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Abstract: Bone defects cause significant socio-economic costs worldwide, while the clinical “gold
standard” of bone repair, the autologous bone graft, has limitations including limited graft supply,
secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed
up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-
disciplinary science arisen in the 21st century, creates artificial environments specially constructed
to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors,
BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has
made many valuable achievements, there remain some unsolved challenges. In this review, the latest
research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the
aim of providing references for the clinical application of BTE.

Keywords: stem cell; scaffold; growth factor; osteogenesis; angiogenesis

1. Introduction

Bone diseases and their complications, which account for half of the chronic diseases
in people over 50 years old [1], still face significant clinical challenges. With an incidence of
approximately 15 million fracture cases per year worldwide, the repair and regeneration
of bone has attracted extensive research in bone tissue engineering (BTE) [2]. BTE is a
frontier cross-disciplinary subject in the field of life science in the 21st century composed
of bioengineering, cell transplantation, and material science with the aim of constructing
biological substitutes for the restoration of injured bone [3].

Nowadays, treatments of bone defects mainly include synthetic bone void filler,
allografts, autografts, distraction osteogenesis, insertion of the vascular bundle and cement
casting. Among therapeutic strategies, autografting is considered the “gold standard”;
it involves harvesting the bone from one side of the patient and transplanting it into
the injured area of the same patient for bone repairment [4]. However, the autograft
method exhibits some limitations, such as limited graft supply, chronic pain, high donor
site morbidity, secondary damage and infections [5], leading to unsatisfactory surgical
outcomes. Allografts represent about 34% of bone substitutes, and their bone supplies are
from donors, which are available in various sizes and are free from donor site morbidity
compared with autografts [6]. However, allografts are limited by immunological rejection
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and infectious disease transmission, and its demand already far exceeds available supplies.
In addition to biological grafts, bioinert materials, such as alumina, stainless steel, and
poly-methyl methacrylate, have also been used in bone surgery [6]. Regardless of their
availability and reproducibility, these materials cannot fuse well with the host bone and
may be wrapped in fibrous tissue after implantation. Moreover, the stiffness mismatch
between the weight-bearing implant and adjacent bone also restricts the use of bioinert
grafts [6]. Altogether, the limitations of current clinical treatments appeal to novel methods
for reducing surgical complexity and accelerating bone regeneration.

By combining stem cells, scaffold, and growth factors (GFs), BTE builds optimal
biomimetic environments to promote the regeneration and growth of normal tissues
and cells (Figure 1). In this way, BTE can not only repair the damaged bone, but also
overcome the limitations of current clinical treatments. In BTE, vascularization is one
of the biggest challenges because the distance of nutrient and waste exchange is limited
to 100~300 µm between individual cells and capillaries in bone [7]. Many studies have
focused on the design of grafts around this diffusion limit. A promising strategy combined
a cell-loaded hydrogel and a synthetic engineered vascular graft in a layered manner
into a porous rigid framework of bone conduction [8]. Thus, coordinating the properties
of different components to implant a perfusable vessel into a designed bone structure
is promising. Following up, due to the unique physical properties of bone, a proper
combination of materials with different mechanical properties needs to be considered.
Presently, numerous achievements of BTE in tissue regeneration and engineering have
been made, and some of the products of BTE have been applied in clinical treatments of
endodontics, craniomaxillofacial applications, and periodontal regenerative therapy [9].
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Figure 1. The components of BTE and the process of bone regeneration.

Briefly, stem cells can promote osteogenesis and angiogenesis with the stimulation
of GFs, and biocompatible scaffolds can mimic the ecology of bone extracellular matrix
(Figure 1). In this review, we demonstrate the latest research and clinical applications of
BTE in the aspects of stem cells, scaffolds, and GFs to offer insights into BTE.

2. Stem Cells

Regarded as the cornerstone of BTE, stem cells are capable of self-renewing and
differentiate into at least one type of offspring. In BTE, ideal candidates should meet the
following criteria: (1) abundant sources and convenient sampling; (2) strong ability of
in vitro cell passage with an immobile phenotype; (3) high adaptability to the environment
of the receiving zone; (4) capacity to replace the missing cells and restore the tissue function;
(5) safe clinical application [10]. Commonly applied stems cells in BTE are mesenchymal
stem cells (MSCs), endothelial progenitor cells (EPCs), and induced pluripotent stem
cells (iPSCs).
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2.1. Mesenchymal Stem Cells (MSCs)

MSCs have been considered as the ideal seed cells of BTE for their high availability,
rapid proliferation, and special functions [11]. MSCs are heterogeneous and distributed
in various tissues such as muscle, adipose tissue, and bone marrow (Figure 2A). MSCs
participate in various human physiological processes, including immunomodulatory pro-
cesses, anti-apoptosis processes, and angiogenesis (Figure 2B). MSCs are significant for
bone healing, especially in nonunion fractures caused by trauma, inadequate blood supply,
or other conditions. Currently, MSCs have been used in clinical treatments of oral and max-
illofacial defects, as well as long bone defects [12]. Conventionally, bone marrow-derived
mesenchymal stem cells (BMSCs) are the “gold-standard” cell source for BTE clinical appli-
cation. The pluripotency, anti-inflammation, immunomodulation, and hematogenic and
angiogenic promotion of BMSCs facilitate their clinical involvement in the repair of long
bone, vertebrae, and craniofacial bone [13]. However, the application of BMSCs has been
impeded by the invasive harvesting procedure.
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of gene engineering MSCs. (B) Functions of MSCs in bone regeneration and repair. The favorable
effects include immunomodulatory effects, stimulation of angiogenesis, antiapoptotic effects on
osteoblasts, recruitment of host MSCs/progenitor cells, and stimulation of their differentiation
into osteoblasts.

Adipose-derived stem cells (ASCs), another promising candidate in BTE, have been
considered for their similar osteogenic capacity as BMSCs, simplicity to harvest surgically,
and abundant sources. Compared with BMSCs, adipose tissue is more affluent under local
anaesthesia, and lipotomy is less invasive than bone marrow aspiration, mitigating patient
pain [14]. While 6 × 103 BMSCs per ml of bone marrow can be extracted [15], 2 × 105 ASCs
per gram of adipose tissue can be isolated, in contrast [16]. Moreover, ASCs can maintain
phenotypes for a longer time during culture with strong proliferative ability, so they are
more suitable for allotransplantation than BMSCs [17]. Clinically, a case report of a 7-year-
old child using autologous ASCs to repair post-traumatic skull defects showed a nearly
completely continuous skull formed 3 months after surgery [18]. Currently, ASC-based
therapy for osteogenesis has been reported to achieve positive results for craniofacial bone
defects [19] and long bone defects [20], and the intra-articular injection of ASCs is regarded
as a safe therapeutic alternative for severe knee osteoarthritis patients [21].
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Genetic engineering has attracted interest to further improve the efficacy of MSCs in
BTE. According to Oryan et al. [22], osteogenic genes can be transduced into MSCs through
a gene-activated matrix (GAM), which is composed of a collagen scaffold impregnated
with plasmid DNA-encoding osteogenic genes (Figure 2A). GAM can be inserted into
bone defects, and, subsequently, the host MSCs entering the scaffold will be transfected
by plasmids and produce the osteogenic gene product. Umebayashi et al. suggested that
GAM with atelocollagen containing cDNA of BMP-4 or Runx2 possesses a dose-dependent
osteoinduction potential on cranial bone defects in rats [23]. Additionally, as BMP-2 pro-
motes the differentiation of osteoclasts, it has been applied to modify MSCs in the treatment
of fracture and femoral head necrosis [22,24]. An in vivo study suggested that the implan-
tation of BMSCs infected with BMP-2 could form orthotopic bone in mouse hindlimbs
and repair critical-sized radial defects in a mouse [25]. Moreover, Peng et al. found that
genetically modified MSCs are able to produce both osteogenic and angiogenic GFs [26].
Nevertheless, MSC gene therapy has the limitations of safety and regulatory hurdles.

2.2. Endothelial Progenitor Cells (EPCs)

Angiogenesis is essential for BTE, as bone is highly vascularized, relying on tight spa-
tial and temporal connections between blood vessels and osteocytes to maintain integrity.
Adequate vascularization is a prerequisite for stem cells to reach the site of the defective
tissue and to obtain oxygen and nutrients (Figure 1) [27]. EPCs have the ability to differen-
tiate into endothelial cells and participate in angiogenesis [28]. The effectiveness of EPCs in
inducing angiogenesis has been demonstrated in animal studies of cardiovascular disease,
peripheral vascular disease, and stroke [29]. Moreover, the promotion of EPCs in bone
repair and regeneration through neovascularization has been demonstrated in preclinical
trials. EPCs have been found to secrete osteogenic factors such as BMP-1, 2, 3, 6, 7, 8 and
TGF-βs that significantly enhance MSC-induced osteogenesis [30]. Through autologous
EPC implantation, dense woven bone was formed in a critical-sized tibia defect of sheep
within 12 weeks [31], and a rat femoral defect was healed completely within 10 weeks [32].
Compared with using EPCs alone, the combination of EPCs with other stem cells has been
proven to promote more effective osteogenesis. In research of critical-sized bone defects in
rats, the combination of MSCs and EPCs was shown to have a synergistic effect on bone
healing, and the initial neovascularization by EPCs was vital for subsequent complete
osteogenesis [33]. Based on the multicellular nature of bone healing, the combination of
stem cells not only promotes osteogenesis but also induces angiogenesis, offering a new
avenue for BTE.

2.3. Induced Pluripotent Stem Cells (iPSCs)

As a burgeoning seed cell in BTE, the application of iPSCs is promoted by the emer-
gence of reprogramming measures, disease modelling, and preclinical trials [34]. Through
genetic reprogramming of adult somatic cells, iPSCs have a differentiation potential similar
to that of ESCs, which can be utilized for the repair of bone, cartilage, and osteochon-
dral cartilage. To construct iPSCs, adult somatic cells can be reversely transduced with
four pluripotent factors: OCT4, SOX2, NANOG, and LIN28 (Figure 3) [35]. Fully repro-
grammed iPSCs can differentiate into various types of somatic cells, all of which have the
same genetic information as the patient.

For the application of iPSCs in BTE, iPSCs derived from patients will be re-directed to
differentiate and culture on a scaffold providing structural and functional support, which
would be later transplanted to the defect site (Figure 3). In a mouse model of limb ischemia,
the therapeutic effect of iPSCs was found to be superior to BMSCs [36]. The greater
potential of iPSCs may be due to the survival rate after transplantation and the tissue
regeneration induced by the graft through cell differentiation and paracrine mechanisms.
Moreover, on account of the clinical trials of patients with debilitating eye disease in
Japan [37], iPSCs have been used as promising stem cells clinically. Following up, Tang et al.
showed that iPSC-derived MSCs implanted on a calcium phosphate cement (CPC) scaffold
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could be used for craniofacial, dental, and orthopaedic prosthetic treatments [38]. Results
suggested that iPSC-derived MSCs expressed typical surface antigens of mesenchymal
cells, possessed the ability to differentiate into chondroblasts, osteoblasts and adipocytes,
and had high cell viability after transplantation. Using cranial defects in nude rats, the
iPSC-derived, MSC-based CPC scaffold promoted osteogenesis and accelerated scaffold
resorption in vivo [38]. To further improve the vascularization of tissue-engineered bone,
a tri-culture system seeding iPSC-derived MSCs with human umbilical vein endothelial
cells and pericytes was examined and found to induce the vascularization of the CPC
scaffolds [39]. Within 12 weeks, the favourable formation of bone and blood vessels in
the skull defects of nude mice showed the viability of the co-culture system using more
than one cell type to induce osteogenesis and angiogenesis [39]. The main rationale of the
co-culture system is to promote the inherent capacity to form stable vascular structures
and use the stem cells for osteogenesis [3]. According to Qi et al., exosomes secreted
by human iPSC-derived MSCs (hiPSC-MSC-Exos) incorporated the advantages of MSCs
and iPSCs without immunogenicity [40]. The hiPSC-MSC-Exos/β-TCP scaffold has been
found to promote the repair of critical-sized skull defects by enhancing angiogenesis
and osteogenesis in ovariectomized rat models [40]. In general, iPSCs exhibit promising
osteogenesis and angiogenesis potential in BTE, but there is an urgent need to overcome
the corresponding restrictions of clinical translation, such as genomic instability, immune
rejection, and tumorigenesis.
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3. Scaffolds

The scaffold of BTE provides a three-dimensional (3D) space for cell survival, tissue
growth, and vascularization, and eventually, bone defects can be repaired. A successful BTE
scaffold possesses osteoconductivity, osteogenicity, osseointegration, and osteoinductivity
to simulate the formation of new bone [41]. Its porosity and pore size are vital factors
that regulate the degradation and mechanical properties of the scaffold to optimize cell
differentiation and new tissue formation [42]. Currently, natural derived biomaterials,
synthetic biomaterials, and metal materials are widely used in BTE scaffolds (Table 1).

3.1. Naturally Derived Biomaterials

Naturally derived biomaterials are produced by living organisms, such as collagen,
fibrin, silk fibrin, hyaluronic acid, polyhydroxyalkanoate and chitosan, and are eventually
degraded into carbon dioxide and water (Table 1). Their good biocompatibility, vast
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sources, minimal adverse immunoreaction, and good plasticity lead to their participation
in clinical applications of BTE [40].

Table 1. The materials, examples, advantages, and disadvantages of scaffolds in BTE [4].

Bone Grafting Materials Examples Advantages Disadvantages

Polymers

Natural

Protein: collagen, fibrin, silk
fibrin Biodegradability Low mechanical

strength

Polysaccharides: hyaluronic
acid, chitosan Biocompatibility High rates of

degradation

Bacterially synthesized poly:
polyhydroxyalkanoate Bioactivity High batch to batch

variation

Unlimited source (some of
them)

Synthetic

Poly-glycolic acid (PGA) Biodegradability Low mechanical
strength

Poly-lactic acid (PLA) Biocompatibility
High local

concentration of acidic
degradation products

Poly-(lactide-co-glycolide)
(PLGA) Versatility

Poly-
hydroxyethylmethacrylate

(poly-HEMA)

Poly-ε- caprolactone (PCL)

Poly-etylene-glycol (PEG)

Ceramics

Calcium-phosphate

Coralline or synthetic
hydroxyapatite (HA) Biocompatibility Brittleness

Silicate-substituted HA Biodegradability Low fracture strength

β-Tricalcium phosphate
(β-TCP) Bioactivity Degradation rates

difficult to predict

Dicalcium phosphate
dehydrate (DCPD) Osteoconductivity

Bioglasses and
glass-ceramics

Silicate bioactive glasses
Osteoinductivity (subject to

structural and chemical
properties)

Borate/borosilicate bioactive
glasses

Others Alumina ceramic (Al2O3)

Metals

Titanium and its alloys
Excellent mechanical

properties (high strength and
wear resistance, ductility)

Lack of tissue
adherence

Tantalum Biocompatibility Corrosion

Stainless steel Risk of toxicity due to
release of metal ions

Magnesium and its alloys

Composites

Calcium-phosphate coatings
on metals Combination of the above Combination of the

above

HA/poly-(D,L-lactide)

HA/chitosan-gelatin
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3.1.1. Fibrin

As a natural scaffold formed after tissue injury, fibrin can initiate hemostasis and
provide an initial substrate for cell proliferation, differentiation, adhesion, and migration.
It has excellent biocompatibility, controllable biodegradation, and the ability to transfer
cells and biomolecules, acting as an ideal material for biomimetic bone scaffolds. Fibrin
is made up of fibrinogen and thrombin, which can be extracted from the patients’ blood,
allowing for an autologous scaffold [43]. In addition, the structure of fibrin substrates
can be easily controlled by the concentrations of fibrinogen and thrombin. Fibrin can
be injected as a liquid and then solidified in situ, which can heal bone defects of any
shape. Although fibrin degrades quickly and has poor mechanical properties, various
studies combined fibrin with other materials to overcome these limitations. For instance,
nanomaterials have been used with fibrin to promote the bioactivity of fibrin and further
mimic the nano-structural characteristics of bone [6]. Silk fibroin (SF) has been combined
with a mesoporous bioactive glass (MBG) to fabricate composite MBG/SF scaffolds, which
possessed superior compressive strength, good biocompatibility, and osteoinductivity [44].
Moreover, a composite poly (propylene fumarate)/fibrin scaffold has been reported to
induce vascularized bone regeneration in vivo [45].

3.1.2. Collagen

Collagen is considered an ideal material for BTE scaffolds because of its low antigenic-
ity, cytocompatibility, and tissue regeneration potential. As a natural polymer, collagen
can be extracted from animals, such as pig skin and rat tails. Proteolytic treatment using
pepsin is the most common extraction process, which dissolves collagen crosslinks and
terminal peptides, making collagen non-immunogenic. Natural collagen possesses amino
acid sequences which can be used for cell bio-identification in collagen-based scaffolds [46].
However, due to its high hydrophilicity, collagen has poor mechanical properties and is
prone to swelling after implantation. Hence, the modification, cross-linking, and recombi-
nation of collagen has attracted interest to make the physical, chemical, and mechanical
properties of the scaffold meet the final application [47]. For instance, a calcium phos-
phate/collagen/hydroxyapatite composite scaffold was established, possessing a similar
structure and composition to natural bone with good biocompatibility [48]. As a result,
bone formation in the dorsal muscle of rabbits was detected in the sixth month after im-
plantation. Additionally, collagen/bioceramic composite materials have been reported to
enhance the mechanical properties, osteoconductivity, dimensional stability, and cell at-
tachment [49]. Generally, collagen can improve the biocompatibility of composite scaffolds
and may prove to be a suitable scaffold material in BTE, though it requires more in vivo
assays to verify its feasibility [50].

3.1.3. Chitosan

Chitosan is a biodegradable, biocompatible, and non-antigenic material, and thus,
it has been widely researched in BTE scaffolds. Chitosan is derived from crustacean
shells and can be obtained by deacetylation of chitin through alkaline hydrolysis [51].
Structurally similar to glycosaminoglycan, a significant component of bone and cartilage,
chitosan is involved in the osteoblasts’ attachment, differentiation, and morphogenesis [52].
Although water insolubility, fast degradation, and poor compatibility limit chitosan’s
potential to repair bone defects, its functions can be improved by combining it with other
materials. According to Madhumathi et al., a composite scaffold of chitosan hydrogel and
nano-hydroxyapatite significantly improved the crystallinity of the composite with good
biocompatibility [53]. Moreover, porous nanocrystalline hydroxyapatite/chitosan scaffolds
modified by a cold atmospheric plasma treatment have been proven to increase collagen
mineralization and the infiltration of MSCs into the scaffold [54].
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3.1.4. Polyhydroxyalkanoates (PHA)

PHAs are materials synthesized by bacteria as energy sources in bad growth envi-
ronments [55]. They show properties including biodegradability, biocompatibility, and
good mechanical capacity with the potential to induce vascularization, making them great
candidates for BTE [56]. Additionally, PHAs have various forms in hard tissue and soft
tissue; thus, both flexible artificial blood vessels and firm bone tissues can be produced
by PHAs [55]. Furthermore, PHA is easy to blend with other materials and reaches a
compressive strength which is the same as true human bones (62 MPa) [57]. One of the
disadvantages researchers have noted about PHA is its relatively high production cost,
because the environmental condition requirement for microorganisms to produce PHA
is severe [58]. However, it has been proven that some bacteria, such as Alcaligenes latus
strains IAM 12664 T, can produce PHA without the limitation of any kind of nutrition,
which indicates a brighter future for this material [59]. According to Lim et al., bacterial
cellulose-modified polyhydroxyalkanoate (PHB/BC) scaffolds were produced to study
their biocompatibility and osteogenic potential in critical-size mouse calvaria defects [56].
Results showed that the PHB/BC scaffolds could support the proliferation of 3T3-L1
preadipocytes, promote the differentiation of osteoblasts in vivo, and induce new bone
formed in the 20 weeks after implantation. To summarize, PHB holds the potential to serve
as the scaffold material of BTE.

3.2. Ceramics

The bioceramics used in BTE are inorganic compounds that can be divided into bioin-
ert and bioactive ceramics based on their interactions with host tissues [60,61]. Bioinert
ceramics, including alumina, zirconia, and silicon carbide, provide physical support with-
out interaction with surrounding natural tissue. Conversely, bioactive ceramics, such
as calcium phosphate ceramics (CPCs), hydroxyapatite (HA), and bioglass, can interact
with surrounding tissues to produce a strong bone-induced response and promote the
formation of new bone. CPC, which is similar in composition to the mineralized part of
bone, is biodegradable and has a superior ability to induce osteogenesis, making it an
excellent scaffold material for BTE. Furthermore, the surface roughness, porosity, size and
solubility of CPC can affect protein adsorption, cell adhesion and osteoblast differentia-
tion [62]. However, the low strength and high brittleness of CPC makes it difficult to be
used in stress-bearing sites. Currently, the most prominent CPCs utilized in clinics include
tricalcium phosphate and HA [63,64]. In addition, bioactive glass is widely used in ortho-
pedics and dentistry [65,66]. This is because BGs, which are made of silica glass containing
calcium and phosphate, possess good biocompatibility and can effectively bind biological
tissues. Additionally, they could produce bioactive HA and silicon ions to promote cell
differentiation and osteogenesis. Unfortunately, the absorption of BGs into surrounding
tissues often takes years to complete, limiting their use as BTE stents. In summary, the
bioceramics utilized in BTE possess a high compressive modulus and the capability to
deliver bioactive ions, but their brittleness needs to be solved in future.

3.3. Metallic Materials

Compared with naturally derived biomaterials, metallic materials have excellent
mechanical properties and biocompatibility (Table 1). Tantalum and titanium are the most
widely studied metal materials in BTE scaffolds.

3.3.1. Tantalum

Tantalum is an inert metal with anticorrosive properties, but it has a high modulus
of elasticity far exceeding that of cancellous and cortical bone [67]. Therefore, tantalum
scaffolds are often fabricated into a porous structure to reduce the elastic modulus and
make them similar to autologous bone. At present, porous tantalum stents have been used
in arthroplasty, spinal fusion surgery, foot and ankle surgery, and femoral head necrosis
treatments [2]. As the trabecular structure of bone was stimulated by the porous tanta-
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lum scaffold, the outcomes confirmed its excellent biocompatibility and osteoinductivity
in BTE [68]. In canine femoral shaft bone defect models, the porous tantalum scaffold
integrated tightly with the host bone, and new bone formation was observed on the
scaffold-host bone interface both three and six months after implantation. However, the
complicated manufacturing process and slow osteogenesis contain the clinical application
of tantalum to some degree.

3.3.2. Titanium

Titanium and its alloys have good antiseptic properties and biocompatibility, and are
widely used in BTE scaffolds, such as in total hip replacement and total knee replacement
prostheses, spinal fusion cages, and bone plates [2]. However, due to their high elastic
modulus, the direct use of titanium may cause bone absorption at the interface combining
with the implant, resulting in the loosening of the scaffold. Therefore, titanium scaffolds
are often made into a porous structure. Studies have proven that titanium has osteogenic
properties. Martel-Frachet et al. found that titanium-modified scaffolds could promote the
growth and proliferation of ASCs and induce the osteogenic differentiation of stem cells
in the absence of GFs [69]. Nevertheless, follow-up clinical studies are needed for further
verification due to the lack of long-term efficacy evaluations.

3.4. Synthetic Biomaterials

Synthetic biological materials utilized in BTE scaffolds mainly contain polymer or-
ganic synthetic materials, synthetic inorganic materials, and composite materials (Table 1).
Synthetic biomaterials allow large-scale, precise, and designable geometry production with
controllable mechanical properties and a minimal immune response [48]. The composite
materials are the mainstream trend of BTE, concentrating the advantages of each material.
Therefore, finding meaningful combinations of different materials is urgent.

3.4.1. Polymer Organic Synthetic Materials

The polylactic acid polymer was the most widely used material in BTE [70]. There
exist various artificial polymers, among which polyglycolic acid (PGA), polylactic acid
(PLA), and their copolymer (PLGA) have been approved by the Food and Drug Administra-
tion [71]. PGA has been used in internal bone fixation due to its degradability, mechanical
properties, and cellular viability, and the nonwoven polyglycolide scaffold functions as
tissue regeneration substrates [41]. However, the slow degradation rate, hydrophobicity,
and low impact toughness of PLA limit its clinical application. Thus, particle leaching
and electrospinning techniques have been selected to improve the scaffolds by blending
PLA with other polymers. For instance, Zhang et al. prepared PLA/octadecylamine
functionalized nano-diamond composites for tissue engineering, which improved the
mechanical properties of PLA [72]. The nanocomposite possessed similar properties to
that of human cortical bone, because the addition of 10% wt of composites brought about
more than a 200% increase in Young’s modulus and an 800% increase in hardness [72]. The
modified PLGA scaffold was used to culture mouse smooth muscle cells, which showed
that the cells were in good condition [73]. Moreover, the PLGA/gelatin scaffolds for the
culture of mouse sciatic nerve cells resulted in good adherence and growth [74]. However,
PLA, PGA, and PLGA demonstrate some shortcomings, such as poor hydrophilicity, a
weak ability of cell adsorption, propensity towards aseptic inflammation, and insufficient
mechanical properties.

3.4.2. Synthetic Inorganic Materials

Synthetic inorganic materials utilized in BTE mainly contain calcium phosphate,
bioglasses, and glass ceramics and show good biocompatibility, biodegradability, osteo-
conductivity, and osteoinductivity [4]. HA is considered a promising scaffold material for
BTE, as it is the main component of bone salt and tooth. As an artificial synthetic, HA has
excellent biosecurity, bioactivity, and affinity with low immune rejection [75]; furthermore,



Int. J. Mol. Sci. 2021, 22, 10233 10 of 20

it has potential bone conduction and chemical stability, providing a microenvironment for
seed cells to differentiate into osteoblasts. Additionally, the calcium and phosphorus of
HA can participate in the body’s metabolism. While pure HA scaffolds have poor osteoin-
ductivity, various studies selected other materials with osteoinductivity or osteogenesis
capabilities to combine with HA, forming functional composite scaffolds [76]. For example,
a nano-HA/chitosan/gelatin matrix improved the mechanical properties of the scaffold
and promoted the proliferation and differentiation of induced gingival fibroblasts [77]. So
far, the chemical synthesis methods of HA include precipitation, hydrothermal, electro-
chemical deposition, emulsion, and ultrasonic spray freeze drying [78]. These techniques
may induce inflammatory responses and limit bone regeneration [79].

3.4.3. Composite Materials

Common composite materials utilized in BTE scaffolds include calcium phosphate
coating on metals, HA/poly-(D, L-lactide), HA/chitosan-gelation [4], and those containing
bioceramics. They are promising candidates due to their biodegradability, osteoconductiv-
ity, compressive strength, and osteointegration properties [80]. For calcium silicate-based
bioceramic components, bioactive glass (BG) with SiO2-CaO-P2O5 networks possesses
great biocompatibility in bone and soft tissues [81]. BG releases Na+, Ca2+, and soluble
silica during degradation, promoting cell proliferation and osteogenesis [82]. According to
Zhang et al., the implantation of BG into a collagen scaffold could improve its angiogenic
activity and stiffness in vivo [50]. Moreover, collagen/mesoporous BG nanofiber scaffolds
showed more new bone formation in rats [83], suggesting that incorporating BG into
collagen scaffolds could improve the osteogenic effect in vivo.

In nature, bone adapts to the surrounding mechanical forces. The composite material
adjusting to the mechanical environment has been constructed with variable modulus
influenced by the force, time, and mechanical stirring frequency [84]. The piezoelectric
ZnO contributes to the adaptability of the composite material, which determines the
crosslinking reaction between mercaptan and olefin in the polymer composite gel to change
its mechanical driving modulus. The mechano-thiol-ene polymerization promotes organo-
gel remodelling, and the mechanical activation of piezoelectric ZnO results in selective
polymerization, reinforcing segments within the organo-gel matrix [84]. Thus, according
to the loading position, the material could adjust to its modulus and stress distribution,
similar to bone remodeling behavior, and the proper combination of different materials can
optimize mechanically adaptive biomaterials for the BTE scaffold.

4. Growth Factors

Growth factors (GFs) play an essential role in BTE, promoting cell growth and dif-
ferentiation for the normal fracture healing response. GFs are commonly stored in the
extracellular matrix and released after injury to affect metabolic processes through au-
tocrine, paracrine, and endocrine signaling, binding to the receptors on target cells and then
trigger intracellular signaling [85]. There are various GFs utilized during bone repair, such
as bone morphogenetic proteins (BMPs), insulin-like growth factors (IGFs), transforming
growth factor-β (TGF-β), and fibroblast growth factor (FGF). The efficacy of GFs depends
on the dose and rate of its release in vivo, and the drug delivery systems, including vectors,
cells, and gene therapy. Currently, there are various strategies for GF delivery, such as
physical entrapment, hydrogel encapsulation, surface adsorption, and biomineralization
(Figure 4).

4.1. Transforming Growth Factor β (TGF-β)

TGF-β is released from various cells, including platelets, osteoblasts, BMSCs, chon-
drocytes, endothelial cells, fibroblasts, and macrophages [85]. TGF-β can improve MSC
proliferation, recruit the precursors of osteoblasts, induce osteoblast and chondrocyte differ-
entiation, and produce bone matrix [85]. Additionally, TGF-β signaling can control the bone
quality through perilacunar/canalicular remodelling for maintaining bone homeostasis
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and brittleness [86]. TGF-β has three isoforms in mammals: TGF-β1, TGF-β2, and TGF-
β3 [87]. After treating BMSCs with TGF-β3, the expression of anabolism-related genes was
increased, and the catabolism-related genes were decreased, suggesting that TGF-β3 can
promote chondrogenesis [88]. Interestingly, the overexpression of TGF-β1 has been shown
to induce chondrogenic differentiation and proliferation of human synovium-derived stem
cells [89]. According to Ueda et al., TGF-β1 incorporated with a collagen sponge success-
fully repaired the skull defects of rabbits [90]. Moreover, Kim et al. transfected a retrovirus
encoding TGF-β1 into MSCs, and found that the overexpression of TGF-β1 did not affect
the cell phenotype but promoted MSC proliferation and chondrogenic ability [89].
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4.2. Bone Morphogenetic Protein (BMP)

Approximately 20 kinds of BMPs have been identified, among which BMP-2, BMP-4,
BMP-6, and BMP-7 are widely used in BTE to promote the migration of osteoprogenitors,
synthesis of the matrix, and the proliferation and differentiation of seed cells [8]. BMPs are
secreted from osteoprogenitors, osteoblasts, chondrocytes, and endothelial cells [85]. In
2007, BMP-2 was approved by FDA in autologous bone grafts for sinus lift surgery and
atrophic jaw ridge lifts. BMP-2 has been considered to replace the traditional granular can-
cellous bone grafting of the anterior iliac bone to induce premaxillary cleft repairment [91].
Furthermore, the BMP-2 induced reconstruction of mandibular defects after tumour re-
section or osteonecrosis showed great success [92]. Nevertheless, BMP-2 treatment has
certain complications—cervical fusion associated with wound infection, dysphagia, and
hoarseness [93]—and excess BMP-2 might lead to osteoclast overactivation and eventually
cause osteolysis and graft subsidence [94]. In clinics, to reduce the intense proteolytic
activity of the implant site, high doses of BMP-2 were used in commercial scaffolds for
spinal fusion, potentially leading to cancer [93].

BMPs have been applied with other GFs to promote osteogenesis. For example,
combining TGF-β1 and BMP-7 can effectively improve chondrogenesis and superficial
zone protein expression in synovial explants [95]. According to Shintani et al., TGF-β1
functions to strengthen the BMP-2-induced chondrogenesis in bovine synovial explants,
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preventing the downstream differentiation of hypertrophy at an early stage. Additionally,
the co-administration of BMP and TGF-β can inhibit the differentiation of bone stem cells
into mast cells in the early stage. Moreover, other GFs can also have a synergic effect when
combined with BMPs [96]. When exposed to hypoxia during inflammation, osteoblasts
release vascular endothelial growth factor (VEGF) to activate endothelial cells and promote
vascular permeability [97]. Due to the coupling of angiogenesis and osteogenesis, the
BMP and VEGF combination effectively forms intramembrane bone. Additionally, the
co-delivery of BMP-2 and placental growth factor-2 (PGF-2) by a heparin-based nano
complex can greatly promote osteogenic proliferation and differentiation [98].

4.3. Insulin-like Growth Factor (IGF)

IGF can promote osteoblast proliferation, bone resorption, and bone matrix synthe-
sis. IGF is secreted from osteoblasts, chondrocytes, hepatocytes, endothelial cells, and
platelets [85]. IGF-1 and IGF-2 can stimulate collagen and DNA synthesis in mouse
calvariae organ cultures [99]. Additionally, IGF-1 can induce collagen and bone matrix
synthesis independent of replication [100], which is administered systematically to increase
bone formation but rarely works in young, fast-growing animals [101]. Compared with
TGF-β, the local injection of IGF-1 greatly stimulates effects on fracture healing in a rat
tibia model, and combining both factors results in higher maximum load and torsional
stiffness [102]. Moreover, the synergistic interaction between platelet-derived growth factor
(PDGF) and IGF-1 facilitates cutaneous wound repair better than individual PDGF, IGF-1,
or FGF [103]. According to Nash et al., co-administrating IGF-1 with PDGF-BB, TGF-β, or
both leads to more matrix formation in fetal rat calvariae than applying IGF-1 alone [99].
Additionally, IGF-1 was found to enhance the osteogenic ability of BMP-6 [104].

4.4. Fibroblast Growth Factor (FGF)

FGFs can stimulate chondrocyte maturation, bone resorption, and the proliferation
and differentiation of osteoblasts. The mammalian FGF family contains 22 members pro-
duced from macrophages, monocytes, BMSCs, chondrocytes, osteoblasts, and endothelial
cells. FGF-2, FGF-9, and FGF-18 are promising candidates for BTE. Specifically, FGF-2 can
work in two directions for osteogenesis promotion and inhibition. High-dose FGF-2 inhibits
the differentiation of osteoblasts, while low-dose FGF-2 enhances osteogenesis [104]. By
activating the proliferation of osteoblasts, FGF-2 induces angiogenesis and osteogenesis
in non-critical-sized bone defects. However, systemic injections were reported to cause
adverse extra-skeletal effects [105]. Furthermore, according to Charles et al., a composite
treatment of FGF-2 and BMP-2 demonstrated improved bone healing compared to solo
BMP-2 treatment, which was shown through histological analysis of skull defect healing in
mice [104]. Moreover, FGF-2 and FGF-9 are also involved in angiogenesis by controlling the
expression of VEGF [106] and promoting the hypertrophy of chondrocytes [107]. According
to Wallner et al., FGF-9 treatment with a collagen sponge successfully repaired unicortical
defects in diabetic-model mice [108]. Interestingly, adding FGF-9 into dexamethasone-
containing media has been reported to accelerate the proliferation, but not differentiation,
of BMSCs [109]. FGF-18 has been illustrated to promote osteogenesis but impede chon-
drogenesis [110], and high dose FGF-18 could promote osteoblast differentiation in vivo,
while FGF-18 treatment in vitro will inhibit mineralization [111]. According to Kang et al.,
a sequential delivery system was designed to release FGF-2 first and then FGF-18, which
successfully repaired critical-sized bone defects of rat calvaria [112].

5. BTE Clinical Application and Challenges

As BTE has been extensively studied and has attracted more and more attention, the
function of tissue-engineered bone could be adapted by the 3D arrangement of seed cells
and the components of a proper extracellular matrix; optimized scaffold materials have
been developed for different pore sizes, permeability and durability. Bone progenitor
cells could be isolated and induced from various sites of the human body to possess the
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osteogenesis potential, and the effect and application of growth factors on osteogenesis
and angiogenesis have been elucidated and well-improved in vitro and in vivo. Presently,
combining stem cells, scaffolds, and growth factors, BTE has been utilized clinically in
various bone defect treatments, such as traumatic calvarial defects, mandibular ridge
resorption, anterior mandibular defects, and spinal stenosis (Table 2); significant amounts
of promising therapeutic results have been emerging in this regard.

The biomaterial design, location and size of bone defects, health status and age of
patients are vital factors in the efficiency of BTE [113]. The comprehensive consideration of
these factors can improve the possibility of successful regulatory approval and commer-
cialization of the BTE system [114]. Advancement of BTE, as alternatives to autografts, is
especially called for in osteoporosis, which mainly affects ageing patients. In these patients,
autologous tissues, such as ASCs, can be weakened by natural ageing or diseases, limiting
their ability to regenerate new bone [34,115].

Osteogenesis and the integration of implants and surrounding tissues are significant
issues in the therapy of bone defects [116,117]. Due to inflammation, infected bone de-
fects may be accompanied by traumatic injury or surgical resection of tumors. In this
case, construction of multi-functional BTE systems providing anti-inflammatory, antibac-
terial or antineoplastic drugs can help with the integration of the implants with natural
tissues [118–120]. Versatile implants are desirable for simultaneously inhibiting biomaterial-
associated infection and promoting osteointegration, especially “statically-versatile” ones
with nonessential external stimulations for facilitating applications. A “statically-versatile”
titanium implant, achieved by immobilizing an innovative fusion peptide (FP) contain-
ing an HHC36 antimicrobial sequence and a QK angiogenic sequence, exhibited over
96.8% antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and methicillin-resistant
S. aureus [36]. Simultaneously, the FP-engineered implant could enhance cellular prolifer-
ation, promote vascularization and osteogenesis. Additionally, a magnetic mesoporous
calcium silicate/chitosan (MCSC) porous scaffold was reported to possess anti-tumour
efficacy through the synergistic effect of doxorubicin drug release and thermal ablation.
The BMP-2/Smad/Runx2 signalling pathway in the scaffolds can promote the prolifera-
tion and osteogenic differentiation of BMSCs [37]. Moreover, most reported scaffolds are
limited to peripheral BTE due to the lack of timely vascularization implantation. Addition-
ally, achieving mechanical support and mass regeneration simultaneously to reduce the
dependence on existing internal and external fixation needs to be considered.

Table 2. Clinical application of bone tissue engineering.

Indication Stem Cell Scaffold Growth Factor Outcome Reference

Widespread
traumatic

calvarial defects

Adipose-derived
stem cells Fibrin /

After 3 months, new bone formed with
near complete calvarial continuity

observed by axial and 3D-CT scans.
[18]

Severe
mandibular

ridge resorption

Bone
marrow-derived

mesenchymal
stromal cells

Biphasic
calcium

phosphate

IGF-1, VEGF,
and TGF-β

After 4 to 6 months, bone healed, as the
mean volume of bone increased by

887.23 mm3, with little adverse events
or side effects.

[121]

Large anterior
mandibular

defect

Adipose-derived
stem cells

β-tricalcium
phosphate

Recombinant
human BMP-2

After 10 months, dental implants were
inserted into the grafted site to allow

the harvest of bone cores, and
prosthodontic rehabilitation was

completed based on the visualization of
panoramic radiographs.

[122]

Standardized
critical-size

cranial defects
after

neurosurgery

/ Hyaluronan BMP-2

After 3 to 6 weeks, bone was repaired
with an increase in bone area of

approximately 56 mm2, and no local or
systemic side effects were observed.

[123]
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Table 2. Cont.

Indication Stem Cell Scaffold Growth Factor Outcome Reference

Infrabony defects

Bone
marrow-derived

mesenchymal
stromal cells

β-tricalcium
phosphate rh-PDGF-BB

6 months after surgery, the treatment
resulted in a significant added benefit
in terms of clinical attachment level

gain (3.91 mm compared to 2.08),
probing pocket depth reduction
(4.50 mm compared to 3.50 mm),

greater radiographic defect fill (88.33%
compared to 52.77%), and

improvement in linear bone growth
(3.58 mm compared to 1.83 mm) in

comparison to open flap debridement
alone.

[124]

Spinal stenosis Stromal vascular
fraction (SVF)

β-tricalcium
phosphate /

After 6 months, the SVF/β-TCP
mixture possessed higher fusion grade
(3.6 compared to 2.8) and fusion rate
(54.5% compared to 18.1%) than the
cages filled with β-TCP. Side effects

were observed in 3 out of 10 patients.

[125]

Support bone
formation after

sinus lift
augmentation

/ β-tricalcium
phosphate

Recombinant
human growth

and
differentiation

factor-5
(rhGDF-5)

The amount of new bone was between
28–31.8%. Implants failed in 4 of
47 patients (8.5%) treated with

RHGDF-5/β-TCP, in agreement with
the general implant failure rate of

5–15%.

[126]

Maxillary cysts

Autologous
bone-derived
mesenchymal

stem cells

BioMax
cross-linked

serum scaffold
/

After 7 months, the CT density of the
cyst interior increased significantly, as

the mean ratio of the CT values
after/before treatment was 2.52, and

importantly, the density of the
contralateral control area of spongy
alveolar bone without treatment did

not change, as the average after/before
ratio was 0.99. No inflammation or

other adverse effects were observed.

[127]

Intrabony defects

Autologous
clinical-grade
alveolar bone

marrow
mesenchymal

stem cells

Collagen
enriched with

autologous
fibrin/platelet

lysate

/

After 12 months, the bio-complex led to
significant clinical improvements for all

groups with an average 3.0 mm
attachment gain, 3.7 mm probing

pocket depth reduction, and 0.7 mm
increase in recession, without adverse

healing events.

[128]

6. Conclusions

Based on developmental biology, morphogenesis, bioengineering, and biomechanics,
BTE has developed significantly over the past few decades. The critical factors for successful
BTE include stem cells, scaffolds, and GFs.

With strong capacities to self-renew and differentiate into various kinds of offspring,
competent stem cells, such as MSCs, EPCs, and iPSCs, are widely utilized as the cornerstone
of BTE, boosting osteogenesis as well as angiogenesis. For the BTE scaffold, nature-derived
biomaterials demonstrate excellent biocompatibility, availability, and plasticity with mini-
mal adverse immunoreaction. Metallic materials exhibit outstanding mechanical properties
and biocompatibility. Synthetic biomaterials, including polymer organic and inorganic ma-
terials, possess good versatility. Additionally, composite materials combine the advantages
of each biomaterial, enabling large-scale, precise, and designable geometry production with
controllable mechanical properties and minimal immune response. Among GFs, BMPs
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are the most essential factors in the process of bone repair. TGF-β, IGF, and FGF promote
cell growth and differentiation for osteogenesis by influencing the metabolism of various
cells. GFs are multitrophic, and their efficacy is related to the source, purity, dose, stem
cells, culture conditions, and involvement of other GFs.
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