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Abstract: We investigated the effects of adipose-derived extract (AE) on cultured chondrocytes and
in vivo cartilage destruction. AE was prepared from human adipose tissues using a nonenzymatic
approach. Cultured human chondrocytes were stimulated with interleukin-1 beta (IL-1β) with or
without different concentrations of AE. The effects of co-treatment with AE on intracellular signaling
pathways and their downstream gene and protein expressions were examined using real-time PCR,
Western blotting, and immunofluorescence staining. Rat AE prepared from inguinal adipose tissues
was intra-articularly delivered to the knee joints of rats with experimental osteoarthritis (OA), and
the effect of AE on cartilage destruction was evaluated histologically. In vitro, co-treatment with
IL-1β combined with AE reduced activation of the p38 and ERK mitogen-activated protein kinase
(MAPK) pathway and nuclear translocation of the p65 subunit of nuclear factor-kappa B (NF-κB),
and subsequently downregulated the expressions of matrix metalloproteinase (MMP)-1, MMP-3,
MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, IL-6, and
IL-8, whereas it markedly upregulated the expression of IL-1 receptor type 2 (IL-1R2) in chondrocytes.
Intra-articular injection of homologous AE significantly ameliorated cartilage destruction six weeks
postoperatively in the rat OA model. These results suggested that AE may exert a chondroprotective
effect, at least in part, through modulation of the IL-1β-induced inflammatory signaling pathway by
upregulation of IL-1R2 expression.

Keywords: adipose tissue; cartilage; chondrocyte; osteoarthritis; IL-1 receptor type 2

1. Introduction

Osteoarthritis (OA) is the most common form of chronic arthritis, is characterized by
the destruction of articular cartilage, osteophyte formation, subchondral bone sclerosis,
and secondary synovitis, and is expected to increase with the aging of the population. The
Osteoarthritis Research Society International (OARSI) has recently endorsed a new defini-
tion, as follows: “Osteoarthritis manifests first as a molecular derangement (abnormal joint
tissue metabolism) followed by anatomic, and/or physiologic derangements (characterized
by cartilage degradation, bone remodeling, osteophyte formation, joint inflammation, and
loss of normal joint function), that can culminate in illness” [1]. Currently, there are few
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effective and well-tolerated symptomatic treatments for OA other than joint replacement
surgery, and there are no approved drugs that can alter the natural course of OA and
provide long-term benefits [2]. Thus, the development of disease-modifying osteoarthritis
drugs (DMOADs) are crucial challenges for better management of OA [3].

It is widely accepted that interleukin-1 beta (IL-1β) is one of the key cytokines that play
critical roles in the progression of OA [4]. Binding of IL-1β to IL-1R1, a membrane receptor,
activates transcription factors, such as MAPK and NF-κB, resulting in a rapid induction
of inflammatory mediators. Activation of these factors results in the expression of many
genes, including MMP and ADAMTS metalloproteinases and inflammatory cytokines such
as IL-6 or IL-8 [5]. Recently, an exploratory analysis of data from people who participated
in the randomized controlled trial CANTOS using canakinumab, an antibody that inhibits
IL-1β, showed that canakinumab reduced the percentage of patients who required total
hip or knee replacement (THR/TKR) compared to the placebo group, supporting IL-1β
inhibition in the treatment of OA [6].

Various attempts at tissue engineering were made in the field of regenerative medicine,
and one of the highly anticipated therapies is transplantation medicine using adipose tis-
sue [7,8]. Since it was reported that human adipose tissue contains adipose-derived stromal
cells (ASCs) [9], adipose tissue, which can be harvested safely and in large quantities
through liposuction, was considered to be an essential source of stem cells. The chon-
droprotective effects of ASCs were demonstrated in vitro [8,10–13] and in vivo [14,15], and
clinical trials have shown the safety and efficacy of intra-articular injections of ASCs [7].
Mesenchymal stem cells (MSCs), including ASCs, are thought to act not only through direct
differentiation into chondrocytes [16,17] but also through a paracrine mechanism that in-
volves the secretion of bioactive factors that promote tissue regeneration processes [18–21].
However, the application of such a function to the treatment of OA necessitates overcom-
ing some potential problems, including time and cost, residual toxicity of the collagenase,
contamination, canceration, and restrictions associated with cell expansion and extensive
manipulation [22,23]. In the last few years, micro-fragmented adipose tissue (MFAT) [24,25]
and concentrated adipose tissue (CAT) [26–28] obtained without cell manipulation or enzy-
matic treatment have received much attention. CAT is often used for wound healing and
tissue reconstruction purposes, mainly in the field of plastic surgery [29–31], whereas there
are few reports of its use for OA treatment [32].

In the current study, we generated adipose-derived extract (AE) from CAT and ex-
amined the effects of AE on human chondrocytes stimulated with IL-1β in vitro. We also
examined the effect of homologous AE on cartilage tissue in vivo by intra-articular injection
into the knee joint of experimental OA in a rat model.

2. Results
2.1. The Effects of AE on IL-1β-Induced mRNA Expression

Real-time PCR (RT-PCR) was used to quantify the effects of AE on the mRNA expres-
sion of normal human articular chondrocytes (NHCs) stimulated with IL-1β. In NHCs, the
expressions of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, A Disintegrin and Metal-
loproteinase with Thrombospondin motifs (ADAMTS)-4, IL-6, and IL-8 were all significantly
increased in the IL-1β alone group compared to the un-stimulated control cells. These gene
expressions significantly decreased in cells treated with AE in a dose-dependent manner,
although ADAMTS-5 did not significantly change after AE treatment (Figure 1). There
was no significant difference in mRNA expression between the group of chondrocytes
stimulated with AE alone (without IL-1β) and the group of unstimulated control cells. In
contrast, the expression of COL2A1 and IL-4 were significantly downregulated by IL-1β
stimulation, and upregulated when cells were treated with IL-1β/AE (10 µg/mL). IL-1β
stimulation increased the expression of both type 1 and type 2 IL-1 receptor (IL-1R), and
the treatment with AE resulted in a 3.8-fold and 35-fold increase in IL-1R1 and IL-1R2
expression, respectively (Figure 1).
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Figure 1. The effect of AE on IL-1β-stimulated mRNA expressions of anabolic and catabolic factors by NHCs. The results
are expressed as the relative expression levels (mean ± SD) to control samples without IL-1β stimulation or AE treatment.
Statistical significance: Tukey’s multiple comparisons test * p < 0.05, ** p < 0.01, *** p < 0.001 compared to IL-1 β stimulation
without AE.

2.2. The Effects of AE on the IL-1β-Induced Protein Expressions Involved in the Mitogen-Activated
Protein Kinases (MAPK) Pathway

We investigated the effect of AE on the MAPK pathway by Western blotting. IL-1β
significantly increased the protein expression of p-p38, p-JNK, and p-ERK, and AE re-
duced the IL-1β-induced protein expression of p-p38 at 0.1 µg/mL or higher and p-
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ERK at 1 µg/mL and 10 µg/mL, but increased p-JNK induced by IL-1β at 0.1 µg/mL or
higher (Figure 2).
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Figure 2. Western blot analysis of proteins involved in the MAPK pathway in NHCs. (a) Representative Western blots
of total and phosphorylated MAPK family proteins. (b) Quantification of phosphorylated p38, JNK, and ERK. Statistical
significance: Tukey’s multiple comparisons test * p < 0.05, ** p < 0.01 compared to IL-1 β stimulation without AE.

2.3. The Effect of AE on IL-1β-Induced Activation of the Transcription Factor Nuclear
Factor-kappaB

We investigated the effect of AE on the activation of the transcription factor, nuclear
factor-kappaB (NF-κB) using immunofluorescence. IL-1β stimulation activated NF-κB
and induced nuclear translocation of the p-p65 subunit, while co-administration of IL-1β
and AE suppressed the p-p65 nuclear translocation (Figure 3a). Figure 3b shows the
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results of immunofluorescence staining, expressed as the percentage of p-p65 positive
cell nuclei counted in five fields. The percentage of p-p65-positive cells was significantly
increased by IL-1β stimulation, and AE treatment significantly reduced the number of
p-p65 positive cells.
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Figure 3. Immunocytochemistry of p-p65 expression. (a) Representative image showing the localization of p-p65 in
chondrocytes. Original magnification ×200. (b) Percentages of p-p65 positive cells relative to total cell numbers. Data are
shown as the mean ± SD of five fields. Statistical significance: Tukey’s multiple comparisons test * p < 0.05, *** p < 0.001
relative to the result of IL-1 βstimulation without AE.

2.4. Effect of AE on the Histological Evaluation of Cartilage of Experimental OA Model Rats

On safranin O-stained sections of the femoral condyle, OA control sections showed
mild–severe progression of cartilage destruction with loss of the superficial layer, surface
fibrillation, and decreased numbers of chondrocytes 2 weeks after surgery. By 6 weeks
after surgery, the cartilage lesions extended to the middle layer, with decreased staining
of safranin O and decreased numbers of chondrocytes. Sections from the group treated
with AE at 2 weeks showed mild cartilage deterioration with decreased safranin O staining
at the superficial layer, increased numbers of chondrocytes and cluster formation. At
6 weeks after surgery, sections from the group treated with AE (5 µg/joint/week) showed
loss of the superficial layer, surface fibrillation, and decreased numbers of chondrocytes,
whereas the sections from the group treated with AE (50 µg/joint/week) showed less
severe cartilage degeneration with loss of safranin O staining at the superficial layer and
decreased numbers of chondrocytes (Figure 4). There was no significant difference in
the modified Mankin scores between the OA control group (4.33 ± 1.32) and the AE
treatment groups (AE 5 µg: 3.20 ± 2.30, AE 50 µg: 2.78 ± 1.09) at 2 weeks after surgery.
The modified Mankin scores had increased significantly at 6 weeks (6.89 ± 2.02) compared
with those at 2 weeks in the OA-control group. The histologic scores of the AE treatment
group sections were significantly lower than those of OA control group sections at 6 weeks
(AE 5 µg: 4.20 ± 2.30, AE 50 µg: 3.10 ± 1.97), suggesting that intra-articular injection of
AE inhibited the progression of cartilage destruction 6 weeks after surgery (Table 1). A
dose-dependent effect of AE on the inhibition of cartilage destruction was not found in
the present sets of concentrations of AE. Sections of femoral condyles from the left knee
after sham operation showed minimal changes in the modified Mankin scores through the
subsequent time course following arthrotomy.
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Figure 4. Histologic appearances of medial femoral condyle cartilage (safranin O staining) of the right knee joint of
experimental OA model rats. Samples were obtained at 2 and 6 weeks after surgery from the joints without treat-
ment (OA control, n = 18), and with lower dose AE treatment (5 µg/joint/week, n = 20) and higher dose AE treatment
(50 µg/joint/week, n = 19). Progression of cartilage destruction was milder in the treatment group than in the control group
at 6 weeks after surgery.

Table 1. Evaluation of cartilage degeneration by modified Mankin scores.

Operation Group

2 Weeks 6 Weeks

Modified
Mankin Score No. of Joints Modified

Mankin Score No. of Joints

Sham 0.12 ± 0.33 28 0.08 ± 0.28 29
OA control 4.33 ± 1.32 9 6.89 ± 2.02 * 9

AE
(5 µg/joint/week) 3.20 ± 2.30 10 4.20 ± 2.30 † 10

AE
(50 µg/joint/week) 2.78 ± 1.09 9 3.10 ± 1.97 † 10

Statistical significance: Tukey’s multiple comparisons test. * p < 0.001 vs. same group at 2 weeks, † p < 0.001 vs.
control OA group at 6 weeks.

3. Discussion

Currently, the potential mechanisms of stem cells in articular cartilage regeneration
can be divided into two main categories: the “differentiation theory” and “paracrine
theory” [33]. Differentiation theory is an approach to articular cartilage regeneration
therapy in which stem cells directly differentiate into chondrocytes. However, it is still
difficult to regenerate hyaline cartilage in a stable manner. Studies based on differentiation
theory often report that tissues after cell transplantation in vivo show signs of type I
collagen-rich fibrous cartilage and, in vitro, there are scattered reports that when MSCs
are induced to differentiate against chondrocytes, they differentiate into hypertrophic
chondrocytes expressing type X collagen [34]. On the other hand, for the paracrine theory,
MSCs were shown to secrete a number of bioactive factors, extracellular vesicles, and
extracellular matrix for local miniaturization and remodeling. De Windt et al. [35] reported
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that histological analysis of cartilage tissue regenerated by allogeneic MSCs transplantation
showed hyaluronic acid-like regeneration with high concentrations of proteoglycans and
type II collagen. Interestingly, when the histological samples were examined, no allogeneic
MSC DNA was detected in the repaired tissue, indicating that the transplanted MSCs
provided the initial stimulus but were subsequently removed from the tissue. These
studies suggest that the function of stem cells in tissue repair and regeneration might be
largely mediated by the paracrine mechanism.

We investigated the effect of intra-articular injection of AE prepared from allogeneic
adipose tissues on the progression of cartilage degeneration in a rat experimental OA
model. The results of the current study confirmed that the cartilage damage progressed
over time in the control group, while it was suppressed at 6 weeks after surgery in the AE
group, suggesting that homologous AE exerts a chondroprotective effect in a rat OA model.
As AE is considered as non-cellular and, therefore, non-immunogenic, and was shown to
be cryopreservable [31], the chondroprotective effect of allogeneic AE on the rat OA model
shown in this study may enable the use of AE with homologous or heterologous proteins
in the future.

In the current study, we demonstrated that AE suppressed IL-1β-induced activation of
intracellular signaling pathways and downstream effects and upregulated the expression
of COL2A1. Our results are consistent with the report of Tofino-Vian et al. [12], who found
that ASC-conditioned medium (ASC-CM) counteracted the effects of IL-1β in chondrocytes,
and with a report by Platas et al. [13], who found that the inhibitory effect of ASC-CM on
the expression of catabolic and inflammatory molecules in chondrocytes stimulated by
IL-1β was associated with reduced activation of NF-κB.

For ADAMTS-5, Koshy et al. [36] reported ADAMTS-4 mRNA is induced by catabolic
cytokines, but ADAMTS-5 mRNA is not regulated by cytokines and is constitutively ex-
pressed in human chondrocytes. Naito et al. [37] reported that ADAMTS-5 is constitutively
expressed in human normal and OA cartilage, and ADAMTS-4 protein is overexpressed
in OA cartilage with a direct correlation to the degree of cartilage destruction. These
data suggest that ADAMTS-4, but not ADAMTS-5, may play a major role in aggrecan
degradation in human OA [37,38]. Our data confirm these differences in the response of
ADAMTS-4 and ADAMTS-5 to cytokine stimulation in human chondrocytes, as stimulation
of human chondrocytes with IL-1β or AE did not significantly alter ADAMTS-5 expression
in this study.

The MAPK pathways are responsible for the conversion of a large number of extracel-
lular stimuli into specific cellular responses that range from positive and negative roles
in cell proliferation, differentiation, and apoptosis to the regulation of inflammatory and
stress responses. All of the MAPK pathways are organized into cascades, and the JNK
pathway is mainly activated by cellular stress and cytokines through several upstream
kinases [39,40]. Kamata et al. [41] reported that the NF-κB-JNK crosstalk, in which JNK
activation is prolonged when NF-κB is suppressed, is mediated by an alternative pathway
of JNK activation by reactive oxygen species. Greene et al. [42] stimulated monolayer cul-
tures of primary human articular chondrocytes with IL-1β and reported that the response
pattern of each signaling protein was different, with p38 reaching peak phosphorylation
in 10–15 min and ERK and JNK in 10–30 min. In the present study, the expression of
p-JNK, which was upregulated by IL-1β, was further upregulated by the addition of AE.
A possible explanation might be that the suppression of NF-κB by AE could lead to the
sustained activation of JNK and alter its response pattern.

Furthermore, our in vitro study included important results revealing that the expres-
sion of IL-4 was severely inhibited by the addition of IL-1β, but significantly upregulated
by the addition of AE. A number of studies have reported that IL-4 has an inhibitory effect
on the degradation of proteoglycans in articular cartilage by inhibiting the secretion of
MMPs and reducing the variability in proteoglycan production seen during the course
of OA, suggesting that IL-4 is associated with a strong chondroprotective effect [4]. For
IL-1R, IL-1R2 expression was more significantly upregulated compared to IL-1R1 in the
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group co-stimulated with IL-1β and AE (10 µg/mL). IL-1R2 is a receptor that binds to IL-1
ligands and was defined as a decoy receptor. IL-1R2 does not show the ability to transduce
and activate intracellular signals when bound to IL-1β, representing one of the significant
mechanisms of inhibition of IL-1 activity [43]. Additionally, IL-1R2 has membrane-bound
and soluble forms (sIL-1R2), and sIL-1R2 is considered as a very efficient IL-1 inhibitor
because sIL-1R2 is as effective as its membrane receptor in binding to IL-1β, while it lacks
the ability to bind the antagonist IL-1Ra and has the unique characteristic of efficiently
binding to pro-IL-1β, an inactive precursor of IL-1β [44]. Colotta et al. [45] reported that
IL-4 antagonized the action of IL-1 on human neutrophils by inducing the expression
and release of IL-1R2. Our results suggested that AE may upregulate IL-1R2 expression
resulting in inhibition of IL-1β activity the through upregulation of IL-4.

A number of studies have demonstrated the availability of adipose tissue without
cell expansion or enzymatic treatment [25–28,46–52]. MFAT is the tissue obtained from
lipoaspirate using an isolation and washing device without the use of enzymes. MFAT
retains the adipose niche, which includes the extracellular matrix (ECM) in addition to
various cells, such as ASCs, endothelial cells, and pericytes [25,46–52]. Hudetz et al. [46]
considered that in MFAT transplantation, ASCs and pericytes remain viable and effective
within the conserved adipose niche, sensing the ambient environment of the knee joint and
initiating the secretion of bioactive factors. Desando et al. [51] surmised that the collagen
fiber network structure of MFAT evades enzymatic degradation, allowing for the long-term
survival of the included cells and the gradual release of cytokines.

On the other hand, CAT is a concentrated adipose tissue obtained from lipoaspirate
by centrifugation without cell expansion or enzymatic treatment [26–28]. Centrifugation
is performed to separate blood cell components and oils from lipoaspirate, and it was
shown that clusters of adipocytes and ASCs in tissues are well preserved when centrifuged
below 3000× g [27]. This means that CAT retains the adipose niche containing various
cells and ECM, and is expected to have the same effect as MFAT. However, since AE does
not contain cells, the effect of ASCs on secreting large amounts of bioactive molecules in
response to environmental sensing, which has attracted the attention of many scientists,
cannot be expected. During the past two decades, adipose tissue has come to be considered
an endocrine organ that not only functions as a fat and energy reservoir but also secretes
paracrine factors that regulate a variety of physiological functions [53,54]. Carelli et al. [47]
showed that mechanical activation abolishes the inflammatory properties of adipose tissue
and promotes its expression of anti-inflammatory proteins. It might be reasonable to
assume that mechanical treatment of adipose tissue led to a rapid increase in the initial
secretion and storage of bioactive factors, which were extracted into AE by centrifugation,
as reported by He et al. [31] Although the life span of these bioactive factors is expected
to be short, it was suggested that they exert their effects in vivo by activating a cascade of
reactions [19,55,56].

The current study had some limitations. First, because liposuction is difficult in rats,
rat adipose tissues were not precisely the same as the lipoaspirates of humans. In this study,
we treated adipose tissue obtained by mechanical shredding alone as equivalent to adipose
tissue obtained without cell expansion or enzymatic treatment. Second, in this study, we
considered AE to be susceptible to clearance from the joint space and consequently we
performed weekly intra-articular injections and did not compare them to a single injection.
Comparisons of the duration of chondroprotective effects of adipose tissue versus its
extract is essential information for optimizing the clinical application of adipose-derived
tissue in OA treatment. Lastly, our in vitro study was poorly analyzed at the protein level
and did not lead to the identification of specific bioactive factors. Proteomic analysis of
microvesicles and exosome fractions of ASC-CM has shown that they contain unique
proteins, some of which were reported to be involved in the regulation of inflammatory
processes and immune responses [12]. Nava et al. [52] suggested that the potent anti-
inflammatory activity of MFAT is a highly complex phenomenon that depends on the
combination of molecules and extracellular vesicles secreted by ASCs and endothelial
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cells. They showed that MFAT produces high levels of granulocyte colony stimulating
factor (G-CSF), stem cell growth factor beta, and hepatocyte growth factor (HGF), and
stated that G-CSF stimulates the production and activation of MSCs, induces increased
expression of HGF, and improves tissue recruitment capacity and anti-inflammatory status.
They also stated that G-CSF production in MFAT could be associated to the activation of
endothelial cells probably due to the shearing force produced during MFAT regulation. The
chondroprotective mechanisms of MFAT, CAT, and their secretions need to be elucidated
by further studies.

In contrast, there are several advantages of AE for clinical application. AE can be
prepared quickly and cleanly using only centrifugation, so it can be used safely at low cost
during surgery. Furthermore, because it is not a cell-based therapy, it is not immunogenic,
and there is a possibility that homologous or heterologous proteins can be used in the
future. Lastly, it is easy to store and transport. This is the first study to examine the
effects of AE, including the secretome of concentrated adipose tissue, prepared only by
centrifugation, on cartilage tissue. We believe the results of the current study provide
valuable information to optimize future OA treatments using adipose-derived tissues.

4. Materials and Methods

All the procedures, including animal studies, were conducted after receiving ap-
proval from Okayama University Institutional Review Board (1612-014; Approval date;
14 December 2016) and the Institutional Animal Care and Use Committee and approved
by the President of Okayama University (OKU-2016245; Approval date; 22 June 2016).

4.1. AE Preparation

Human adipose tissues were obtained from four female donors aged no less than
18 years-old, undergoing cosmetic liposuction from the thigh at the related facility after
obtaining written informed consent (Figure 5). Liposuction from the thigh was not indicated
to the patients with BMI less than 17.5 or greater than 35 kg/m2, previous thigh surgery,
comorbidities, or regular medicine that prohibit the surgery or anesthesia. The mean age
and body mass index (BMI) of donors were 31.7 (range: 24–37) years and 20.4 (range:
17.9–22.5) kg/m2, respectively. The lipoaspirates were poured into disposable sterilized
50 mL syringes with a filter piston (Medikan Corp., Seoul, Korea) and centrifuged at
1200× g for 3 min using a Lipokit® device (Medikan) [27]. After centrifugation, samples
were separated into three fractions: oil (onto the piston), adipose (middle: concentrated
adipose tissue), and fluid (bottom: containing the blood cell component). The concentrated
adipose tissue was collected and mixed with an equal volume of PBS. AE was obtained by
centrifuging at 2600× g for 10 min (Model 2800, Kubota Co., Tokyo, Japan), then filtering
the aqueous portion and removing cellular and tissue debris. The protein concentration of
AE was measured using a Bradford Protein Assay Kit (TaKaRa Bio Inc., Shiga, Japan). All
the procedures were performed under sterile conditions.
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4.2. Chondrocyte Cultures

NHCs from knee cells obtained from a 15-year-old male, a 34-year-old-male, and a
38-year-old-male were purchased from Lonza (Walkersville, MD, USA). Cells were cultured
at 37 ◦C in 5% CO2 in CGM™ Chondrocyte Growth Medium BulletKit™ (Lonza; CBM™
Chondrocyte Growth Basal Medium (Lonza) with CGM™ Chondrocyte Growth Medium
SingleQuots™ Supplements and Growth Factors (Lonza)) containing supplements and sev-
eral growth factors [R3 insulin-like growth factor (R3-IGF-1), basic fibroblast growth factor
(bFGF), tranferrin, insulin, fetal bovine serum (FBS), and gentamicin/amphotericin-B]. The
medium was changed every 3 days, when the cultures reached sub-confluence, the cells
were subcultured at split ratios of 1:3 using Accutase (Innovative Cell Technologies, San
Diego, CA, USA), and NHCs were used at passage 3 (P3). NHCs were seeded in 6-well
plates at 2 × 105 cells per well and cultured in 2 mL CGM. For all experiments, after 24 h
and confirmation that the NHCs had adhered to the 6-well plates, all the medium was
aspirated, and the medium was replaced by CBM containing 1% FBS.

4.3. Real-Time PCR

For RT-PCR, NHCs (P3) plated into 6-well plates at 2 × 105 cells per well were treated
with IL-1β (10 ng/mL, PeproTech, Inc., Rocky Hill, NJ, USA) with or without different doses
of AE (0, 0.1, 1, or 10 µg/mL protein concentration) for 30 min. Total RNA was extracted from
NHCs using QIAzol Lysis Reagent (Qiagen, Valencia, CA, USA) according to the manufac-
turer’s instructions. Reverse transcription was accomplished on 500 ng of total RNA using
Primescript RT master mix (Takara Bio). RT-PCR was performed using an Agilent Mx3000P
instrument (Agilent Technologies, Santa Clara, CA, USA) according to the manufacturer’s
instructions. Reaction components were prepared to a final concentration as follows: 5.0 µL of
TaqMan 2×Universal PCR Master mix, 0.50 µL of each primer, and 2.0 µL cDNA. The primers
were as follows for TaqMan® Gene Expression Assays (Applied Biosystems, Foster City, CA,
USA): COL2A1; Hs00264051_m1, MMP-1; HS00899658_m1, MMP-3; Hs00899658_m1, MMP-
13; Hs00233992_m1, IL-4; Hs00174122_m1, IL-6; Hs00174131_m1, IL-8; Hs00174103_m1,
IL-1R1; Hs00991010_m1, IL-1R2; Hs0074759_m1, ADAMTS-4; Hs00192708_m1, and
ADAMTS-5; Hs01095518_m1, and GAPDH; Hs02786624_g1 and the final expression levels
were calculated by dividing the expression levels of each gene by the expression level
of GAPDH. The primer of IL-1R2 used in this study was designed to straddle Exons 6–7,
enabling detection of both membrane and soluble types. Each value obtained for the
control cells was set to one.

4.4. Western Blotting

For the Western blot analysis, NHCs (P3) plated into 6-well plates at 2 × 105 cells per
well were treated with IL-1β (10 ng/mL) with or without different doses of AE (0, 0.1, 1,
or 10 µg/mL protein concentration) for 30 min. Total protein was extracted, and the
concentration was determined using a Bradford Protein Assay Kit (TaKaRa Bio Inc.). Total
proteins were loaded and separated on a Mini-Protean® Tris-glycine extended gel (Bio-Rad,
Richmond, CA, USA) and transferred onto an Immun-Blot® PVDF membrane (Bio-Rad).
Blots were blocked in Odyssey blocking buffer (LI-COR, Lincoln, NE, USA) for 1 h at room
temperature. Following washing, blots were incubated overnight at 4 ◦C with the following
primary antibodies: 1:1000 anti-ERK1/2 antibody (Cell Signaling Technology, Danvers,
MA, USA); 1:1000 ERK1/2 phospho (Thr202/Tyr204) antibody; 1:1000 p38 MAPK antibody;
and 1:1000 p38MAPK phospho (Thr180/Tyr182) antibody. After washing three times in
TBS containing 0.1% Tween-20 (TBS-T) for 5 min each, blots were incubated with IRDye®

800CW anti-mouse or IRDye® 680CW anti-rabbit secondary antibody (LI-COR) for 1 h at
room temperature and then washed three times in TBS-T for 5 min each. Band intensity
was analyzed using a LI-COR Odyssey infrared fluorescence scanning imaging system and
quantified using Odyssey infrared imaging system application software version 2.1. The
relative expression of each protein was calculated as the ratio between phosphorylated and
total protein.
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4.5. Immunocytochemistry

For immunocytochemistry, NHCs (P3) were plated into 8-well chamber slides at
4 × 103 cells per well and cells were grown to subconfluence, then serum-starved in chon-
drocyte basal medium (Lonza) containing 1% FBS for 24 h. The cells were then treated
with IL-1β (10 ng/mL) alone, or IL-1β (10 ng/mL) with AE (10 µg/mL) or PBS (as control)
for 1 h. After treatment, cells were fixed with 1% paraformaldehyde in PBS for 10 min
at 4 ◦C, blocked with 1% BSA in PBS for 20 min at room temperature and incubated
with phospho-NF-κB p65 (Ser536) (7F1) mouse mAb (Cell Signaling Technology, Danvers,
MA, USA) followed by incubation with Alexa Fluor 488-conjugated goat anti-rabbit IgG
(Abcam, Cambridge, UK). Slides were mounted in Prolong Gold antifade reagent with
DAPI (Thermo Fisher Scientific, Waltham, MA, USA) and fluorescence images were ob-
tained using a phase contrast microscope (IX73; Olympus, Tokyo, Japan) equipped with a
dual CCD digital camera (DP80; Olympus). We evaluated the percentage of p-p65 positive
cell nuclei in five fields of each slide for each condition.

4.6. Preparation of the Experimental OA Model

For the experimental OA model, 8-week-old male Wistar rats (Crlj:WI) (mean weight
of 291.4 ± 5.7 g) were purchased from CLEA Japan Inc. (Tokyo, Japan). The animals
were housed in specific pathogen-free cages with a maximum of two animals per cage, the
room temperature was 22–24 ◦C, and food and water were freely available. No medication
or treatment was administered prior to this experiment. Animals were anesthetized
by inhalation administration of isoflurane and intraperitoneal injection of pentobarbital
sodium (50 mg/kg). Experimental OA was induced in the right knee joints of rats. We used
the same animal model of OA which was used in our previous study [57], first reported by
Hayami et al. [58]. Briefly, the anterior cruciate ligament and medial collateral ligaments
(ACL and MCL, respectively), as well as the medial meniscus were transected using the
medial parapatellar approach. The knee joints of this model showed a relatively rapid and
severe destruction of cartilage. Arthrotomy only was performed on the left knee joints
as a sham operation. In this model of rats, intra-articular injection was accurately done
because of the size of the knee joint, and animals had enough volume of adipose tissue for
experiments in the groin region without individual differences.

4.7. Preparation and Intra-Articular Injection of Rat AE

Adipose tissues were harvested from the left inguinal zone of rats at the same time as
the knee surgery. All adipose tissue was removed from the membrane and mechanically
shredded using a surgical knife. Rat AE was obtained from adipose tissue in the same
manner as described for human AE. The protein concentration of the sample was measured
and samples were stored at −80 ◦C until use. The rats in the treatment group received a
weekly intra-articular injection of 5 (n = 20) or 50 µg (n = 20) (as a protein)/50 µL of AE
in the right knee joint and the rats in the control group (n = 20) received an intra-articular
injection of 50 µL PBS as a vehicle in the same manner. Animals were anesthetized using
isoflurane, and the vehicle or AE was injected into the knee joints from the center of the
patellar tendon. We confirmed that the tip of the needle reached the joint space by loss
of resistance or aspiration of joint fluid. The animals were sacrificed at 2 weeks (n = 28,
average weight 354.6 ± 16.9 g) and 6 weeks (n = 29, average weight 472.2 ± 20.2 g) after
surgery, and both knee samples were isolated for histological examination. For euthanasia,
the animals were placed in a special container and the concentration of carbon dioxide gas
was gradually increased by 20% per minute to 100% within 5 min. Three rats died during
treatment as a result of the anesthesia. In several rats, we observed a subcutaneous leachate
effusion in the fat harvesting area of the left groin, regardless of treatment. There were no
adverse events associated with the intra-articular injection of AE in our rat OA model.
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4.8. Tissue Preparation and Histological Evaluation

Histological evaluation was performed on full-thickness sagittal sections of cartilage
in the weight-bearing area of the medial femoral condyle. The knee joint samples were dis-
sected, fixed in 4% PFA for 24 h, and defatted in alcohol. Then, the knee joint samples were
decalcified in 0.3 M ethylenediaminetetraacetate (EDTA; pH 7.5) for 14 days and embedded
in paraffin48. Sections were stained with 0.1% safranin O. Histopathological classification
of the severity of each OA lesion was graded on a scale of 0–13, using the modified Mankin
scoring system [59,60]. The modified Mankin score is a combined score assessing structure
(0–6 points), cellular abnormalities (0–3 points), and matrix staining (0–4 points).

4.9. Statistical Analysis

All data are expressed as the mean ± standard deviation (SD). Differences among
individual sample groups were statistically analyzed by the Tukey’s multiple comparisons
test. All analyses were conducted using GraphPad Prism 7 (GraphPad Software, San Diego,
CA, USA) with a p-value < 0.05 regarded as significant.
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