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Abstract: Basic helix-loop-helix (bHLH) family transcription factor PHYTOCHROME INTERACT-
ING FACTOR 4 (PIF4) is necessary for plant adaption to light or high ambient temperature. PIF4
directly associates with plenty of its target genes and modulates the global transcriptome to induce
or reduce gene expression levels. However, PIF4 activity is tightly controlled by its interacting
proteins. Until now, twenty-five individual proteins have been reported to physically interact with
PIF4. These PIF4-interacting proteins act together with PIF4 and form a unique nexus for plant
adaption to light or temperature change. In this review, we will discuss the different categories of
PIF4-interacting proteins, including photoreceptors, circadian clock regulators, hormone signaling
components, and transcription factors. These distinct PIF4-interacting proteins either integrate light
and/or temperature cues with endogenous hormone signaling, or control PIF4 abundances and
transcriptional activities. Taken together, PIF4 and PIF4-interacting proteins play major roles for
exogenous and endogenous signal integrations, and therefore establish a robust network for plants
to cope with their surrounding environmental alterations.
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1. Introduction

As sessile organisms, plants have to coordinate their growth and development with
environmental changes, therefore enhancing their fitness and survival rates. Light and
temperature are two pivotal exogenous cues for plants. Light not only provides energy
for photosynthesis, but also regulates almost all of the developmental processes in the
whole plant life cycle, from seed germination to flowering and senescence [1]. Seedlings
grown in complete darkness undergo skotomorphogenesis, which is characterized by long
hypocotyls, closed yellow cotyledons, and forming apical hooks. After light exposure,
plants exhibit shortened hypocotyls and expanded green cotyledons, which is termed
photomorphogenesis [2]. High ambient temperature also affects plant architecture. When
temperature rises from 22 ◦C to 28 ◦C, Arabidopsis thaliana displays hypocotyl and petiole
elongations, leaf upward growth, and early flowering, which are collectively named
thermomorphogenesis [3].

To perceive and respond to exogenous environmental cues, plants elegantly modulate
their endogenous phytohormone levels and/or signaling activities to promote or restrict
cellular behaviors, and finally change the plant growth patterns. During the cross-talk
between environmental cues and hormone signaling, basic helix-loop-helix (bHLH) tran-
scription factors PHYTOCHROME-INTERACTING FACTORs (PIFs) play central roles.
There are eight PIF members (PIF1-8) in the A. thaliana genome [4,5]. Among them, PIF4
plays crucial functions, which not only integrates distinct environmental and endogenous
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signals, but also interacts with a bunch of proteins to regulate a series of downstream
responses.

In this review, we focus on the already-published PIF4-interacting proteins (Table 1),
and discuss their roles in the integration of plant hormone responses with light or tem-
perature signaling. We also showcase the recent advances on the understanding of how
plants elaborately modulate PIF4 activity through PIF4-interacting kinase, E3 ubiquitin
ligase, and/or transcriptional regulators. We propose that the multiple protein–protein
interactions among PIF4 and PIF4-interacting proteins will generate a robust network for
plants to respond to subtle light or temperature changes.

Table 1. Published PIF4-interacting proteins (until July 2021).

Gene Number Annotation Category Reference

AT2G18790 PHYB Red light photoreceptor [6]
AT4G08920 CRY1 Blue light photoreceptor [7]

AT5G53160 PYL8 ABA receptor [8]
AT1G01360 PYL9 ABA receptor [8]

AT1G75080 BZR1 Transcription factor in BR signaling [9]
AT3G44450 BIC1 Regulator of CRY activity [10]

AT1G30330 ARF6 Transcription factor in auxin signaling [11]
AT2G01570 RGA GA signaling repressor [12]

AT2G46340 SPA1 PhyA signaling repressor which has Ser/Thr kinase activity [13]
AT2G47890 BBX11 B-box family transcription factor [14]
AT2G34640 HMR Transcription activator [15]

AT2G25930 ELF3
Transcriptional regulator repressing clock- and

growth-associated transcription factors to regulate the circadian
rhythm and hypocotyl elongation

[16]

AT5G61380 TOC1 Transcription factor [17]
AT5G24470 PRR5 Transcription factor [17]
AT5G02810 PRR7 Transcription factor [17]
AT2G46790 PRR9 Transcription factor [17]
AT3G50330 HEC2 Transcription factor [18]
AT4G37580 HLS1 Transcriptional regulator [19]
AT2G40360 BOP1 E3 ubiquitin ligase [20]
AT2G41370 BOP2 E3 ubiquitin ligase [20]
AT3G28910 MYB30 Transcription factor [21]
AT1G43850 SEU Transcriptional regulator [22]
AT5G60970 TCP5 Transcription factor [23]
AT3G02150 TCP13 Transcription factor [23]
AT5G08070 TCP17 Transcription factor [23]

2. Brief History of PIF4

After the molecular cloning and characterization of red/far-red light photoreceptors
phytochromes (phy), the sought-for phytochrome-interacted proteins are crucial for un-
derstanding phytochrome signaling. Early in 1998, PHYTOCHROME-INTERACTING
FACTOR3 (PIF3) was successfully identified through a yeast two-hybrid screening [24].
PIF3 belongs to the basic helix-loop-helix (bHLH) transcription factor family and has two
conserved motifs (Active phytochrome A-binding motif (APA) and Active Phytochrome B-
Binding (APB) motif), which mediate its interaction with phyA or phyB, respectively [25,26].
Later, in a genetic screen for identifying new components in the phytochrome signaling
pathway, one T-DNA insertion mutant srl2 (short under red light 2) was found to be highly
sensitive to red light and its corresponding gene SRL2 encoded a PIF3-like bHLH tran-
scription factor, which was therefore named PIF4 [6]. PIF4 also directly interacts with the
bioactive Pfr form of phyB through its APB motif. Although PIF4 does not have an APA
motif that is necessary for interaction with phyA, it still interacts with phyA with a lower
affinity than phyB [6].
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As a key transcription factor in light and temperature, PIF4 binds to thousands of target
genes to regulate their expressions. For example, when ambient temperature elevates, PIF4
proteins accumulate and associate with its target gene promoters (such as YUCCA8 (YUC8)
and INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19)) to upregulate auxin biosynthesis
and signaling, which cause cell elongation and plant growth [27–30].

3. PIF4-Interacting Photoreceptors
3.1. Phytochromes

PIF4 was first identified as a negative regulator of the phytochrome signaling pathway.
Phytochromes perceive red and far-red light and promote photomorphogenesis through
complex regulatory mechanisms [31,32]. In the dark, phyB exists in the biologically inactive
Pr form, while PIFs accumulate in the nucleus and regulate gene expressions that inhibit
photomorphogenesis. While under red light, phyB transforms into biologically active Pfr
state and interacts with PIF4. Direct physical interaction between PIF4 and phytochromes
causes light-induced phosphorylation followed by ubiquitylation and subsequent degra-
dation of PIF through the 26S proteasome-mediated protein degradation (Figure 1A) [33].
PIFs degradation is regulated by E3 ubiquitin ligase. Different E3 ligases regulate the degra-
dation of distinct PIFs. For example, Bric-a-Brack/Tramtrack/Broad (BTB)-Cullin3-type
E3 ubiquitin ligase LIGHT RESPONSE BTB (LRB) proteins directly interact with the red
light-activated phyB-PIF3 complex and subsequently ubiquitinate both phyB and PIF3 for
degradation [34]. The degradation of both phyB (light receptor) and PIF3 (its immediate
signaling partner) weakens light signaling, thereby preventing unnecessary light responses.
In addition, the phyB-PIF interaction reciprocally triggers degradation of phyB under red
light, forming a negative feedback loop [34,35].
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Figure 1. PIF4-interacting phytochromes. (A) PhyB regulates PIF4 activity under red/far-red light.
At far-red light, phyB exists in the inactive Pr form. Upon red light irradiation, phyB transforms
into the biologically active Pfr form and interacts with PIF4, thus initiating PIF4 phosphorylation
(P), ubiquitination (Ub), and degradation. (B) Phy B regulates PIF4 activity at high temperature.
High ambient temperature promotes the phyB reversion from Pfr form into Pr form and releases its
repression on PIF4. PIF4 accumulates and binds to the promoters of growth-related genes to promote
their expressions. In addition, phyB directly binds to the promoters of growth-related genes and
promotes hypocotyl elongation.

In addition to being a photoreceptor, phyB also functions as a thermosensor (Figure 1B).
High temperature promotes Pfr-phyB converted into the Pr form and facilitates PIF4-
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induced cell elongation [3]. phyB-1 mutants show constitutively long hypocotyl phenotypes
at a temperature range from 12 ◦C to 27 ◦C. Temperature changes the phyB nuclear body
formation and the (indirect) association of phyB to promoters of key target genes related
to plant growth such as YUC8 or AUXIN RESPONSE FACTOR7 (ARF7). These effects are
caused in part by the modified activity, but the rates of association and dissociation could
also be directly influenced by temperature [36–38].

3.2. Cryptochromes

Cryptochrome 1 (CRY1) and CRY2 are blue light photoreceptors in Arabidopsis [7,39,40].
CRY1 mainly regulates the inhibition of hypocotyl elongation under blue light, while
CRY2 mainly functions in photoperiod flowering [41]. In order to avoid being covered
by neighboring plants, plants have evolved a series of adaptive characteristics, which
are called shade-avoidance response (SAR). Studies in different species have revealed
that reduced or low blue light (LBL) can cause shade-avoidance response [42–44]. CRY1
regulates the LBL-triggered SAR, partially depending on the physical interaction with
PIF4 and PIF5 [45,46]. Under low blue light, the activity of CRYs decreased and their
interaction with PIFs weakened, allowing PIFs to bind to the promoters of genes promoting
plant growth in order to facilitate hypocotyl elongation (Figure 2A) [46]. In addition to
SAR, CRY-PIFs interactions also regulate high temperature-mediated hypocotyl elongation.
CRY1 directly interacts with PIF4 in a blue light-dependent manner and represses the
expressions of auxin biosynthesis-related genes under high ambient temperature, thereby
inhibiting thermomorphogenesis under blue light conditions (Figure 2B) [29].
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Figure 2. PIF4-interacting cryptochromes. (A) CRY1 regulates PIF4 and PIF5 activity under low
blue light. Under low blue light, CRY1 activity decreased and its interaction with PIFs was reduced,
allowing PIFs to activate growth-related gene expressions. (B) CRY1 regulates PIF4 activity at high
temperature. At high ambient temperature, CRY1 directly interacts with PIF4 and abrogates PIF4
DNA-binding activity to repress auxin biosynthesis-related gene expressions. (C) CRY1-PIF4 module
regulates plant branching. CRY1 abrogates PIF4 binding to its own promoter. PIF4 positively
regulates plant branching.

A recent study also demonstrate that the CRY1-PIF4 module participates in the regula-
tion of plant branching architectures. cry1 mutants show increased branching phenotypes.
Furthermore, PIF4 expression levels are elevated in the cry1 mutant. PIF4 binds to the
G-box motif of the PIF4 promoter and forms a self-activated positive feedback loop, while
CRY1 represses this process under blue light [47].
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4. PIF4-Interacting Circadian Clock Components
4.1. ELF3

The circadian clock governs plant daily behaviors and is also crucial for maintaining
plant fitness. Plant growth is regulated by the intrinsic circadian clock and light entrain-
ment [48–51]. In the photoperiodic growth, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1)
and LATE ELONGATED HYPOCOTYL (LHY) peak at dawn and repress TIMING OF CAB
EXPRESSION1 (TOC1) and evening complex (EC) expressions in the morning. TOC1 also
represses the transcription of the EC complex [52]. Meanwhile, CCA1/LHY activate PSEU-
DORESPONSE REGULATOR (PRR) expressions. From dawn to dusk, PRR9/7 suppress
the expression of CCA1/LHY [53]. In the evening, EC negatively regulates PRR9 to release
their inhibition of CCA1/LHY and promotes CCA1/LHY expression peaks in the early
morning [52,54]. In Arabidopsis, ELF3, ELF4, and LUX proteins compose the EC complex,
which is indispensable for the normal expression of PIF4 and PIF5 under diurnal conditions
(Figure 3). EC complex directly binds to PIF4 and PIF5 promoters in vivo. Mutations in
PIF4 and PIF5 are epistatic to the loss of the ELF4-ELF3-LUX complex, suggesting that one
of the most significant functions of this complex is to regulate PIF4 and PIF5 expressions.
Further research shows that the circadian-regulated EC represses PIF4 and PIF5 expression
in the evening. During the day, light-mediated PIF4 and PIF5 protein degradation inhibits
growth, while near dawn, the concomitant rise in PIF4 and PIF5 mRNA and PIF4 and PIF5
protein levels promotes growth (Figure 3) [55].
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complex (EC), which interacts with PIF4/PIF5 and represses their transcriptional activities. The
circadian clock controls EC activity through a series of transcriptional and post-translational feed-
back loops.

In addition, further research showed ELF3 interaction with PIF4 independently of EC
function [16]. PIF4 overexpression causes ELF3 protein destabilization, and this process is
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mediated indirectly by negative feedback regulation of photoactive phyB [16]. In the light,
photoactivated phyB is translocated into the nucleus and promotes ELF3 accumulation,
probably through the disruption of CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-
ELF3 interactions. ELF3 binds the PIF4 bHLH domain in an EC-independent manner and
prevents PIF4 from binding to its DNA recognition sequences (Figure 3) [16].

4.2. PRRs

PRRs are necessary transcription factors in the plant circadian clock. There are five
PRRs in Arabidopsis, including PRR3, PRR5, PRR7, PRR9, and TOC1 (also named PRR1).
PRRs coordinate with EC to specifically regulate photoperiodic hypocotyl growth [56,57].
Studies have shown that all the five PRRs interact with PIF4 [17]. The expressions of
PIF4 target genes display diurnal rhythms of thermosensitivity. When transferred from
20 ◦C to 29 ◦C for 4 h during ZT 0-ZT 4 (zeitgeber time, ZT), the PIF4 mRNA levels
only show a 25% increase, but YUC8 RNA levels display over a three-fold increase. In
contrast, high-temperature treatment during ZT 8-ZT 12 and ZT 12-ZT 16 increases PIF4
RNA levels over five-fold, but does not change YUC8 expression levels obviously [17].
TOC1 inhibits PIF4 activity and suppresses thermoresponsive growth in the evening
by preventing PIF4 from binding to its targets. Loss of function of TOC1 and its close
homologue PRR5 restores thermosensitivity in the evening, whereas TOC1 overexpression
leads to thermoinsensitivity, indicating that TOC1 specifically inhibits thermoresponses in
the evening (Figure 3) [17].

In addition, PRRs regulate photoperiodic hypocotyl growth by directly regulating
PIF4 and PIF5 transcriptions [58]. A distinct daylength can alter the expression pattern
and extend the expression duration of PRRs. PRRs function as transcriptional repressors
of PIF4 and PIF5, which directly bind to the promoters of PIF4 and PIF5 to inhibit their
expressions [58]. Moreover, mutation or truncation of the TOC1 DNA binding motif,
without damaging its interaction with PIFs, still causes long hypocotyl growth under
short days, demonstrating the essential roles of the PRR-PIF transcriptional module in
photoperiodic hypocotyl growth [58].

5. PIF4-Interacting Plant Hormone Signaling Components
5.1. Abscisic Acid (ABA)

ABA mainly regulates plant development and particularly response to abiotic stress-
es [59,60]. The core ABA signaling components include ABA receptors (PYRABACTIN
RESISTANCE 1 (PYR1) and PYR1-Like (PYL) proteins, also named REGULATORY COM-
PONENTS OF THE ABA RECEPTORS (RCARs)), protein phosphatase 2Cs (PP2Cs), and
SNF1-related protein kinase 2s (SnRK2s) [61–63]. In the absence of ABA, PP2Cs repress
SnRK2 activity and downstream ABA responses, while in the presence of ABA, ABA binds
to PYR/PYL/RCARs receptors and forms a coreceptor complex with PP2Cs and represses
their phosphatase activity. Then, the SnRK2s kinase activity is released and phosphorylate
their target proteins [61–63].

Recently, it was reported that PIF4 positively regulates ABA signaling specifically
in the dark. When treated with ABA, pifq (pif1345 quadruple) mutants show higher
germination rates than Col-0, and the ABA-induced primary root growth inhibitions in pifq
are weaker than in Col-0. PIF4 directly associates with the ABI5 promoter and positively
regulates ABA-mediated ABI5 transcription and protein accumulations. ABA promotes
PIF4 gene expression in the dark, and PIF4 interacts with PYL8 and PYL9 in an ABA-
independent manner. PYL8 and PYL9 facilitate PIF4 to bind to the ABI5 promoter, but
inhibit PIF4-regulated activation of ABI5 transcription (Figure 4A) [8].



Int. J. Mol. Sci. 2021, 22, 10304 7 of 19

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 19 
 

 

stores thermosensitivity in the evening, whereas TOC1 overexpression leads to thermoin-
sensitivity, indicating that TOC1 specifically inhibits thermoresponses in the evening (Fig-
ure 3) [17]. 

In addition, PRRs regulate photoperiodic hypocotyl growth by directly regulating 
PIF4 and PIF5 transcriptions [58]. A distinct daylength can alter the expression pattern 
and extend the expression duration of PRRs. PRRs function as transcriptional repressors 
of PIF4 and PIF5, which directly bind to the promoters of PIF4 and PIF5 to inhibit their 
expressions [58]. Moreover, mutation or truncation of the TOC1 DNA binding motif, with-
out damaging its interaction with PIFs, still causes long hypocotyl growth under short 
days, demonstrating the essential roles of the PRR-PIF transcriptional module in photo-
periodic hypocotyl growth [58]. 

5. PIF4-Interacting Plant Hormone Signaling Components 
5.1. Abscisic Acid (ABA) 

ABA mainly regulates plant development and particularly response to abiotic 
stresses [59,60]. The core ABA signaling components include ABA receptors (PYRABAC-
TIN RESISTANCE 1 (PYR1) and PYR1-Like (PYL) proteins, also named REGULATORY 
COMPONENTS OF THE ABA RECEPTORS (RCARs)), protein phosphatase 2Cs (PP2Cs), 
and SNF1-related protein kinase 2s (SnRK2s) [61–63]. In the absence of ABA, PP2Cs re-
press SnRK2 activity and downstream ABA responses, while in the presence of ABA, ABA 
binds to PYR/PYL/RCARs receptors and forms a coreceptor complex with PP2Cs and re-
presses their phosphatase activity. Then, the SnRK2s kinase activity is released and phos-
phorylate their target proteins [61–63]. 

Recently, it was reported that PIF4 positively regulates ABA signaling specifically in 
the dark. When treated with ABA, pifq (pif1345 quadruple) mutants show higher germi-
nation rates than Col-0, and the ABA-induced primary root growth inhibitions in pifq are 
weaker than in Col-0. PIF4 directly associates with the ABI5 promoter and positively reg-
ulates ABA-mediated ABI5 transcription and protein accumulations. ABA promotes PIF4 
gene expression in the dark, and PIF4 interacts with PYL8 and PYL9 in an ABA-independ-
ent manner. PYL8 and PYL9 facilitate PIF4 to bind to the ABI5 promoter, but inhibit PIF4-
regulated activation of ABI5 transcription (Figure 4A) [8]. 

 
Figure 4. PIF4-interacting hormone signaling components (A) PIFs specifically regulate ABA
signaling in the dark. ABA promotes PIF4 activity in the dark, and PIF4 interacts with PYL8 and
PYL9 in an ABA-independent manner. PYL8 and PYL9 promote PIF4 binding to the ABI5 promoter
but inhibit PIF4-mediated ABI5 activation. (B) PIF4 integrates auxin, GA, and BR signals to regulate
plant growth. ARF6 interacts with PIF4 and BZR1 and forms a BAP module to regulate lots of their
common targets and promote hypocotyl elongation. GA signaling repressor DELLA proteins interact
with PIF4 and inhibit PIF4 activity and stability. BZR1 and BIC1 function as transcriptional coactivator
and interact with PIF4 to regulate BR biosynthesis gene expressions and hypocotyl elongation.

5.2. Gibberellins (GAs)

GAs plays significant roles in plant growth and development, which control seed
germination, hypocotyl elongation, and flowering time [64]. DELLA proteins are repres-
sors in GA signaling. There are five DELLA proteins in Arabidopsis: GA-INSENSITIVE
(GAI), REPRESSOR OF GA1-3 (RGA), RGA LIKE1 (RGL1), RGL2, and RGL3 [64,65]. In
the absence of GA, DELLA proteins interact with various transcription factors or transcrip-
tional regulators and inhibit their activities, while in the presence of GA, the GA receptor
GIBBERELLIN INSENSITIVE DWARF1 (GID1) binds to DELLAs and forms the GID1-GA-
DELLA complex, which further triggers the ubiquitination and subsequent degradation of
DELLA proteins through the 26S proteasome to relieve their inhibition of the transcription
factors and cause a serious of GA responses [64].

GA antagonizes light signaling during plant growth [66–68]. GA induces the degra-
dation of DELLA proteins [69], but light promotes the accumulation of DELLA proteins
through reducing GA contents [70]. DELLA interacts with both PIF3 and PIF4 and regu-
lates their activities. In the absence of GA, nuclear-localized DELLA proteins accumulate
and interact with PIF3 to prevent PIF3 binding to its target genes, which therefore ab-
rogates the PIF3-mediated light control of hypocotyl elongation. In the presence of GA,
GID1 proteins enhance their interaction with DELLA proteins in the nucleus and triggers
DELLA protein degradation. With the degradation of DELLA repressors, PIF3 activities are
derepressed [71]. Similarly, PIF4 is destabilized by phyB in the light and DELLAs inhibit
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PIF4 transcriptional activity via binding to its DNA-recognition domain. GAs release such
inhibition through promoting DELLA protein turnover, and therefore cause a subsequent
activation of PIF4 in the nucleus [12].

In addition to the regulation of PIF transcriptional activity, DELLA proteins also
control PIF protein stability. PIF3 protein levels increases obviously in the della pentu-
ple mutants, and induction of DELLAs promotes PIF3 degradation [72]. Taken together,
DELLA proteins inhibit PIF activities through two pathways: (1) promoting PIF degra-
dation through the 26S proteasome and (2) sequestrating PIFs from associating with its
target genes. Application of GA will cause DELLA degradation and further release their
inhibitions on PIFs, which nicely coordinate plant growth under certain environments
(Figure 4B).

5.3. Brassinosteroid (BR)

BR mainly regulates plant hypocotyl elongation, photomorphogenesis, and flowering
time [73–77]. BR-deficient mutants display dwarfism and dark-green color cotyledon
phenotypes when grown in light, and exhibit de-etiolation phenotypes when grown in
darkness [78–81]. In the past decades, the major components and signaling mechanisms
of BR have been revealed. BR binds to its receptor kinase complex BRASSINOSTEROID-
INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED PROTEIN KINASE 1 (BAK1), then the
complex phosphorylates its downstream components. BRI1 phosphorylates BRASSINOS-
TEROID SIGNALING KINASE 1 (BSK1) and CONSTITUTIVE DIFFERENTIAL GROWTH
1 (CDG1), which phosphorylate BRI1-SUPPRESSOR 1 (BSU1). BSU1 dephosphorylates
the glycogen synthase kinase 3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE 2
(BIN2) [82,83]. When BR is absent, BIN2 is active and phosphorylates transcription factors
BZR1 and BRI1-EMS-SUPPRESSOR 1 (BES1). While in the presence of BR, dephosphory-
lated BIN2 is inactive. Therefore, BZR1 and BES1 are dephosphorylated and subsequently
moved into the nucleus to control BR-responsive gene expressions [84,85].

BR integrates different environmental cues such as light or temperature to control
cell elongation. BZR1 directly interacts with PIF4 and controls a subset of overlapped
downstream gene expressions [10]. In addition, the BZR1-PIF4 module promotes plant
growth in response to BR, darkness, or high temperature [9]. High temperature increases
PIF4 protein accumulations and promotes the formation of PIF4-BES1 complex and then
activates the expressions of BR biosynthesis-related genes [86]. The increase in BR level
induces hypocotyl growth through inactivating BIN2 and activation of PIF4 and BES1
transcription factors [86]. When exposed to light, phyB decreases PIF4 stability, and BES1
played a major role to inhibit the expression of BR synthesis-related genes and reduce BR
contents. Thus, BZR1-PIF4 interaction controls a core transcription network, enabling plant
growth co-regulation by the steroid hormone and environmental signals [86]. Recently, it
was shown that BLUE-LIGHT INHIBITOR OF CRYPTOCHROMES 1 (BIC1) is a new BZR1-
interacting protein, which functions as a transcriptional coactivator for BZR1-mediated
regulation of BR signaling. Meanwhile, BIC1 interacts with PIF4 to interdependently acti-
vate the expression of downstream genes including PIF4 itself, and to promote hypocotyl
elongation by binding to the promoters of their common targets (Figure 4B) [10].

5.4. Auxin

Auxin plays key roles in nearly all the physiological processes, including cell elon-
gation, shade avoidance, warm temperature response, and tropic growth responses to
light or gravity [87,88]. Similar to the GA signaling, auxin signaling also belongs to the
derepression mechanisms. Briefly, without auxin, Auxin response factor (ARF) transcrip-
tion factors are repressed by Aux/IAA proteins through their physical interactions. After
auxin treatment, auxin acts as a “molecular glue” to promote the interactions between
Aux/IAA proteins with the F-box protein TIR1, which serves as auxin receptor protein.
Then, Aux/IAA proteins are degraded through the 26S proteasome-mediated protein
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degradation pathway. The removal of Aux/IAA repressions result in the activation of
ARFs and elicits auxin responsive gene expressions and auxin responses [89,90].

ARF6 physically interacts with both PIF4 and BZR1 (aka BZR1-ARF6-PIF4 (BAP)
module) to synergistically regulate hypocotyl elongation and plant growth (Figure 4B). It is
illustrated that 42% of ARF6-targeted genes are also targeted by both BZR1 and PIF4. The
common targets of the BAP module include EXPANSIN, SMALL AUXIN UPREGULATED
(SAURs), and AUX/IAA genes, which are mainly related to cell wall modifications and
auxin responses to control cell growth [11]. The coding product of HLH transcription
factor PACLOBUTRAZOLE RESISTANT 1 (PRE1), which interacts and inhibits the growth
repressor ILI1 BINDING bHLH PROTEIN1 (IBH1), is another common target for the BAP
module. Moreover, ARF6, BZR1, and PIF4 interdependently activate shared target genes to
synergistically modulate cell elongation and hypocotyl growth [11].

In addition, it is reported that pif4-101 mutants display short hypocotyls, and auxin
content in pif4-101 decreased even under 28 ◦C compared with WT, while synthetic auxin
picloram can rescue their short hypocotyl phenotypes, indicating that PIF4 is able to regu-
late auxin biosynthesis [26]. The conversion of tryptophan to indole-3-pyruvic acid is a key
step in auxin biosynthesis. It was catalyzed by TRYPTOPHAN AMINOTRANSFERASE OF
ARABIDOPSIS (TAA1). Then, key rate-limiting flavin monooxygenase enzymes YUCCAs
(YUCCA1-11) catalyze the conversion of IPyA into IAA [91] Moreover, CYP79B2, and
CYP79B3 function in a separate auxin biosynthesis pathway and convert tryptophan to
indole-3-acetaldoxime. Mutants deficient in these auxin biosynthesis-related genes display
impaired hypocotyl elongation response to high temperature. Expression levels of these
genes are significantly induced under high temperature, and these inductions are greatly
dampened in pif4-101 mutants, suggesting a role for PIF4 in the temperature-mediated up-
regulation of these auxin biosynthesis-related genes. In addition, PIF4 directly binds to the
promoters of all these auxin biosynthesis-related genes and promotes their expressions [26].

6. PIF4-Interacting Transcriptional Regulators
6.1. Positive Regulators
6.1.1. HLS1

HOOKLESS 1 (HLS1) was firstly identified in genetic screening for ethylene-insensitive
mutants. Etiolated hls1 mutants do not exhibit exaggerated apical hooks even when
treated with ethylene [92]. HLS1 protein sequence is similar to the N-acetyltransferase
in yeast or animals [93]. However, in vitro enzyme activity assay did not support HLS1
acetyltransferase activity [94]. Interestingly, hls1 mutants exhibit hyposensitivity to high-
temperature-triggered cell elongation and transcriptomic changes, which suggested that
HLS1 functions as a positive regulator in thermomorphogenesis [95].

Moreover, HLS1 interacts with PIF4 to collectively regulate thermomorphogenesis
partially through their co-regulations on differentially alternative splicing events and
differentially expressed genes [19]. PIF4 and HLS1 co-regulate a large number of common
target genes. Moreover, 27.7% of them are direct targets of PIF4 [19]. Thus, HLS1-PIF4
module controls both transcriptional and posttranscriptional regulations during plant
thermomorphogenesis (Figure 5A) [19].

6.1.2. HMR

As a thermosensor, phyB mainly functions at night, but some reports also showed that
phyB plays critical roles in the daytime. In daytime thermosensing, phyB signals are mainly
regulated through PIF4, which requires the transcriptional activator HEMERA (HMR) [15].
HMR is a nuclear and plastidic dual-targeted protein that involved in phyB-mediated
photomorphogenesis and thermomorphogenesis [96–98]. Plastidic HMR is an essential
component of the plastid-encoded RNA polymerase responsible for the expression of plastid-
encoded photosynthesis genes [99], while nuclear HMR is a transcriptional activator that di-
rectly interacts with phyB and all PIFs [98]. Notably, HMR functions conversely on the activ-
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ity of PIF3 and PIF4. HMR promotes PIF3 degradation in photomorphogenesis [96,98,100],
while enhances PIF4 stabilization in thermomorphogenesis.
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In the thermoresponse detection, only pif135 triple mutants show wild-type-like
thermoresponse, while the other triple pif mutant combinations exhibit phenotypes similar
to pifq. Furthermore, the PIF4-dependent thermoresponse (27 ◦C relative to 21 ◦C) was
reduced dramatically to 17% in pif135/hmr-5 and 46% in pif135/hmr-22, indicating that the
PIF4-dependent high-temperature response requires HMR. HMR does not regulate PIF4
transcription, but interacts directly with PIF4 and activates the plant growth-related gene
expressions and promotes PIF4 accumulation [15]. REGULATOR OF CHLOROPLAST
BIOGENESIS (RCB), which interacts with HMR, acts as a novel temperature signaling
component that functions collaboratively with HMR to initiate thermomorphogenesis by
selectively stabilizing PIF4 in the daytime [101]. rcb-101 mutants completely rescue the
short-hypocotyl phenotypes of hmr-22 mutants at 27 ◦C and restore PIF4 stability and
activity in hmr-22. In addition, RCB regulates PIF4 stability and activity and is required for
thermoresponsive PIF4 accumulation. Therefore, HMR and RCB collaboratively enable
thermomorphogenesis via stabilizing PIF4 (Figure 5A) [101].

6.2. Negative Regulators
6.2.1. BBX11

B-box proteins (BBXs), which are characterized by containing conserved B-box do-
mains at their N-terminus, play significant roles in plant photoperiodic flowering, hormone
responses and photomorphogenesis [102–105]. There are 32 BBXs in Arabidopsis, which
are divided into five subfamilies according to their domain structures and features [106].
Increasing studies have revealed that individual BBX protein has different functions. BBX4
and BBX21-BBX23 are positive regulators for light signaling, whereas BBX19, BBX24, BBX25
and BBX28-BBX32 inhibit photomorphogenesis [20,107–124]. Some BBXs form a transcrip-
tional regulatory network with ELOGATED HYPOCOTYL 5 (HY5) through affecting HY5
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activity to regulate photomorphogenic development. For example, BBX11, a positive
regulator of red light signaling, binds to HY5 promoter to activate its transcription, while
both BBX21 and HY5 associate with the promoter region of BBX11 and positively regulate
BBX11 expression. Thus, BBX11–BBX21–HY5 form a positive feedback loop and provide
an important mechanism for seeding development in response to light [125].

BBX11 also interacts with both phyB and PIF4 [14]. BBX11 enhances the interaction be-
tween phyB and PIF4. PIF4 protein accumulation and activities are significantly repressed
by BBX11. When transferred from dark to red light, PIF4 protein decreased rapidly in
Col-0, bbx11 and YFP-BBX11 plants, especially in YFP-BBX11. In contrast to red light, PIF4
protein accumulates more in bbx11 mutants, indicating an inhibition role of BBX11 for PIF4
proteins [14]. Furthermore, BBX11 functions upstream of PIF4 and inhibits PIF4-regulated
gene expression and finally promotes photomorphogenesis under red light (Figure 5B) [14].

6.2.2. HEC2

HECs are bHLH transcription factors, which play essential roles in fertilization and
photomorphogenesis [30,126]. HECs are positive regulators of photomorphogenesis, which
directly interacts with PIFs and inhibits PIFs activity to form a negative feedback with
PIFs. HECs are stabilized in the light and degraded in the dark through 26S proteasome-
mediated protein degradation pathway. It was found that E3 ligase COP1 directly regulates
HECs protein levels through ubiquitylation and degradation in darkness [127].

Recently, another elegant study showed that HEC1 and HEC2 inhibit thermomor-
phogenesis by forming a negative feedback loop with PIF4 [18]. hec1 hec2 double mutants
exhibited much longer hypocotyls at 28 ◦C compared with Col-0 controls, while HEC2ox
plants showed short hypocotyls. Furthermore, high temperature upregulated HEC2 ex-
pression levels and stabilized HEC2 protein levels [18]. Genetic analysis showed that PIFs
are epistatic to HEC2. HECs and PIFs antagonistically control the expression of lots of
genes in response to high ambient temperature. PIFs activate the expression of HECs at
high temperature. HEC2 in turn interacts with PIF4 and forms a negative feedback loop
(Figure 5B) [18].

7. PIF4-Interacting Kinase

SUPPRESSOR OF PHYA-105 (SPA) family was first discovered as inhibitor of phyA
signaling [128–130]. Four SPA genes (SPA1, SPA2, SPA3, and SPA4) have been characterized
in Arabidopsis, which play redundant roles in plant development [128–130]. SPAs contain
a Ser/Thr kinase domain at their N-terminus, a coiled-coil domain in the middle, and four
WD-40 repeats in their C-terminus serving as protein–protein interaction domains [129].
SPAs have been demonstrated to positively control COP1 E3 ubiquitin ligase activity in
plant photomorphogenesis [128,131]. Recently, SPA1 was reported to have Ser/Thr kinase
activity and directly phosphorylated PIF1 [132].

Meanwhile, SPAs also phosphorylates PIF4 and promotes thermomorphogenesis [13].
Under high temperature, phyB protein levels increased in spaQ (spa1 spa2 spa3 spa4) quadru-
ple mutants, indicating that SPAs promotes phyB degradation. However, PIF4 protein
levels decreased in the 35S: PIF4-Myc/spaQ, indicating that SPAs stabilized PIF4 [13]. Fur-
ther study showed that SPA1 phosphorylated PIF4 for its stabilization. Stabilized PIF4
then promotes hypocotyl elongation by binding to the promoters of growth-related genes
(Figure 6) [13].
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8. PIF4-Interacting E3 Ubiquitin Ligase

Under prolonged red light, phyB transforms into biologically active Pfr form and inter-
acts with PIF4 to initiate PIF4 phosphorylation, ubiquitination and degradation. There are
distinct E3 ubiquitin ligase regulating the degradation of different PIFs [33]. BLADE-ON-
PETIOLE 1 (BOP1) and BOP2 are two homologs that contain Bric-a-Brack/Tramtrack/Broad
(BTB) domain, which further complex with the cullin3 (CUL3)-based E3 ubiquitin ligase
complexes (CUL3BOP1/BOP2). BOP1 and BOP2 were previously shown to redundantly
regulate leaf development. In bop1 bop2 double mutants, the leaf lamina extends along the
petioles and leaves become massively elongated [133–135], which are partially reminiscent
of responses to changes in light quality [136].

BOP1 and BOP2 are involved in the controlling of PIF4 protein abundance [20]. Genetic
analysis shows that BOP2 promotes photomorphogenesis and regulates thermomorpho-
genesis by inhibiting PIF4 activity through reducing PIF4 protein levels. In red-light-grown
seedlings, PIF4 ubiquitination was reduced in the bop2 mutants, while PIF4 protein levels
increased at both 22 °C and 28 °C [20]. Moreover, it was found that BOP proteins directly
interact with both PIF4 and CUL3 and the CUL3BOP2 complex ubiquitinates PIF4 in vitro,
indicating that BOP1 and BOP2 proteins target PIF4 for degradation (Figure 7) [20].
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9. Perspectives

As a central regulator of light and temperature signaling, PIF4 interacts with various
proteins including photoreceptors, hormone signaling components, clock components,
transcriptional regulators, kinases, and E3 ubiquitin ligases. These different interactions
form a robust PIF4-centered regulatory network, which can be modulated by either en-
vironmental stimuli or endogenous hormones. Although plenty of progresses have been
made in the past decade, there are still several questions to be solved in the future.

Although PIF4 is expressed in all tissues, the tissue-specific PIF4-interacting proteins
are still not clear. An extremely recent study showed that over-expression of PIF4, specif-
ically at the epidermis, results in long hypocotyl phenotypes [137], suggesting that the
promotion effect on hypocotyl elongation is epidermis-dependent. It is intriguing to dissect
the tissue-specific PIF4-interacting proteins through cutting-edge single-cell technology
coupled with mass spectrometry analysis.

With the discoveries of numerous PIF4-interacting proteins in Arabidopsis, it is not
too late to ask the origin of these PIF4-interacting proteins. It is plausible to test these
protein–protein interactions in their homologs in algae, moss, ferns, gymnosperms, and
ancient angiosperms.

As we mentioned in the previous text, these PIF4 and PIF4-interacting proteins are
described one by one. We do not know when PIF4 interacts with protein A under a specific
condition, whether it still interacts with protein B or not in planta. Therefore, it is urgent to
develop a new tool for simultaneously monitoring multiple protein–protein interactions.
Hopefully future studies in molecular science could help to solve this issue.
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