 

More information can be found in part 2.6 of Transpath documentation at https://gen-

explain.com/wp-content/uploads/2017/04/TRANSPATH-Documentation_2012.2.pdf (ac-

cessed on 24 September 2021). 
Depending on the context/tasks, it can be more suitable to present a model of a bio-

logical system either as a graph using the extended version of the SBGN Process diagram 

type or as a program code using Antimony language. 

Antimony+ and PD+ are seamlessly integrated in the frame of the BioUML platform. 

Due to this integration, a user can simultaneously view and edit textual and graphical 

representations of a biological system model. Figure 2 demonstrates how the chemical 

reaction is represented using SBGN Process Diagram Type (2a) and extended Antimony 

format (2b). 

 

Figure 2. Representation of the simple chemical reaction (a) using the SBGN Process Diagram type and Antimony with 

annotations (b). Three green rectangles α2, β2, γ2 inside the dark green octagon AMPK_2_2_3 designate corresponding 

subunits of the AMPK, while green rectangle CAMKKII mean the kinase catalyzing the phosphorylation reaction. 

It is noteworthy that if a user edits textual model representation then graphical rep-

resentation is updated synchronously by the BioUML platform and vice versa. Similarly, 

if a user selects some object on a diagram, then corresponding text items are highlighted 

in the text document and vice versa. 
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2.1.7. Model Simulations 

Numerical solutions of the model represented by a system of ordinary differential 

equations have been obtained on the basis of the VODE method [30] using a JVode simu-

lation engine implemented in the BioUML tool [17]. Each submodule of the modular 

model can be represented as an independent SBML file [22], while the integrated modular 

model can be exported as a COMBINE archive [31] to use the model and reproduce sim-

ulations, resulting in alternative software supporting current standards of the systems bi-

ology. 

2.1.8. Jupyter Notebook 

BioUML is integrated with Jupyter (https://jupyter.org, accessed on 24 September 

2021) for interactive data and model analysis as well as an essential and user-friendly tool 

for the reproducibility of the simulation results (Figure 3). The notebook that provides 

reproducibility of results presented in the article can be started on the BioUML server as 

well as using Binder technology. 

 

Figure 3. A fragment of Jupyter notebook reproducing the results presented in the current study: 

(A) Exercise power and fiber recruitment pattern: total power (orange), power generated by type I 

(red) and II (blue) fibers; (B) ATP concentration in type I (red, dotted) and II (blue, dotted) fibers 

and in the muscle tissue (orange, solid) during the incremental ramp exercise until exhaustion. 

2.2. Integrated Modular Model 

2.2.1. The Model Overview 

The general structure of the developed model linking metabolism, Ca2+-dependent 

signaling transduction, and regulation of gene expression in human skeletal muscle is 

demonstrated in Figure 4. 

The model has a hierarchical structure. At the top level, the model describes the phys-

iology of capillary blood flow through muscles during exercise to provide oxygen and 

substrate delivery and metabolite removal from the skeletal muscle. It is worth noting that 

many physiological details are lumped in the current version of the model (e.g., cardi-

orespiratory system elements), and the dynamic change of the capillary blood flow elic-

ited by the exercise is considered a linear function of the exercise intensity [32]. In the 

muscle model, we consider Type I and Type II fibers. Their modules have the same struc-

ture but differ in some parameter values. 
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On the next level (cellular level), we consider biological processes that occur in hu-

man skeletal muscle cells. These processes can also be divided into three sublevels that 

are described by the corresponding modules of the model: 

 Metabolic—the main metabolic processes that occur in the skeletal muscle during 

physical exercises: glycolysis, glycogenolysis, tricarboxylic acid cycle, β-oxidation, 

and oxidative phosphorylation. This part of the model is based on a detailed mathe-

matical model of muscle metabolism developed by Li and coauthors [32]. We have 

redesigned this model according to the methodology described above and changed 

some model parameters to reproduce more experimental data (see below). 

 Signalling— the main signal transduction pathways that are activated by physical 

exercises are related to Ca2+-dependent signaling [33] and AMPK activation [34]. For 

each of them we developed a special module. 

 Gene expression regulation—changes in gene expression were divided into early (up 

to 1–3 h after exercises) and late (3–6 h after exercises) responses. We selected the 

most well-known genes for each group—NR4A2 and NR4A3 for the first group and 

PPRGC1A for the second as described in the “Gene expression level” section. The 

corresponding modules that describe the expression of these genes have also been 

developed. 

Oxygen delivery and metabolite transport between cellular compartments (mito-

chondria and cytoplasm) as well as between muscle cells and capillary blood are very 

important parts of the model. Therefore, we developed special modules considering all 

these transport processes. 

An activation mechanism that enhances energy metabolism via transport and reac-

tion fluxes due to physical exercise was harnessed as the stress function depending on the 

general work rate parameter [32]: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊) = 1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒
𝑡𝑠𝑡𝑎𝑟𝑡−𝑡

𝜏𝑖 )  

where 𝛼𝑖  is the activation coefficient, 𝑊 is the work rate value, 𝜏𝑖  indicates the time 

constant of changes in the metabolic reaction rates in response to exercise, and 𝑡𝑠𝑡𝑎𝑟𝑡 is 

the simulation time when an exercise is started. The work rate parameter defines the 

power of the physical exercise and varies depending on the mode of the exercise. In our 

model, the muscle volume was 5 L, which corresponds to that involved in exercise using 

a cycling ergometer [14,32]. 

All details on the general description of each module, representation of the module 

diagram using extended SBGN Process Description notation, corresponding Antimony 

code for the module as well as reaction rates and ordinary differential equations to de-

scribe the species concentrations, the module parameters, their values, and references to 

the literature from which they were extracted are presented in the Supplementary Mate-

rials. 
Overall, the model includes: 

 25 modules; 

 238 species; 

 185 reactions; 

 171 ordinary differential equations; 

 647 parameters. 
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Figure 4. General structure of the integrated modular model linking metabolism, Ca2+-dependent signaling transduction, 

and regulation of gene expression in human skeletal muscle. Grey arrows on the physiological and cellular levels represent 

transport reactions, red and blue dashed lines from each fiber type to the cellular level indicate duplicated submodules 

for the corresponding fiber type, while black arrows indicate activation mechanisms related to an exercise response in the 

corresponding module. The metabolic sublevel consists of submodules “Cytosol” and “Mitochondria”, which in turn con-

tain equations describing enzymatic reactions inside the certain compartment as well as of the Transport submodule com-

prising transport reactions between them. The signaling sublevel includes Ca2+- and AMPK-dependent signaling path-

ways, while the Gene expression regulation sublevel incorporates submodules describing the expression regulation of 

genes with early and delayed responses. For a detailed description of all modules and diagrams, see the Supplementary 

Material. 
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2.2.2. Physiological (or Organism) Level 

On this level (Figure 5), we model capillary blood flow for oxygen and substrate de-

livery to the muscle and for removal of metabolites produced by the muscle including: 

CO2—carbon dioxide; O2—oxygen; Lac—lactate; Ala—alanine; Pyr—pyruvate; H—hy-

drogen; Glr—glycerol; Glc—glucose; FFA—free fatty acid. 
It should be noted that those species are present in six different modules and have 

different subscripts. We explain this using the example of CO2. In the module “Capil-

lary_Blood_Flow”, 𝐶𝑂2𝑐 is the concentration of CO2 in the capillary blood. It is connected 

via connections and buses with 𝐶𝑂2𝑏 in modules “Cytosol_Capillary Transport R” and 

“Cytosol_Capillary Transport W”, where 𝐶𝑂2𝑏 is also the CO2 concentration in the capil-

lary blood. In those modules, transport of CO2 from blood to the muscle tissue is pre-

sented, where 𝐶𝑂2𝑐 is the concentration in the tissue. Finally, 𝐶𝑂2𝑐 is connected with the 

CO2 variables in the “Fiber R” and “Fiber W” modules (corresponding to Type I and Type 

II fibers, respectively), where the metabolism of CO2 in tissues is considered. Bus elements 

(white circles in Figure 5) are used to prevent too many intersections between connections. 

Skeletal muscle volume (𝑉𝑚𝑢𝑠) is represented by the sum of the effective volumes of 

blood (𝑉𝑏𝑙): 𝑉𝑚𝑢𝑠 = 𝑉𝑡𝑖𝑠 + 𝑉𝑏𝑙—the skeletal muscle volume (5 kg w.w.). In skeletal muscle, 

recruitment of muscle fibers due to the transition from rest to exercise enhances active 

muscle volume and blood flow. According to the original metabolic model [32], we also 

assume that these physiological variables dynamically change as linear functions of the 

work rate parameter or power of the physical exercise: 

𝑉𝑚𝑢𝑠 = 𝑉𝑚𝑢𝑠0
× (1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒

𝑡𝑠𝑡𝑎𝑟𝑡−𝑡
𝜏𝑉 )  

𝑄 = 𝑄0 × (1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒
𝑡𝑠𝑡𝑎𝑟𝑡−𝑡

𝜏𝑄 )  

where 𝑄 is the blood flow, 𝑄0 = 0.9 L/min is the muscle blood flow at rest for two legs; 

𝑉𝑚𝑢𝑠0
 is the skeletal muscle volume at rest (5 kg w.w.); 𝛼𝑖 is the activation coefficient; 

while 𝜏𝑉 = 𝜏𝑄 = 0.4 min is the time constant of the muscle volume and blood flow 

changes, respectively, in response to exercise; and 𝑡𝑠𝑡𝑎𝑟𝑡 is the simulation time when an 

exercise is started [32]. 

The muscle consists of two compartments (modules) that correspond to Type I and 

Type II fibers. They have the same structure but differ in some parameters (see details in 

corresponding tables of the Supplementary Materials). 
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Figure 5. The modular representation of the integrated model at the physiological level. The model comprises five mod-

ules: “Capillary_Blood_Flow” to describe flow processes in the blood; “Cytosol_Capillary Transport R” and “Cytosol_Ca-

pillary Transport W” modules representing transport reactions between capillary blood and the muscle tissue, “Fiber R” 

and “Fiber W” modules where metabolic, signaling, and gene expression regulation processes are considered. All details 

for each submodule and zoomed-in subfigures are in the Supplementary Material. 

2.2.3. Transport Level 

The inter-compartmental metabolite transport is described as passive or facilitated 

(carrier mediated) fluxes according to the original paper [32]. By analogy with metabolic 

rates, all transport flux equations are multiplied by a linear function to consider the exer-

cise effect on transport processes. The basic transport flux equation for passive (super-

script p) diffusion of species i between the blood and cytosol is: 

𝑇𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖
𝑝

= 𝜆𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 × (𝐶𝑏𝑙,𝑖 − 𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖) × (1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒
𝑡𝑠𝑡𝑎𝑟𝑡−𝑡

𝜏𝑖 ))  

where 𝜆𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 is the permeability-surface area coefficient, 𝐶𝑏𝑙,𝑖 and 𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 are 

concentrations of species i in the blood and cytosol, respectively; 𝑖 ∈ (𝐶𝑂2, 𝑂2, 𝐴𝑙𝑎, 𝐺𝑙𝑟) 

and 𝑡𝑦𝑝𝑒 ∈ (𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑒𝑟, 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑓𝑖𝑏𝑒𝑟), while for facilitated (superscript f) transport: 
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𝑇𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖
𝑓

= 𝑅𝑚𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 × (
𝐶𝑏𝑙,𝑖

𝐾𝑀𝑏𝑙<−>𝑐𝑦𝑡,𝑖
+ 𝐶𝑏𝑙,𝑖

−
𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖

𝐾𝑀𝑏𝑙<−>𝑐𝑦𝑡,𝑖+𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖
) 

× (1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒
𝑡𝑠𝑡𝑎𝑟𝑡−𝑡

𝜏𝑖 )) 

 

where 𝑅𝑚𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖  is the maximal flux rate for facilitated transport, 𝐶𝑏𝑙,𝑖 

and 𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 are concentrations of species i in the blood and cytosol, respectively; 𝑖 ∈

(𝐺𝑙𝑐, 𝑃𝑦𝑟, 𝐿𝑎𝑐, 𝐹𝐹𝐴, 𝐻+) and 𝑡𝑦𝑝𝑒 ∈ (𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑒𝑟, 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑓𝑖𝑏𝑒𝑟). 

The basic transport flux equation for passive (superscript p) diffusion of species i be-

tween the cytosol and mitochondria is: 

𝑇𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖
𝑝

= 𝜆𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖 × (𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 − 𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖) ∗ (1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒
𝑡𝑠𝑡𝑎𝑟𝑡−𝑡

𝜏𝑖 ))  

where 𝜆𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖  is the permeability-surface area coefficient, 𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖  and 

𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖  are concentrations of species i in cytosol and mitochondria, respectively; 𝑖 ∈

(𝐶𝑂2, 𝑂2 ) and 𝑡𝑦𝑝𝑒 ∈ (𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑒𝑟, 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑓𝑖𝑏𝑒𝑟 ), while for facilitated (superscript f) 

transport: 

𝑇𝑐𝑦𝑡<→𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖
𝑓

= 𝑅𝑚𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑦𝑡<→𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖 

× (
𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖

𝐾𝑀𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑖
+ 𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖

−
𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖

𝐾𝑀𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑖+𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖
) 

× (1 + 𝛼𝑖 × 𝑊 × (1 − 𝑒
𝑡𝑠𝑡𝑎𝑟𝑡−𝑡

𝜏𝑖 )) 

 

where 𝑅𝑚𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖  is the maximal flux rate for facilitated transport, 

𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 and 𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖 are concentrations of species i in the cytosol and mitochondria, 

respectively; 𝑖 ∈ (𝐻+, 𝑃𝑦𝑟, 𝐹𝐴𝐶, 𝐶𝑜𝐴, 𝑃𝑖) and t𝑦𝑝𝑒 ∈ (𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑒𝑟, 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑓𝑖𝑏𝑒𝑟). 

2.2.4. Cellular (Metabolic) Level 

The diagram of the modular model describing the metabolism of human skeletal 

muscle is presented in Figure 6. The cytosol includes metabolic reactions of the glycolysis, 

glycogenolysis, and lipid metabolism, while the tricarboxylic acid (TCA) cycle, ß-oxida-

tion, and oxidative phosphorylation reactions occur in the mitochondria. The intermedi-

ate compartment between those is a transport module that contains passive and facilitated 

transport reactions for model intracellular species. Kinetic laws presenting metabolic and 

transport flux expressions exactly match the initial model developed by Li and coauthors 

[32]. 
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Figure 6. A general SBGN diagram of the modular model describing metabolism in human muscle fibers (A) taking into 

account metabolic processes in the cytoplasm (B) and the mitochondrion (D), and transport reactions between two com-

partments (C) as well as modules of the Ca2+-dependent signaling pathway and AMPK activity considering different 

isoforms. Designations of input/output/contact ports are described above in the main text. The vertices of the bipartite 

graph  in the Cytosol/Mitochondrion and Transport submodules correspond to the respective biochemical or transport 

reaction depending on the submodule. Each fiber type module also comprises submodules of Ca2+- and AMPK-dependent 

signaling pathways. All details for each submodule and zoomed-in subfigures are in the Supplementary Material. 

According to the model, a dynamic mass balance of metabolites (i) is based on the 

structural and functional organization and is expressed by equations: 

𝑉𝑐𝑦𝑡,𝑡𝑦𝑝𝑒

𝑑𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖

𝑑𝑡
= 𝑅𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖 + 𝑇𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖

𝑘 − 𝑇𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖
𝑘  

in the cytosol and: 

 

 

𝑉𝑚𝑖𝑡,𝑡𝑦𝑝𝑒

𝑑𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖

𝑑𝑡
= 𝑅𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖 + 𝑇𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖

𝑘  

in the mictochondria. 

 

where 𝑉𝑐𝑦𝑡, 𝑉𝑚𝑖𝑡 indicate the volume of the corresponding module or compartment in kg 

wet weight (kg w.w.), 𝑡𝑦𝑝𝑒 ∈ (𝑡𝑦𝑝𝑒 𝐼 𝑓𝑖𝑏𝑒𝑟, 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑓𝑖𝑏𝑒𝑟 ). 𝑉𝑐𝑦𝑡,𝑅 = 0.88 × 𝑉 𝑅  and 

𝑉𝑐𝑦𝑡,𝑊 = 0.92 × 𝑉 𝑊 are volumes of the cytosol for type I and II fibers, respectively, while 
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𝑉𝑚𝑖𝑡,𝑅 = 0.12 × 𝑉 𝑅 and 𝑉𝑚𝑖𝑡,𝑊 = 0.08 × 𝑉 𝑊 are the volumes of mitochondria for type 

I and II fibers, respectively, where 𝑉 𝑅 = 𝑉 𝑤 = 0.5 × 𝑉 𝑡𝑖𝑠 = 2 kg w.w., 𝑉 𝑅 –the 

type I fiber volume, 𝑉 𝑊–the type II fiber volume, and 𝑉 𝑡𝑖𝑠–the volume of muscle cells 

in the tissue. 𝐶𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖, 𝐶𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖 is the concentration of metabolite i in a certain compart-

ment of the corresponding fiber type (mmol/kg w.w.); 𝑅𝑥,𝑡𝑦𝑝𝑒,𝑖, 𝑥 ∈ {𝑐𝑦𝑡, 𝑚𝑖𝑡} is the net 

metabolic reaction rate in a certain compartment of the corresponding fiber type 

(mmol/min/kg w.w.); 𝑇𝑐𝑦𝑡<−>𝑚𝑖𝑡,𝑡𝑦𝑝𝑒,𝑖
𝑘 , 𝑇𝑏𝑙<−>𝑐𝑦𝑡,𝑡𝑦𝑝𝑒,𝑖

𝑘  are the respective transport fluxes 

between the cytosol and mitochondria compartments and cytosol and blood compart-

ments (mmol/kg w.w.), where superscript k indicates f (facilitated) or p (passive) trans-

ports. 

In order to describe a dynamic mass balance of metabolites (i) in the blood compart-

ment, the next equation is used: 

𝑉𝑏𝑙

𝑑𝐶𝑏𝑙,𝑖

𝑑𝑡
= 𝑄 × (𝐶𝑎𝑟𝑡,𝑖 − 𝐶𝑏𝑙,𝑖) − 𝑇𝑏𝑙<−>𝑐𝑦𝑡,𝑅,𝑖

𝑓 𝑜𝑟 𝑝
× 𝑉𝑅 − 𝑇𝑏𝑙<−>𝑐𝑦𝑡,𝑊,𝑖

𝑓 𝑜𝑟 𝑝
× 𝑉𝑊  

where 𝑉𝑏𝑙 is the total effective volume of the capillary blood and interstitial fluid com-

partments. 𝑉𝑏𝑙 = 0.2 × 𝑉𝑚𝑢𝑠 , 𝑉𝑡𝑖𝑠 = 0.8 × 𝑉𝑚𝑢𝑠 , where 𝑉𝑚𝑢𝑠 = 𝑉𝑡𝑖𝑠+𝑉𝑏𝑙—the skeletal mus-
cle volume (5 kg w.w.); 𝐶𝑎𝑟𝑡,𝑖𝐶𝑏𝑙,𝑖 is the concentration of metabolite i in the respective ar-

terial and capillary blood compartments (mmol/kg w.w.). 

It is worth noting that such modules as capillary blood and interstitial fluid are as-

sumed to be in equilibrium with each other, which allows us to consider species concen-

trations in these compartments as equal and combine them into the blood compartment. 

The comprehensive description including visual representation, corresponding Anti-

mony code, and mathematical equations for reaction rates and the dynamic mass balance 

in each module of the integrated model as well as values and units of the used kinetic 

parameters is presented in the Supplementary material. 

In comparison with the original model of Li and coauthors [32], we introduced a fol-

lowing changes: 

1. Values of activation coefficients associated with ATPase [35–38] and pyruvate dehy-

drogenase reaction fluxes for type I and type II fibers [39–41] as well as the time con-

stant of the ATPase flux rate coefficient in response to exercise were modified (See 

Data availability and Supplementary material) according to recently published data 

and estimations [42,43]. 

2. Despite overall net glycogen breakdowns during muscle contraction, exercise in-

creases the activity of glycogen synthase (GS) [44–47] and ATP consumption related 

with the reaction. Therefore, GS reaction fluxes were modified according to 

[44,46,48]. The rates of muscle glycogen synthesis during exercise assumed to be 

equal in type I and type II fibres were estimated from average post-exercise glycogen 

synthesis data [49]. 

3. To consider the allosteric regulation of AMPK activity (in corresponding modules), 

concentrations of free ADP and AMP in the cytosol were calculated using intracellu-

lar Cr, PCr, ATP, and H+ concentrations as well as the equilibrium constants for cre-

atine phosphokinase and adenylate kinases in each fiber type as described previously 

[50–52]. 

2.2.5. Signaling Level 

The mean concentration of Ca2+ ions in the myoplasm increases in proportion to the 

intensity of exercise. Ca2+ binds to calmodulin, thereby activating CaMKs and phosphatase 

calcineurin [33]. CaMKII is the most abundant isoform in human skeletal muscle, whereas 

CaMKI and CaMKIV are not expressed at detectable levels [53]. An increase in CaMKII 

activity results in CREB1 Ser133 phosphorylation (and likely some other CREB-like fac-

tors), leading to the activation of the transcription factor [54,55]. Calcineurin can 

dephosphorylate (and activate) CRTCs at Ser171 (CREB-regulated transcription coactiva-

tors), playing a key role in regulating the transcriptional activity of CREB1 [56]. Another 
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target of calmodulin is Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2) 

that phosphorylates AMPK Thr172, thereby activating the kinase [57]. In turn, activated 

AMPK can phosphorylate CREB1 Ser133 [58]. Collectively, these findings drove us to in-

clude in our model the Ca2+-dependent regulation of calmodulin, CREB1 (via CaMKII), 

CRTC (via calcineurin), and AMPK (via CaMKK2) (Figure 7). The amount of these pro-

teins in human skeletal muscle was estimated using published proteomics and tran-

scriptomics data [12,59] (see Supplementary data in [60]). 

There are three different heterotrimeric complexes of AMPK in the human skeletal 

muscles: α2β2γ1, α2β2γ3, and α1β2γ1 [61]. Distinct kinetic properties (an intrinsic en-

zyme activity, binding affinities of AMP, ADP, and ATP to the specific isoform, sensitivity 

to de- and phosphorylation of AMPK heterotrimers) [62,63] and their subcellular locali-

zation [64] cause a differential regulation of the AMPK heterotrimers in vivo. The α2β2γ3 

complex is phosphorylated and activated during moderate- to high-intensity aerobic ex-

ercise, while the activity associated with the other two AMPK heterotrimers is almost un-

changed [65]. However, the baseline activity of the α2β2γ3 complex is significantly lower 

than others. The general AMPK activity at baseline and during/after exercise is a sum of 

isoform activities; hence, we considered all isoforms separately (in the corresponding 

module) to quantitatively fit experimental data obtained at baseline and after an exercise 

[65,66]. AMPK is regulated in various ways: an up-stream kinase LKB1 can phosphorylate 

AMPK at Thr172 [67,68]. On the other hand, an exercise-induced decrease in intramuscu-

lar ATP increases its activity, while an increase in AMP activates it [69,70]. Hence, in our 

model, AMPK is regulated via AMP, ATP, and LKB1, as well as CaMKK2 (as mentioned 

above) (Figure 7). 

 

Figure 7. An SBGN diagram of the Ca2+- (purple circle) and AMPK-dependent signaling pathways activated by contractile 

activity (aerobic exercise). A vertex of the bipartite graph  corresponds to a reaction in the signaling cascade, where 

green rectangles designate corresponding proteins, while dark green octagons represent protein complexes. All abbrevia-

tions and aliases of proteins correspond to the main text description. Red arrows (Ca_Calmodulin, CAMKKII, 

AMPK_zero, CREB and CRTC) correspond to output ports, while the green arrow indicates the input port 

(AMPK_2_2_3_active). 
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It was demonstrated that the localizations of AMPK and CaMKII kinases have a pro-

nounced effect on their activities [34,53,71–73], implying the necessity to consider the im-

pact in the model. However, an extended analysis of the published data on this issue 

demonstrates some contradictions in the data and the lack of quantitative data on this 

issue. For instance, the vast majority of CaMKII (~80%) expressed in human skeletal mus-

cle is localized to the soluble cytosolic fraction. However, most of the major estimations 

and measurements on the functional properties and substrates have been obtained for 

membrane-associated CaMKII [53]. Moreover, the mobile fraction of the kinases or their 

substrates has a limited diffusion rate in the tightly packed myocyte structure and is de-

pendent on the molecular weight that can affect the kinetics of their interaction. Such dif-

fusion rate data have not been found. 

2.2.6. Gene Expression Level 

An aerobic exercise induces the expression of several hundreds of genes regulating 

many cell functions: energy metabolism, transport of various substances, angiogenesis, 

mitochondrial biogenesis, etc. Regulation of the transcriptomic response to acute exercise 

includes dozens of transcription regulators [12] and seems to be extremely complex. 

Therefore, to consider the response at a gene expression level, we selected exercise-in-

duced genes based on the next criterion comprising two points: (1) a functional role of this 

gene in the regulation of skeletal muscle metabolism is known; (2) its expression in human 

skeletal muscle markedly changes in response to an exercise and has one of the expression 

patterns—early or delayed response since gene expression in early and late stages of the 

recovery after the termination of the exercise can be regulated in different ways [13]. Ac-

cording to the criterion, the PPARGC1A gene, known as the major regulator of exercise-

induced phenotypic adaptation and substrate utilization [74], was chosen as the gene with 

delayed response, while NR4A2 and NR4A3 genes were chosen as early response genes 

[75]. NR4A nuclear receptors induce DNA demethylation in skeletal muscle [76], regulate 

genes involved in glycogenolysis, fatty acid oxidation, and pyruvate use and apparently 

play a role in the regulation of the skeletal muscle fiber phenotype [77,78]. Significantly, 

all members of the NR4A nuclear receptor subfamily (NR4A1, NR4A2, NR4A3) are the 

three most highly induced genes in response to acute endurance exercise [79,80]. We se-

lected both genes from one family since they have different temporal patterns of mRNA 

expression that are likely associated with different methylation profiles of their promoters 

[81,82]. 

Expression of NR4A2 and NR4A3 mRNA rapidly increases during the first hour after 

an aerobic exercise (early response genes) [12] due to activation of Ca2+\calcineurin-de-

pendent signaling [75]. We included in our model the Ca2+-dependent regulation 

(Ca2+\calcineurin-CaMKII-CREB1) of NR4As genes using data of contractile activity-spe-

cific mRNA responses of these genes [12]. Expression of PPARGC1A mRNA rises 3 to 4 h 

after an exercise (gene with delayed response) [12]. The transcription regulation of 

PPARGC1A via the canonical (proximal) and inducible (distal) promoters is very compli-

cated and includes Ca2+- and AMPK-dependent signaling, as well as CREB1 and its co-

activator CRTC [10,83]. The phosphorylation level of many signaling kinases drops to ba-

sal levels within the first hour after an aerobic exercise. Moreover, in a genome-wide study 

on various human tissues, it was shown that the phosphorylation level of CREB Ser133 

does not always correlate with its transcriptional activity [81]. Therefore, we suggested 

that the expression of genes with delayed response (including PPARGC1A) is regulated 

by increasing the expression of one of the early response genes encoding transcription 

factors leading to a rapid increase in the corresponding protein [60]. A detailed descrip-

tion of our results on the identification of transcription factors as potential candidates for 

the role of X factor is presented below in the section Results and Discussion. Analysis of 

contractile activity-specific transcriptomic data [12] showed that a rapid increase in the 

expression of genes encoding various TFs is observed already in the first hour after an 

exercise. It turned out that the binding motifs of some TFs (CREB-like proteins, as well as 
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proteins of the AP-1 family: FOS and JUN) are located and intersect with each other both 

in the alternative and in the canonical promoters of the PPARGC1A gene [60], i.e., these 

TFs can act as potential regulators of this gene. This is consistent with the fact that these 

TFs can bind to DNA and regulate the expression of target genes as homo- and heterodi-

mers [84,85]. Based on these considerations, we included in the model the regulation of 

gene expression of early (NR4A2, NR4A3) and delayed (PPARGC1A) genes: early response 

genes are regulated via the activation of existing TFs (e.g., CREB1) and their co-activators 

(e.g., CRTC), while delayed response genes are regulated via an increase in the expression 

of early response genes encoding transcription factors (transcription factor X in our model, 

Supplementary Material, Module “Gene expression regulation”). 

3. Results and Discussion 

3.1. Model Validation 

3.1.1. Simulation of Metabolic Changes Induced by Incremental and Interval Exercises 

To validate the metabolic part of the model, we investigated the dynamic behaviour 

of the system in response to diverse acute aerobic exercises and compared them with pub-

lished experimental data. It is worth noting that qualitative validation of the model was 

conducted on the basis of the comparison of the simulation and experimental data for 

three indicators: time period to achieve the maximal level of the species concentrations 

(e.g., PCr, ATP, glycogen) at the corresponding value of the exercise intensity and time to 

reach the steady-state value in recovery as well as the multiplicity of concentration 

changes (fold changes). We used the last indicator due to quantitative differences in meas-

ured concentrations for the same species by different experimental approaches (e.g., bio-

chemical and 31P MRS measurements). Initially, we quantitatively estimated the biochem-

ical responses of the key metabolic variables (ATP, ADP, PCr, lactate concentrations, and 

pH in muscle fibers type I and II) in the incremental ramp exercise to exhaustion, which 

is a commonly used approach to evaluate aerobic performance. Increasing the power dur-

ing the ramp exercise affects various physiological variables such as the number/volume 

of recruited muscle fibre type I and II, blood flow as well as the transport and metabolic 

fluxes in both fibre types (Figure 8 and see data availability). In our simulation, muscle 

fibres type I start to be recruited after the beginning of exercise, while fibre type II if only 

recruited at a power higher than 24% of VO2max (6 min after the ramp exercise onset, Fig-

ure 8A). Recruiting all muscle fibres during the test leads to exhaustion and termination 

of the exercise [35,86,87]; the peak power at exhaustion in our simulation was 250 W, 

which corresponds to the value for an untrained male performing the ramp exercise until 

exhaustion using a cycling ergometer. The model simulations correspond reasonably well 

to experimental measurements [88–90] obtained in studies with the incremental exercise 

(Supplementary Figure S1). It is worth noting that the current version of the model does 

not take into account the effect of muscle fatigue during the incremental ramp exercise 

observed in exercised muscle in vivo (see below). This fact may partially explain the lack 

of exponential changes in muscle lactate concentration and pH during the last part of the 

incremental exercise. 
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Figure 8. Simulation results for the incremental ramp exercise until exhaustion. (A) Exercise power 

and fiber recruitment pattern: total power (orange), power generated by type I (red) and II (blue) 

fibers; (B–D) ATP,ADP, and PCr concentrations in type I (red, dotted) and II (blue, dotted) fibers 

and in the muscle tissue (orange, solid); (E,F) Lactate concentrations and pH changes in type I (red, 

dotted) and II (blue, dotted) fibers and in the muscle tissue (orange, solid). 

For additional validation of the metabolic part of the model, we simulated responses 

to various interval exercises (Figures 9 and 10). Figure 9 shows that the model qualita-

tively reproduces the dynamics of PCr concentration during the interval exercises with 

different patterns (duration of an exercise bout 16 s to 64 s and recovery period 32 s to 128 

s) and with peak power comparable with maximal aerobic power obtained in the incre-

mental ramp test (250 W) [91]. 

 

Figure 9. Simulation results for high-intensity intermittent exercise bouts with different ratios of work:recovery (initial—

16:32 s; intermediate—32:64 s; final—64:128 s) [91]. (A) Exercise power and fiber recruitment pattern: total power (Wpeak = 



Int. J. Mol. Sci. 2021, 22, 10353 21 of 32 
 

 

250) (orange), power generated by type I (red, Wpeak = 125) and II (blue, Wpeak = 125) fibers; (B) PCr concentration in type I 

(red) and type II fibers (blue). 

High-intensity interval exercise has been shown to rapidly decrease the PCr level 

followed by slow recovery of the PCr concentration during the last part of the exercise 

[92]. There are no data on the exercise power in the study; hence, we used the constant 

value (500 W) for each bout (Figure 10A). The power was markedly higher than the peak 

power in the incremental cycling test because the duration of each exercise bout is short; 

the energy supply of such short exercise bouts is related mainly to PCr reactions as well 

as glycolysis. Our model precisely simulated the rapid decline in PCr, but showed no slow 

recovery of the PCr during the last part of the high-intensity interval exercise (Figure 10B). 

We suggested that this discrepancy may be related to the lack of the fatigue-induced de-

cline in exercise power. We tried to roughly simulate the fatigue-induced decline in exer-

cise power by the decline in power generated by muscle fibers type II (Figure 10C). As a 

result, the model much better reproduced the experimental dynamics of PCr than simu-

lations with constant maximal power in each bout (Figure 10D,E, Supplementary Figure 

S2). However, the PCr dynamics during the recovery process indicated that the model still 

requires further modifications and numerical study. We assume that the potential point 

for the update is related to the pH changes during the recovery. 

 

 

Figure 10. Simulation results for high-intensity intermittent exercise (each bout of 30 s exercise sep-

arated by 20 s recovery; [92]). (A,C) Exercise power and fiber recruitment pattern: total power (A: 
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Wpeak = 500; C: Wpeak = 500), W (orange), power generated by type I (red, A–C: Wpeak = 125) and II 

(blue, A: Wpeak = 375; C: Wpeak = 375 and successive power decline) fibers; (B,D) PCr concentration in 

type I (red) and type II fibers (blue); (E) Changes in PCr concentration (% initial): the orange line is 

the simulation result for PCr in the muscle tissue, while black dots with the corresponding line are 

the experimental data from [92] (mean ± SD for some dots). 

3.1.2. Simulation of Signaling and Gene Expression Changes Induced by Low- and Mod-

erate Intensity Continuous Exercises 

At the next step of the model validation, we predicted the responses of biochemical 

variables, signaling molecules (AMPK and Ca2+-dependent proteins), transcription factor 

(CREB1), as well as expression of genes with early and delayed responses (NR4A3, 

NR4A2, PPARGC1A) to low (50% VO2max) and moderate intensity (70% VO2max) continu-

ous aerobic exercises (Figure 11). Moderate intensity exercise recruits more muscle fibers 

type II than low intensity exercise, thereby additionally modulating the exercise-induced 

metabolic fluxes and molecular response. A comparison of our simulations with experi-

mental data [43,90,93–95] showed that the model well reproduces the metabolic changes 

in various fiber types and in the whole muscle induced by exercises with various intensity 

(Supplementary Figure S1). 
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Figure 11. Simulation results for low (50% VO2max, A–F) and moderate intensity (70% VO2max, G–L) continuous exercises 

(30 min). (A,G) Exercise power and fiber recruitment pattern: total power (orange), power generated by type I (red) and 
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II (blue) fibers; (B,H) ATP, ADP, PCr, lactate concentrations, and pH changes in type I (red, dotted) and II (blue, dotted) 

fibers and in the muscle tissue (orange, solid) during low (B–F) and moderate (H–L) intensity exercise. 

According to the literature data on the human vastus lateralis muscle [53,65,96], our 

simulation showed an intensity-dependent increase in the phosphorylation of CAMKII 

and AMPK α2 and γ3 (Figure 12A–C,F–H). Importantly, the phosphorylation (as a marker 

of activity) of AMPK α2 and γ3 consisted of 10% and 30% of the AMPK isoforms contain-

ing α2 and γ3, respectively (Figure 12B–C,G–H), which is in line with the experimental 

data [65]. In contrast to experimental data at a signaling level, we found transcriptomics 

data concerning intensity-dependent gene expression for 1 h exercise only [10,12]. In our 

model, exercise-induced activation of CAMKII and AMPK induced CREB- and CRTC-

related expression of early response genes that is in line with the experimental data [12] 

on exercise-induced expression of early response genes (for example, of NR4A2, NR4A3) 

in the human vastus lateralis muscle (Figure 12K). 

Numerical analysis of the model demonstrated the necessity of considering addi-

tional transcription factors showing activity 1 to 2 h after exercise for the simulation of 

genes with a delayed response to exercise (for example, PPARGC1A; [60]). Introducing in 

the model transcription factor X that is up-regulated immediately after exercise in a CREB- 

and CRTC-dependent manner allowed us to reproduce the expression of the PPARGC1A 

gene (Figure 12K). Our bioinformatics analysis [60] of the transcriptomics data [12], in 

turn, allowed us to suggest that proteins from the AP-1 family (e.g., FOS and JUN) form-

ing heterodimer complexes with CREB-like transcription factors served as these interme-

diate regulators (factor X; see details in Supplementary Figure S3 and Table S1). Moreover, 

an analysis of the transcriptomic [12,80] and ChIP-seq data from the GTRD database [97] 

revealed that the expression of PPARGC1A via the alternative promoter may be regulated 

by EGR1 and MYC. Both EGR1 and MYC markedly induced expression 30 to 60 min after 

an aerobic exercise and had binding motifs in the alternative promoter. Our prediction is 

supported by experimental data showing that EGR1 expression leads to an increase in 

PPARGC1A expression in human aortic smooth muscle cells [98,99], while the EGR1 ex-

pression promptly and dramatically increased after the stretching of skeletal muscle cells, 

leading to an increase in the concentration of the EGR1 protein in 3–4 h [100]. On the one 

hand, MYC positively regulates the expression of all active genes through transcriptional 

amplification [101–103] and chromatin modifications [104,105]. However, an enhance-

ment of its expression negatively impacts PPARGC1A expression [106,107], in particular, 

in cardiomyocytes [108] and other types of cells where MYC acts as a repressor [109]. 
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Figure 12. Simulation results for low and moderate intensity (50% (A–E) and 70% (F–K) VO2max, respectively) continuous 

exercises (30 min for signaling and 60 min for gene expression) with intermediate X factor regulating the expression of the 

PPARGC1A gene. (A,F) Ratio of CAMKII phosphorylated protein in type I (red) and type II (blue) fibers (corresponds to 
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[53]); (B,C,G,H) Percentage of all α2 phosphorylated proteins (dashed) and of the phosphorylated γ3 heterotrimers (solid) 

in type I fibers and type II fibers, respectively (corresponds to [65,96]); (D,I) Expression (in fold changes) of NR4A3 (thun-

derbird solid), NR4A2 (orange solid), PPARGC1A (red solid) in type I fibers and (E,J) in type II fibers, where NR4A3–

sapphire solid, NR4A2–azure solid, PPARGC1A–blue solid; (K) Expression (in fold changes) of NR4A3 (green solid), 

NR4A2 (magenta solid), and PPARGC1A (purple solid) in the muscle tissue during moderate intensity exercise. 

3.2. The Integrated Modular Model Comprises Three Hierarchical Levels (Metabolic, Signaling, 

and Gene Expression) 

We previously developed a multi-compartmental mathematical model describing 

the dynamics of intracellular species concentrations and fluxes in human muscle at rest 

and intracellular metabolic rearrangements in exercising skeletal muscles during aerobic 

exercise on a cycle ergometer [16]. As an initial model for this study, we used a complex 

model of energy metabolism in the human skeletal muscle developed by Li and coauthors 

and considered two types of muscle fibers [32]. We proposed a modular representation of 

the complex model using the BioUML platform [17]. The modular representation provides 

the possibility of rapid expansion and modification of the model compartments to account 

for the complex organization of muscle cells and the limitations of the rate of diffusion of 

metabolites between intracellular compartments. This feature allowed us to integrate 

modules of signaling pathways modulating downstream regulatory processes of early re-

sponse genes and genes with delayed response during exercise and recovery. The valida-

tion of the modular model based on a higher number of published experimental data 

[43,89,90,93,94] (see Supplementary Figure S1) than were used in the original metabolic 

model [32] showed the validity of the modular modeling approach implemented in Bi-

oUML. Furthermore, the integrated modular model provides an absolutely novel in silico 

platform to predict molecular responses of human skeletal muscle cells to diverse modes 

of exercise on three hierarchical levels (metabolic, signaling, and gene expression), exper-

imental precise measurements of which are currently methodologically limited or even 

remain elusive. 

In the current state, the model is suitable for testing the plausibility of some physio-

logical hypotheses. For example, the existence of intermediate X factor regulating the ex-

pression of the PPARGC1A gene as the example of a delayed response gene in human 

skeletal muscle has been numerically investigated using different versions of the model: 

considering direct regulation via the CREB-like factor or taking into account the X factor 

regulatory role as an intermediate activator of PPARGC1A expression. 

3.3. Model Constraints and Further Ways for Development 

Despite the complexity of the developed modular model, the current version does 

not consider the influence of many system factors such as hormonal regulation [56,110], 

the influence of processes in the central nervous system [111,112], feeding mode [113,114], 

and exercise-induced temperature drift in skeletal muscle [115,116], which hampers the 

precise quantitative reproduction of abrupt changes at different physiological levels dur-

ing initial stages of physical exercise. It can be overcome by means of significant modifi-

cations on the muscle fiber recruitment model in order to simulate the transient process 

due to exercise. Some other constraints are described in detail below. 

GS activity is regulated through multiple mechanisms, including feedbacks mediated 

by glycogen, blood glucose concentration, rate of glucose uptake, insulin, epinephrine, 

and the GS phosphorylation state [46,48,117,118]. However, in the current model, GS ac-

tivity depends on the glycogen content only. In our model, post-exercise glycogen synthe-

sis is lower than that estimated in the majority of studies [49,119,120] because many factors 

are omitted, such as feeding and associated rises in blood glucose concentration, rate of 

glucose uptake, sensitivity to and changes in insulin, etc. At the same time, in our model, 

glycogen synthesis is higher than that observed during exercise recovery in a fasted state 

[121]. 
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Additionally, our model does not take into account the effect of muscle fatigue re-

lated to the decline in power generated by type II muscle fibres and recruitment of new 

type II fibres as well as the depletion of muscle glycogen and other substrates. This may 

play an important role in the simulation of moderate and high intensive and/or long-last-

ing exercise. Moreover, the focus of this study is related to the recruitment of vastus lat-

eralis muscle fibers and their activation at metabolic, signaling, and gene expression reg-

ulation levels as a response to the exercise performed according to a cycle-ergometer or 

knee-extensor exercises only. These limitations provide a direction for model improve-

ments and should be considered in further works. 

Furthermore, the modular nature of the presented model allows the introduction of 

multiple positive and negative feedbacks between different considered levels: for in-

stance, the impact of kinases altering the activity of enzymes that catalyze reactions of the 

glycolysis, TCA cycle, and fatty acid oxidation in skeletal muscle [122,123], Ca2+-depend-

ent enhancement of glycolytic enzyme activity and mitochondrial respiration [33], and 

PGC1α-dependent regulation of the expression of genes encoding glycolysis and malate–

aspartate shuttle enzymes [124]. 

Our model provides a proof of concept of how dynamic changes at the metabolic 

level can be linked to gene expression regulation via signaling transduction pathways in 

skeletal muscles during physical exercises. The modular approach used in the study has 

demonstrated a methodological basis for qualitative and quantitative development of the 

complex model including different hierarchical levels of the system organization. The 

analysis completed during this study allows us to refine the roadmap for further model 

improvements, linking this in silico version to in vivo skeletal muscle. The roadmap in-

cludes an improvement of the motor unit recruitment model, considering the impact of 

the muscle fatigue on power decrease, and extension of the model by new modules rep-

resenting system factors, e.g., hormonal regulation and the central nervous system taking 

into account multiple relationships and feedbacks between different modules of the inte-

grated model. 

4. Conclusions 

We developed, for the first time, an integrated model of human skeletal muscle in-

corporating metabolic, signaling, and gene expression modules. The model enables us to 

simulate the most important exercise-related signaling (Ca2+ and AMPK-related signaling) 

and RNA expression of early response genes (as a result of the activation of transcription 

factors existing in the cell), as well as the expression of delayed response genes (as a result 

of the expression of intermediate transcription factors induced immediately after an exer-

cise). The molecular response of skeletal muscle to contractile activity is related to the high 

number of signaling molecules and genes. The modular nature of the model enables us to 

add new variables and modules, thereby increasing both the complexity and quality of 

the model. 
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