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Abstract: The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has
caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with
multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)
may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem
cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of
SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor
angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2)
receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with
SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the
successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates
several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α
(TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of
ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of
GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated
the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in
turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the
cytokine storm and aggravate the myocardial damage in COVID-19 patients.

Keywords: SARS-CoV2; cardiomyocytes; TNF-α; induce pluripotent stem cells; SARS-CoV2 pseu-
dovirus; inflammation
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1. Introduction

The coronavirus disease 2019 (COVID-19) caused a global pandemic that has pro-
gressed rapidly and continues to date, manifesting severe effects through contributing
additive factors in specific individuals. Over 93 million people have tested positive for
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and close to 2 million
deaths worldwide [1]. The preliminary findings of COVID-19 infection have shown pul-
monary distress, with symptoms ranging from mild upper respiratory infection to severe
pneumonia and acute respiratory distress syndrome [2]. Similar to SARS-CoV, angiotensin-
converting enzyme 2 (ACE2) is the primary entry receptor for SARS-CoV2 virus [3]. The
inhibition of both ACE2 and the transmembrane protease serine type 2 (TRMPRSS2) re-
ceptor (TRMPSS2) was shown to reduce the viral entry into the cells, hence decreasing
infection risk and severity [4]. The abundance of ACE2 and TRMPSS2 receptors in the
lungs could explain the severity of COVID-19 infection in the pulmonary system. However,
ACE-2 and TRMPSS2 receptors are also found in extrapulmonary organs, including the
heart and liver [5–7]. Accordingly, growing evidence indicates a possible multi-organ
damage in patients with COVID-19, including the heart. The expression of ACE-2 and
TRMPSS2 receptors on the heart tissue implies a link between SARS-CoV-2 virus and the
heart [7]. The detection of the SARS-CoV-2 viral RNA in human autopsy heart tissue
further suggests the impact of the infection on the cardiovascular system [8].

Induced pluripotent stem cells (iPSCs) carry the features of embryonic stem cells,
including pluripotency and stemness maintenance. The generation of iPSCs can be induced
by the forced expression of transcription factors, including Oct4, Sox2, Klf4, and c-Myc,
into somatic cells. The development of induced pluripotent stem cell (iPSC) technology has
provided opportunities in regenerative medicine, personalized therapy, and patient-specific
cell therapy. Due to the differentiation potential and the ability for cell expansion, iPSCs can
be differentiated into a variety of cells, including cardiomyocytes [9,10], hepatocytes [11],
and dopaminergic neurons [12]. The advances in iPSC technology have also allowed these
pluripotent stem cells to differentiate into retinal organoids [13], lung organoids [14], and
liver organoids [15]. We have used iPSC-derived retinal organoids that express ACE2
and TMPRSS2 as the platform for investigating the pathogenesis of SARS-CoV2 infection
in the retina [16]. Recent reports have shown that human iPSC-derived cardiomyocytes
are susceptible to SARS-CoV-2 [17–19], and the viral infection can impair the electrical
and mechanical functions [18]. However, the consequence of SARS-CoV2 infection on
inflammatory cytokines in cardiomyocytes remains unclear.

The development of a strong cytokine storm was reported as the major undesirable
consequence in COVID-19 patients [20]. Among the reported cytokines, tumor necrosis
factor-alpha (TNF-α) has been associated as a key component of the cytokine storm ob-
served in many COVID-19 patients [21]. The immune cells release various cytokines to
respond to the SARS-CoV-2 virus infection, including TNF-α and the members of the
interleukin family [22,23]. The accumulations of the cytokines cause high infiltration of
immune cells into the heart cells, leading to the heart failure [24]. The TNF-α expression
significantly increases during the initial stages of SARS-CoV-2 infection and boosting the ex-
pression throughout the infection [21]. Patients with high TNF-α levels commonly require
ICU admission [25]. The importance of TNF-α in COVID-19 has been highlighted with
a recent clinical trial involving Adalimumab, a TNF-α inhibitor, as a potential treatment
for COVID-19 patients (CHICTR2000030089). However, the role of TNF-α in SARS-CoV-2
pathogenesis in the heart needs to be further investigated.

In this study, we examined the impact of the SARS-CoV-2 infection on human iPSC-
derived functional cardiomyocytes (iCMs). Interestingly, we found that TNF-α expression
is upregulated according to NGS (next-generation sequencing) analysis. To examine
whether the upregulation of TNF-α plays a role in viral infection, we assessed the expres-
sion of ACE2 and the TMPRSS2, the viral entry receptor proteins involved in the spike
protein (S-protein) priming. Under the exposure to TNF-α, the viral entry of SARS-CoV2
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pseudovirus was significantly exacerbated in iPSC-derived cardiomyocytes. Collectively,
our data indicated that TNF-α increases the susceptibility of iCMs to SARS-CoV2.

2. Results
2.1. Generation of iPSC-Derived Cardiomyocytes Using Cardiac Induction Protocol

In order to initiate this study, we generated human iPSCs from peripheral blood
mononuclear cells (PBMCs) via transducing the Yamanaka’s factors, Oct4, Sox2, Klf4, and
c-Myc. The resulting human iPSCs were routinely cultivated (Figure 1A), followed by the
modulation of Wnt signaling pathway to facilitate the differentiation of hiPSCs into iCMs
(Figure 1B) [26], for the stable generation of functional iCMs [9,10].

Twelve days post-induction, iCMs generated from two independent iPSC clones
showed cardiomyocyte morphology and rhythmic contraction similar with iPSCs control
group, exhibiting typical embryonic stem cell characteristics (upper left, Figure 2A). No-
tably, at 16 days post-induction, all iCMs were defined as mature cardiomyocytes and
used in the following experiments. To verify the successful differentiation of iPSCs into
cardiomyocytes, the immunofluorescence staining demonstrated the presence of mature
cardiomyocyte markers in the two generated iCM clones. As shown in Figure 2B, both
iCM clones were positively stained for cardiac markers, including cardiac troponin T
(cTNT), alpha-smooth muscle actin (α-SMA), myosin regulatory light chain 2, atrial iso-
form (MLC-2a), and the marker for dividing cells Ki67, validating the typical features of
cardiomyocytes.

2.2. SARS-CoV2 Viral Infection in iPSC-Derived Cardiomyocytes

As mentioned earlier, SARS-CoV2 possesses high infectivity and pathogenicity. There-
fore, we conducted the SARS-CoV2 viral infection in a maximum containment (Biosafety
level 4; BSL4) laboratory. It has been well demonstrated that SARS-CoV2 infected mam-
malian cells via the receptors ACE2 and TMPRSS2 (Figure 3A). We first used quantitative
real-time polymerase chain reaction (qRT-PCR) to examine the expression of ACE2 and
TMPRSS2 in iCMs. The adenocarcinomic human alveolar basal epithelial cells A549 cells
express extremely low expression of ACE2 and TMPRSS2 while the African green monkey
kidney cell line VERO cells express high levels of ACE2- and TMPRSS2. Therefore, A549
and VERO cells were used as negative- and positive controls in the following experiments,
respectively. Compared with A549 cells and VERO cells, our two generated iCM clones
showed abundant expression of both ACE2- and TMPRSS2 (Figure 3B). We next performed
Western blot and immunofluorescence staining to assess the consequence of viral infection
in iCMs clones. After the exposure of iCMs to SARS-CoV2 for 24 h, the SARS-CoV2 nucleo-
capsid (N) protein, an abundant RNA-binding protein critical for viral genome packaging,
could be robustly detected in the protein extracts of iCMs clones. ACE2 expression was
declined after the viral infection, consistent with previous observations by Sharma et al. [18]
(Figure 3C,D). We also found the same inclusion of SARS-CoV2 N protein in the host iCMs
using immunofluorescence staining (Figure 3E). Collectively, these data suggest iCMs as a
feasible platform for SARS-CoV2 infection.
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Figure 1. Schemes for hiPSC generation and the differentiation of iCMs. (A) Peripheral blood mononuclear cells (PBMCs) 
were reprogrammed into hiPSCs via transducing the Yamanaka’s factors, Oct4, Sox2, Klf4, and c-Myc. The resulting hiP-
SCs were then subjected to cardiac induction. (B) Functional mature iCMs with beating characteristics can be obtained at 
16 days post-induction using the defined protocol of cardiac induction. 

Figure 1. Schemes for hiPSC generation and the differentiation of iCMs. (A) Peripheral blood mononuclear cells (PBMCs)
were reprogrammed into hiPSCs via transducing the Yamanaka’s factors, Oct4, Sox2, Klf4, and c-Myc. The resulting hiPSCs
were then subjected to cardiac induction. (B) Functional mature iCMs with beating characteristics can be obtained at 16 days
post-induction using the defined protocol of cardiac induction.
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Figure 2. Generation of iCMs after the cardiac induction. (A) Distinct cell morphologies during the cardiac induction were 
shown: hiPSCs (upper left); iCMs (post-induction D12; upper right and lower left); iCMs (post-induction D16; lower right). 
Scale bar = 200 μm (Upper left) or 100 μm (Upper right, lower left, and lower right). (B) Immunofluorescence staining 
showed the expression of cTnT, α-SMA, MLC-2a, and Ki-67 in iCMs in two generated iCM clones. Scale bar = 20 μm. 

Figure 2. Generation of iCMs after the cardiac induction. (A) Distinct cell morphologies during the cardiac induction were
shown: hiPSCs (upper left); iCMs (post-induction D12; upper right and lower left); iCMs (post-induction D16; lower right).
Scale bar = 200 µm (Upper left) or 100 µm (Upper right, lower left, and lower right). (B) Immunofluorescence staining
showed the expression of cTnT, α-SMA, MLC-2a, and Ki-67 in iCMs in two generated iCM clones. Scale bar = 20 µm.
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Figure 3. SARS-CoV2 infection in hiPSC-derived cardiomyocytes. (A) A proposed scheme for SARS-CoV2 infection in 
iCMs. (B) qRT-PCR showing the expression of ACE2 and TMPRSS2 in iCMs. A549 cells and VERO cells were used as 
negative- and positive-control cells, respectively. *** p < 0.001 vs. A549. (C) Western blot of N protein and ACE2 in iCMs 
with or without SARS-CoV2 infection. (D) The quantifications of Western blots. (E) Immunofluorescence staining showed 
the expression of N protein and cTnT in iCMs with or without SARS-CoV2 infection. Scale bar = 20 μm. 

2.3. SARS-CoV2 Viral Infection Exacerbated Inflammation-Related Pathways 

Figure 3. SARS-CoV2 infection in hiPSC-derived cardiomyocytes. (A) A proposed scheme for SARS-CoV2 infection in
iCMs. (B) qRT-PCR showing the expression of ACE2 and TMPRSS2 in iCMs. A549 cells and VERO cells were used as
negative- and positive-control cells, respectively. *** p < 0.001 vs. A549. (C) Western blot of N protein and ACE2 in iCMs
with or without SARS-CoV2 infection. (D) The quantifications of Western blots. (E) Immunofluorescence staining showed
the expression of N protein and cTnT in iCMs with or without SARS-CoV2 infection. Scale bar = 20 µm.

2.3. SARS-CoV2 Viral Infection Exacerbated Inflammation-Related Pathways

To evaluate the effect of SARS-CoV2 infection on the gene expression profiles, RNA
was extracted from normal and infected iCMs, followed by genome-wide gene expression
array analysis. A volcano plot revealed that a variety of genes were either upregulated
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or downregulated by the SARS-CoV2 viral infection. A volcano plot demonstrated the
modulation of gene expression upon the SARS-CoV2 infection (Figure 4A). Enrichment
plot shows the upregulation of genes involved in the regulation of the metabolic pathways,
response to cytokine, cytokine-mediated signaling pathway, cellular response to cytokine
stimulus, response to external stimulus, response to the virus, immune response, regulation
of response to stress, interferon-gamma-mediated signaling pathway, regulation of the
viral process, and the regulation of type I interferon production. Furthermore, signaling
pathways involved in NADH and ATP metabolism as well as muscle contraction were
downregulated. (Figure 4B). Consistent with the Enrichment plot data, REVIGO seman-
tic similarity-based scatterplots further validated the modulation of the aforementioned
pathways (Figure 4C,D). Considering the role of cytokines in COVID-19 pathogenesis, we
subsequently focused on the upregulated genes associated with inflammatory responses to
SARS-CoV2 infection. The expression profiles of these enriched genes were shown in the
hierarchical heatmap, including CXCL10, tumor necrosis factor-α (TNF-α), interleukin 1α,
IFI27, etc. (Figure 4E). Since genome-wide mRNA profiling only provides the information
of the global mRNA levels, Chen et al. developed the network tool Expression2Kinases
(X2K) to infer the upstream regulatory networks of differentially expressed genes [27]. X2K
combines transcription factor enrichment analysis, protein–protein interaction network
expansion with kinase enrichment analysis. Integrated functions of X2K allows the gener-
ation of inferred networks, including transcription factors, proteins, and kinases, which
are predicted to regulate the profiles of differentially expressed genes. In this study, we
focused on the upregulated inflammation-related genes and subjected them to the X2K
analysis. The inferred networks of SARS-CoV2-upregulated inflammation-related genes
were predicted to be made up of kinases (HIPK2, ERK2, ERK1, CSNK2A1, MAPK1, and
MAPK14) and transcription factors (NFIC, IRF1, CEBPD, IRF8, CREB1, RUNX1, RELA,
STAT3, GATA2, and GATA1) Figure 4F.

2.4. TNF-α Treatment Exacerbated SARS-CoV2 Pseudoviral Infection in iCMs

Based upon our bioinformatics analysis, several inflammation-related genes were
upregulated following the viral infection, including the CXCL10, TNF-α, and interleukin
1α, etc. Since the elevated expression of TNF-α has been reported during the initial stages
of SARS-CoV-2 infection and may serve as a key component of the cytokine storm in
COVID-19 [21,25], we hypothesized that TNF-α may contribute to the aggravation of the
COVID-19 manifestations. Based upon our data of TNF-α as an upregulating factor in
SARS-CoV2-infected iCMs, we next examined the consequence of SARS-CoV2 infection
on TNF-α secretion. We exposed iCMs to various MOI of SARS-CoV2 or SARS-CoV2
(MOI = 1) for a different time and then examined the secretion of TNF-α in the culture of
iCMs (Figure 5A). Our data revealed that SARS-CoV2 promoted TNF-α secretion in both
MOI- and time-dependent manners. Next, we examined the effect of TNF-α treatment on
the expression of ACE2 and TMPRSS2 in iCMs using qRT-PCR (Figure 5B). The exposure of
iCMs to TNF-α (10 ng/mL) for different time periods resulted in a time-dependent increase
in ACE2 and TMPRSS2 expression (Figure 5B). In addition, the Western blot data further
confirmed the upregulation of ACE2 and TMPRSS2 proteins after the TNF-α treatment
(Figure 5C,D). SARS-CoV2 pseudovirus is an artificial virus that carries the S protein of
SARS-CoV2 and mimics the SARS-CoV2 entry process in target cells [28]. To examine
whether the increase of ACE2 and TMPRSS2 protein contribute to the exacerbation of
inflammatory response, we then investigated the viral entry of SARS-CoV2 pseudovirus
in iCMs. The SARS-CoV2 pseudovirus was generated by transfecting the 293T cells with
a lentiviral backbone plasmid encoding a fluorescent reporter protein and the spike (S)
protein. Therefore, the entry of SARS-CoV-2 pseudovirus into the host cells could be
tracked by detecting GFP signal. One day after the seeding, iCMs were treated with
TNF-α (10 ng/mL) for the additional period of 24 h. After the TNF-α treatment, these
iCMs were subjected to SARS-CoV2 pseudoviral infection for 24 h, followed by harvesting
of iCMs and immunofluorescence staining (Figure 5E, upper). As demonstrated by the
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incorporation of the fluorescent signal, TNF-α treatment significantly increased the entry of
SARS-CoV-2 pseudovirus into the host cells, as compared with iCMs treated with vehicle
alone (Figure 5E,F). Collectively, these data indicated that TNF-α upregulates SARS-CoV2
entry receptors and exacerbates SARS-CoV2 pseudoviral infection in iCMs.
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Figure 4. RNA-seq analysis of hiPSC-derived iCMs after SARS-CoV-2 infection. (A) Volcano plot showing the genes that 
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Figure 4. RNA-seq analysis of hiPSC-derived iCMs after SARS-CoV-2 infection. (A) Volcano plot showing the genes that
were either upregulated or downregulated by SARS-CoV2 infection. (B) Enrichment plot showing several pathways that
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were either enriched or suppressed by SARS-CoV2 infection. Those enriched pathways were related to the regulation
of the metabolic pathways, response to cytokine, cytokine-mediated signaling pathway, cellular response to cytokine
stimulus, response to external stimulus, immune system process, response to the virus, regulation of response to stress,
interferon-gamma-mediated signaling pathway, regulation of the viral process, regulation of type I interferon production.
Those pathways downregulated by viral infection included NADH metabolic process, ATP metabolic process, and muscle
contraction. (C) Validating those pathways that were either downregulated or (D) upregulated by SARS-CoV2 using
REVIGO semantic similarity-based scatterplots. (E) A hierarchical heatmap showed the differentially regulated gene
expression patterns of inflammation-related genes in iCMs with or without SARS-CoV2 infection. Red and blue colors
represented differentially expressed genes that were upregulated and downregulated, respectively. Many inflammation-
related genes were elevated by the viral infection, including the CXCL10, TNF-α, and interleukin 1α. (F) eXpression2Kinases
network identified the network that consists of various kinases and transcription factors upstream to these identified
inflammation-related genes.

To further validate the effect of TNF-α on the viral entry of SARS-CoV2 pseudovirus
in iCMs, the TNF-α neutralizing antibodies (TNF-α nAb; 50 ng/mL) were simultaneously
added into the culture to neutralize the effect of TNF-α (Figure 6A). We used confocal
microscopy to evaluate SARS-CoV2 pseudovirus entry in iCMs by examining the fluores-
cence reporter protein of SARS-CoV2 pseudovirus. iCMs were harvested and subjected to
immunofluorescence staining followed by co-incubating with TNF-α, TNF-α nAb, and the
SARS-CoV2 (Figure 6A). The results showed that TNF-α increased the entry of SARS-CoV2
pseudovirus, and this phenomenon can be significantly reversed by the co-treatment of
TNF-α nAb (Figure 6B,C). Furthermore, preincubation of iCMs with ACE2 neutralizing an-
tibody at different doses (2 µg/mL or 20 µg/mL) for a period of 16 h showed a dose-related
effect to abrogate the increased SARS-CoV2 pseudoviral entry promoted by TNF-alpha
(10 ng/mL). Along with the observations of TNF-alpha-mediated stimulatory effect on
ACE2 expression, our data indicated that the TNF-alpha-mediated stimulatory effect on
SARS-CoV2 pseudoviral entry is predominantly through the SARS-CoV2 receptor ACE2.
Collectively, based upon the findings of TNF-α upregulation in SARS-CoV2-infected iCMs
(Figure 4), TNF-α may serve as a critical factor to potentiate SARS-CoV2 infection and
hence worsen the manifestations of COVID-19.
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Figure 5. Effect of TNF-α on the entry of SARS-CoV2 pseudovirus in iCMs. (A) Effect of SARS-CoV2 infection on TNF-α
secretion. iCMs were exposed to various MOI (left) of SARS-CoV2 or SARS-CoV2 (MOI = 1) for a different time, and then
the secretion of TNF-α in the iCM culture was examined. (B) Quantitative real-time PCR showed that TNF-α (10 ng/mL)
increased the gene expression of ACE2 and TMPRSS2 in iCMs in a time-related manner. * p < 0.05, ** p < 0.01, *** p < 0.001
vs. 0 h. (C) Western blot showed that TNF-α (10 ng/mL) increased the protein amount of ACE2 and TMPRSS2 in iCMs.
(D) Quantifications of Western blots. (E) Upper panel: 24 h after seeding, iCMs were treated with TNF-α (10 ng/mL) for
24 h. After the TNF-α treatment, iCMs were infected with SARS-CoV2 pseudovirus. One day after the viral infection, iCMs
were harvested and subjected to immunofluorescence staining. Lower panel: Immunofluorescence staining showed that the
entry of SARS-CoV2 pseudovirus into iCMs was increased upon TNF-α treatment as compared with the treatment of the
vehicle alone (VA). Scale bar = 50 µm. (F) Quantification of the immunofluorescence results. *** p < 0.001 vs. vehicle alone.
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showed underlying cardiovascular comorbidities and/or cardiac risk factors [29]. A high 
incidence of acute cardiac injury was reported in hospitalized COVID-19 patients in Wu-
han, China [30]. Besides, the studies that enrolled a large number of hospitalized COVID-
19 patients in Italy [31] and New York City [32] also showed the prevalence of myocardial 
injury and high in-hospital mortality [31,32]. These clinical findings implied a correlation 
between SARS-CoV2 infection and its cardiac involvement. Furthermore, SARS-CoV2 
transcriptional activity was detected in the heart sample from COVID-19 patients, sug-
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Figure 6. Neutralization of TNF-α suppressed the enhanced SARS-CoV2 pseudoviral entry in iCMs. (A) 24 hours after iCM
seeding, the cells were co-treated with TNF-α (10 ng/mL) and TNF-α neutralizing antibody (TNF-α nAb; 50 ng/mL) for
another 24 h. Then, iCMs were infected with SARS-CoV2 pseudovirus. At the end of the experiment course, iCMs were
harvested and subjected to immunofluorescence staining. (B) Immunofluorescence staining showed the entry of SARS-CoV2
pseudovirus into iCMs was increased upon TNF-α treatment, as compared with vehicle alone (VA). The co-incubation of
TNF-α and TNF-α nAb abrogated the enhanced viral entry. Scale bar = 50 µm. (C) Quantification of the immunofluorescence
results. (D) Immunofluorescence staining showed the TNF-α-stimulated entry of SARS-CoV2 pseudovirus can be abrogated
by ACE2 neutralization (Left). TNF-α-treated iCMs were preincubated with ACE2 neutralizing antibody at different doses
(2 µg/mL or 20 µg/mL) for 16 h, and these cells were then subjected to SARS-CoV2 pseudoviral infection and further
analysis. The quantifications of the immunofluorescence results. ** p < 0.01, *** p < 0.001 vs. vehicle alone.

3. Discussion

COVID-19 is mainly known to cause viral pneumonia and a variety of extrapulmonary
complications. Among the reported COVID-19 cases, a large number of patients showed
underlying cardiovascular comorbidities and/or cardiac risk factors [29]. A high inci-
dence of acute cardiac injury was reported in hospitalized COVID-19 patients in Wuhan,
China [30]. Besides, the studies that enrolled a large number of hospitalized COVID-19
patients in Italy [31] and New York City [32] also showed the prevalence of myocardial
injury and high in-hospital mortality [31,32]. These clinical findings implied a correlation
between SARS-CoV2 infection and its cardiac involvement. Furthermore, SARS-CoV2 tran-
scriptional activity was detected in the heart sample from COVID-19 patients, suggesting
the heart as a target organ for the SARS-CoV2 infection [33]. According to previous studies
on COVID-19 pathogenesis, The COVID-19-induced manifestations and complications
have been mainly attributed to the hyperactivation of COVID-19-induced host immune
response that often elicits inflammatory responses. This phenomenon may cause the de-
terioration of the cardiac functions in patients with cardiac comorbidities [34]. Mounting
evidence also showed the association of COVID-19 infection with severe inflammatory re-
sponse causing myocarditis, cardiac arrhythmias, and vascular inflammation [29]. Another
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meta-analysis study of COVID-19 patients further showed that pre-existing cardiovascular
diseases were significantly correlated with poor prognosis and the use of invasive mechani-
cal ventilation [35]. Interestingly, several cases supported the crucial role of cytokine storm
and increased TNF-α levels in the SARS-CoV2 pathogenesis [21–24]. Patients with car-
diomyopathy, heart failure, or other atherosclerotic lesions also exhibited elevated TNF-α
levels [36–38]. Nevertheless, the impact of increased TNF-α levels on SARS-CoV2 infection
per se remains unclear. In the present study, our data demonstrated that SARS-CoV2
infection promoted TNF-α expression and secretion. This elevated TNF-α levels, and
subsequently increased the expression of ACE2 and TMPRSS2, leading to the enhanced
SARS-CoV2 entry in cardiomyocytes.

Human iPSC-derived cardiomyocytes mimicking the electromechanical features of
the heart have been utilized as the in vitro platform for investigating the SARS-CoV2
pathogenesis in the heart [18,39–41]. Consistent with the previous findings, [18] we found
that iCMs express ACE2 and TMPRSS2, demonstrating the susceptibility of these cells to
the SARS-CoV2 infection. Based on our RNA-seq data, TNF-α expression was elevated
after SARS-CoV2 infection, consistent with the observations by other groups [41,42]. In
addition to the genome-wide mRNA profiling, we also used X2K software to predict the
kinases and transcription factors upstream of the identified inflammation-associated genes.
The inferred networks of SARS-CoV2-upregulated inflammation-associated genes in iCMs
were predicted to be constituted of kinases (HIPK2, ERK2, ERK1, CSNK2A1, MAPK1, and
MAPK14) and transcription factors (NFIC, IRF1, CEBPD, IRF8, CREB1, RUNX1, RELA,
STAT3, GATA2, and GATA1). A more in-depth analysis is required to investigate the key
signaling pathways induced by SARS-CoV2 infection, and we further hypothesize that
these findings may have implication for the development of adjuvant therapies for COVID-
19 patients with cardiac inflammation. Furthermore, SARS-CoV2 infection downregulated
the genes involved in NADH metabolic process, ATP metabolic process, and muscle
contraction. NADH and ATP metabolic pathways are crucial for maintaining the regular
cardiac metabolism and work output. Our data support the findings by Marchiano et al.,
demonstrating the cardiomyocyte metabolic disturbances in SARS-CoV2 infection followed
by impaired electromechanical physiology [19]. In a nutshell, our findings showed that
TNF-α enhanced viral entry of SARS-CoV-2, which in turn upregulated TNF- α, leading
to a vicious circle of viral infection and the accumulation of the cytokines (Figure 7). The
induction of TNF-α by SARS-CoV-2 infection and the subsequent upregulation of ACE2
and TMPRSS2 in cardiomyocytes may partially explain the high incidence of cardiac
involvement in hospitalized COVID-19 patients [29,31,32]. Additionally, the recruitment
of inflammatory cells by TNF-α and the increased susceptibility to further SARS-CoV-2
infection could exacerbate the viral infection and impair the metabolism, electrophysiology,
and mechanical properties of the heart. Our data also suggested that the neutralization
of TNF-α may be a therapeutic option to interrupt the vicious circle that links the viral
infection to cytokine storm in COVID-19 patients with cardiac impairment.
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Figure 7. The enhanced SARS-CoV2 entry and TNF-α secretion may induce a cytokine storm in COVID19 patients. SARS-
CoV2 binds to its ACE2 receptors in the heart (1) and increases the expression and secretion of TNF-α (2). The increased
level of TNF-α upregulates ACE2 and TMPRSS2 expressions, resulting in the enhanced entry of SARS-CoV2 (3). The
enhanced viral entry and TNF-α secretion may contribute to the cytokine storm (4).

4. Materials and Methods
4.1. Maintenance and Differentiation of Human-Induced Pluripotent Stem Cells

NTA is a subclone of the human-induced pluripotent stem cell (iPSC) line that was
reprogrammed from peripheral blood, were collected following Ethical and Institutional
Review Board of Taipei Veterans General Hospital (ID No. 2020-05-004C), using the
integration-free Sendai virus carrying the four Yamanaka factors, as described in [43],
and their genome integrity and pluripotency were evaluated. NTA was maintained in
StemFlexTM Medium (Thermo Scientific, Waltham, MA, USA). NTA was sustained on
precoated Geltrex® Matrix (Thermo Scientific, Waltham, MA, USA) culture plates. hiPSCs
were passaged every 5 to 6 days at 70% confluency using the nonenzymatic cell dissociation
reagent Versene (Thermo Scientific, Waltham, MA, USA)-based protocol.

4.2. Differentiation of Cardiovascular Cells from hiPSCs

The protocol of differentiation of hiPSCs to cardiovascular cells was adapted with
modifications from Halloin et al. [44]. The 70% confluent hiPSCs were detached and
dissociated into small clumps with the Versene dissociation protocol and seeded in dishes.
After kick-starting cardiac differentiation by 24 h of CHIR supplementation, WNT pathway
attenuation was typically initiated after a 48- to 72-h gap. Pathway stimulator IWP2 was
added on day 1 after 24 h CHIR treatment.

4.3. SARS-CoV-2 Virus Infection

SARS-CoV-2 coronavirus (isolate CDC04) was obtained from Taiwan Centers for
Disease Control. All work involving live SARS-CoV-2 was performed in the Taiwan
CDC-approved BSL-3 and BSL-4 facilities of the Institute of Preventive Medicine (IPM) in
accordance with institutional biosafety requirements. Stocks of the virus were grown in
Vero-E6 cells in DMEM supplemented with 2% fetal bovine serum (FBS; Thermo Fisher
Scientific, Waltham, MA, USA). Virus-containing media was stored at −80 ◦C in single-use
aliquots. Viral titers were performed using plaque assay as described [45]. The iPSC-
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derived cardiomyocyte cells were performed in the respective cell growth media and
infected with SARS-CoV-2 for 24 h at 37 ◦C. At 24 hpi, cells were washed with PBS. For
RNA analysis, the cells were lysed in TRIzol reagent. For immunofluorescence staining, the
cells were fixed in 4% formaldehyde. For Western blot analysis, the cells were re-suspended
in RIPA lysis buffer. The inactivated specimens were then removed from the BSL-3 for
further analysis.

4.4. Infection with SARS-CoV-2 Pseudovirus

The SARS-CoV-2 pseudovirus construct was a gift from Dr. Yu-Chi Chou (National
RNAi Core from Academia Sinica, Taiwan). The SARS-CoV-2 pseudovirus used a lentiviral
as the backbone, a plasmid-encoding GFP sequence, a plasmid-expressing spike (S) protein
as the surface envelope glycoprotein, and the minimal plasmid set of the lentiviral protein
necessary to assemble viral particles (Tat, Gal-Pol, and Rev). The CMV promoter was used
to drive the expression of GFP. To assay the pseudovirus infection, monolayer cultures were
seeded in 6-well pseudovirus plates and were added at the indicated MOIs and centrifuged
in the plates at 1200× g for 30 min. At 12 h post-infection, cells were washed three times
with PBS; then, the infection medium was replaced with fresh medium and kept for 3 to
6 days. At 3 dpi and 6 dpi, cells were harvested for the qPCR assay or immunofluorescence
analysis. For RNA analysis, cells were lysed in TRIzol.

4.5. Western Blot

Cells were lysed in RIPA buffer supplemented with protease inhibitor added (Merck
Millipore, Billerica, MA, USA). The protein lysates were quantified and subjected to SDS-
PAGE, followed by electroblotting onto PVDF membrane. The membranes were incubated
with N protein of SARS-CoV-2 (GeneTex, GTX635689; GeneTex, CA, USA) or glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) antibodies (Cell Signaling Technology,
Danvers, MA, USA), or ACE-2 antibodies (GenTex, GTX01160; GeneTex, CA, USA), or
TMPRSS2 antibodies (abcam, ab109131; abcam, Cambridge, UK). The reactive bands were
visualized by chemiluminescence detection reagents (Merck Millipore, Billerica, MA, USA).

4.6. Immunofluorescence

The monolayer cultures were washed twice in PBS and fixed in 4% paraformaldehyde
for 15 min and then were permeabilized in 0.1% Triton X-100. After that, they were blocked
with 5% fetal bovine serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA) for 1 h
at room temperature. Cells were incubated at room temperature for 2 h with primary
antibodies (1:100 for anti-recoverin: Sigma-Aldrich AB5585, 1:100 for anti-CRX: Abcam
AB140603, 1:100 for anti-HuC/HuD; abcam, Cambridge, UK: Thermo Scientific A-21271,
1:100 for anti-rhodopsin; Thermo Scientific, MA, USA: Abcam AB221664, 1:100 for anti-
ACE-2; abcam, Cambridge, UK: GeneTex GTX01160, and 1:100 for anti-TMPRSS2; GeneTex,
CA, USA: Abcam AB109131; abcam, Cambridge, UK). After 3 washes in PBS, the cells were
then incubated with goat anti-rabbit secondary antibody (Alexa Fluor 594-conjugated) or
donkey anti-mouse secondary antibody (Alexa Fluor 488-conjugated). The nuclei were
counterstained with DAPI (blue) (Abcam). Cells were mounted on slides with a mounting
solution.

4.7. Quantitative PCR and RT-PCR

The total RNA of samples was isolated by TRIzol reagent (Thermo Scientific, Waltham,
MA, USA), according to the manufacturer’s protocols. RNA was quantified with NanoDrop
2000 (Thermo Scientific, Waltham, MA, USA); 2 micrograms of RNA were prepared for
the reverse transcription reaction using SuperScript reverse transcription III (Invitrogen)
to synthesize complementary DNA strands (cDNA). cDNA was used in the following
quantitative PCR (qPCR) and RT-PCR. According to the product’s instructions, the qPCR
reaction was performed using the Fast SYBR Green Master Mix (catalog number needed).
qPCR analysis was performed using 3 independent biological and technical replicates. The
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primers were designed using the National Center for Biotechnology Information (NCBI)
primer design tool, tested using a standard curve (information of primer sequences needed).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the housekeeping
gene, and the relative gene expression of the target genes was determined using the 2−∆∆Ct
(delta-delta Ct) method.

4.8. RNA-Seq

Total RNA was extracted using TRIzol reagent (Invitrogen, CA, USA) and resuspen-
sion in RNase-free water. The RNA-seq libraries of polyadenylated RNA were prepared
using the TruSeq RNA Library Prep Kit V2 (Illumina, CA, USA), according to the manu-
facturer’s instructions. RNA-seq libraries for total ribosomal RNA-depleted RNA were
prepared using the TruSeq Stranded Total RNA Library Prep Gold (Illumina, CA, USA),
according to the manufacturer’s instructions. cDNA libraries were sequenced using an
Illumina NextSeq 500 platform.

4.9. Bioinformatic Analyses

To cope with the wide range of transcripts, raw reads were aligned to the human
genome using the RNA-Seq Alignment Application on Basespace (Illumina, CA, USA),
following differential expression analysis using DESeq. Differentially expressed genes
(DEGs) were characterized for each sample (p-adjusted value <0.05) and were used as a
query to search for enriched biological processes and cellular components (gene ontology)
and the network analysis of protein interactions using STRING. Heatmaps of the gene
expression levels were constructed using the heatmap.2 function from the plot R package.
Sparse principal component analysis (sPCA) was performed on the Log2 (fold change)
values using SPC from the PMA package in R. Volcano plots were constructed using a
custom script in R.

4.10. Statistical Analysis

Gene expression levels were calculated with relative expression levels (∆Ct). Data
were expressed as mean ± standard deviation. Statistically significant differences between
2 groups or among multiple groups were detected by a paired Student’s two-tailed t-test
and one-way ANOVA with Tukey’s post hoc, respectively, using SPSS Edition 25 software
(Chicago, IL, USA). The criterion for significance was set as p < 0.05, and highly significant
differences in the statistics were accepted if p < 0.001. All data presented are representative
of at least 3 independents.
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