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Abstract: The problem of purifying domestic and hospital wastewater from pharmaceutical com-
pounds is becoming more and more urgent every year, because of the continuous accumulation of
chemical pollutants in the environment and the limited availability of freshwater resources. Clay
adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays
are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a
comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modi-
fied with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen,
and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated
under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and
adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the phar-
maceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals
decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63–67%).
Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical con-
centration range of 10–50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was
1:300, pH 6, and a temperature of 25 ◦C. Thus, MMT-STA could be used as an efficient adsorbent for
deconta×ating water of carbamazepine, ibuprofen, and paracetamol.

Keywords: pharmaceuticals; clay minerals; adsorption; treatment effectiveness

1. Introduction

Nowadays, pharmaceuticals and their metabolites are increasingly found in the envi-
ronments, accumulating in surface- and ground waters, and provoking toxicological effects
on organisms in aquatic or terrestrial ecosystems [1]. There are many ways in which drugs
can enter surface waters, with the prevailing sources of the drugs being wastewaters from
pharmaceutical companies, municipal wastewater treatment plants, and hospitals [2,3]. To
prevent the entry of pharmaceuticals into surface and ground waters disposal of drugs from
various sources (industrial, hospital, domestic, agricultural wastewater) should be carefully
controlled [4]. Detailed studies of the interaction between surface and groundwater must
also be conducted, using new approaches and methods [5]. Improved analytical methods
are needed for the detection of small amounts of pharmaceutical compounds in wastewater
treatment plants [6,7]. Advanced drug-delivery systems capable of targeted delivery and
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controlled release of active agents can significantly reduce doses of applied medicines [8].
In the process of monitoring treatment facilities in a number of European countries, it was
found that wastewater after treatment contained a wide range of drugs (carbamazepine, di-
clofenac, ibuprofen, ketoprofen, acetaminophen, etc.) [9,10]. For example, carbamazepine,
an antiepileptic drug, is one of the most frequently reported pharmaceutical compounds in
surface waters [10]. It was found in wastewaters in a number of countries, and the efficiency
of biological treatment systems towards carbamazepine does not exceed 54% [11]. During
the photolytic decomposition of carbamazepine, acridine derivatives are formed, which can
cause chromosomal mutations [12], creating a risk of genetic changes in water inhabitants.

Paracetamol and ibuprofen are over-the-counter drugs that are widely used around
the world and are often found in aquatic environments as a consequence of the low
efficiency of water purification processes [13]. It has been shown that the presence of
ibuprofen in the aquatic environment affects the reproduction of crustaceans Daphnia magna
at a concentration of 13.4 mg/L [14] and paracetamol has a toxic effect on D. magna at
concentrations from 9.2 to 50 mg/L [15].

Various methods are used for removing pharmaceuticals from water and wastewater,
such as activated sludge systems [16,17], membrane bioreactors [18,19], electrocoagula-
tion [20], magnetic ion-exchange resins [21], oxidation processes [22,23], and adsorption,
the latter being the most effective and inexpensive method of drug removal [24,25]. One of
the most popular adsorbents is activated carbon, but its relatively high cost and complex
regeneration process prompt the search for alternative inexpensive adsorbents [26]. To
ease the recovery of used adsorbents, they can be made responsive to an applied magnetic
field, as it was successfully demonstrated with carbon nanotubes impregnated with a metal
phase [27]. Adsorbents based on clay minerals [28] have also been considered as readily
available natural materials that can be used to remove organic micropollutants [29–31].

The development of efficient water treatment systems is impeded by the high chem-
ical diversity of pharmaceutical micropollutants, implying that no universal adsorbent
can fit all the tasks. While natural clay adsorbents are hydrophilic, some of their target
micropollutants are hydrophobic. Therefore, the hydrophobisation of the clay adsorbent
can be used as way to increase the adsorption of hydrophobic micropollutants.

Montmorillonite (MMT) is a layered aluminum silicate with a general formula of
(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2· nH2O. The isomorphous substitutions of Si4+ by Al3+ in
the tetrahedral sheet and Al3+ by Mg2+ in the octahedral ones imparts a negative charge to
the clay, which is compensated by cations in the interlayer space [32]. The layered structure
of MMT allows the adsorption of various substances both on the surfaces and in the inter-
layer spaces, and other MMT-related adsorbents with desired properties can be obtained by
chemical modifications of the natural clay. The interlayer space makes up about 90% of the
entire clay surface and enables MMT to absorb water molecules and other compounds [33].
High cation-exchange capacity of MMT is beneficial for its application as a drug carrier [34]
or a sorbent [35]. MMT is widely used as an absorbent to remove hydrophilic cationic
contaminants [36]. Due to the large amount of hydrated cations in the interlayer space,
MMT has almost no adsorption capacity for anionic and hydrophobic organic pollutants.
However, hydrated cations can be replaced by organic ammonium cations, after which
the adsorption capacity for organic pollutants increases significantly [37]. When MMT is
treated with a surfactant (for example, trimethyl stearyl ammonium), inorganic cations in
the MMT are replaced by organic cations, which contribute to the appearance of hydropho-
bic properties and an increase in interlayer spacing, while the ordered layered structure of
the particles is preserved.

Hydrophobic organoclay adsorbents for pharmaceuticals were obtained by MMT modifi-
cation with octadecylamine [38], didodecyldimethylammonium bromide [39] benzyldimethyl-
tetradecyl ammonium (BDTA), and hexadecyltrimethylammonium (HDTMA) [40,41]. So far,
the sorption properties of hydrophobic MMT were tested for a limited number of phar-
maceuticals including carbamazapine [39–41] and ibuprofen [38–40], but the adsorption
of paracetamol on organo-MMT remains less studied. Recently, a micelle-clay complex
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composed of MMT and octadecyltrimethylammonium was found to be more efficient than
activated carbon in removing paracetamol and its biodegradation product from water [42].

The aim of this work was to study the efficiency of removing carbamazepine, ibuprofen,
and paracetamol from water using pristine and hydrophobic (trimethyl stearyl ammonium-
modified) montmorillonite as adsorbents. The search for new potent adsorbents for these
three wide-spread pharmaceuticals is important not only for wastewater decontamination
but also for designing detoxification agents to treat medicine overdoses, as was recently
proposed in [43].

2. Results and Discussion
2.1. Characteristics of Clay Minerals and Pharmaceuticals

First, the morphology of pristine and hydrophobic MMT adsorbents was characterized
using various microscopic techniques (Figures 1 and 2). MMT modified with trimethyl
stearyl ammonium retained the ordered layered structure characteristic of the pristine
MMT nanoclay.
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Figure 1. The microscopy images of pristine (A,C) and hydrophobic (B,D) montmorillonite obtained using dark-field
(A,B) and transmission electron microscopy (C,D).

Using atomic force microscopy operating in PeakForce Tapping imaging mode, the
differences in the adhesion properties of the surface of pristine MMT and that covered with
a layer of surfactant were shown. Although the surface topography images of pristine and
hydrophobic MMT particles are similar (Figure 2A,C), the changes in nonspecific surface
adhesion after MMT hydrophobization can be seen (Figure 2B,D). The surface adhesion
values of the studied particles were 5.7 ± 1.4 nN for pristine MMT and 14.9 ± 4.7 nN for
hydrophobic one. An increase in the adhesion of clay particles after their hydrophobization
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was previously observed in case of halloysite modification with octadecyltrimethoxysi-
lane [44]. In Figure 2D, a halo-like feature of highly adhesive material is distinguishable
around the hydrophobic MMT particles. This halo presumably belongs to the surfactant
used for nanoparticle hydrophobization (trimethylstearylammonium) and has the adhe-
sion (52.6 ± 10.1 nN) almost four times higher than the adhesion of the hydrophobic
MMT particles.
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Force Error (A,C) and Adhesion (B,D) channels.

The hydrodynamic diameter (Dh) and zeta potential (ζ) of clay particles were character-
ized by Dynamic light scattering (DLS) and laser Doppler velocimetry (Table 1). According
to the measured zeta potential value, only hydrophobic MMT had a positive charge, which
could be beneficial to the adsorption of negatively charged PP.

Table 1. The values of the hydrodynamic diameters (Dh) and zeta potentials (ζ) of the sub-
stances used.

Nanomaterials Dh, nm ζ, mV

MMT 1723 ± 65.20 −31.0 ± 1.23
MMT-STA 7002 ± 198.0 20.9 ± 0.25

Carbamazepine 612.0 ± 81.20 −18.9 ± 6.12
Ibuprofen 1950 ± 764.5 −3.64 ± 0.16

Paracetamol 997.2 ± 425.6 −9.76 ± 4.03
MMT = pristine montmorillonite; MMT-STA = hydrophobic montmorillonite.

To study the sorption properties of nanoclays, we used several types of pharmacological
preparations, differing in structure and reactivity. Carbamazepine [benzo[b][1]benzazepine-
11-carboxamide] is an antiepileptic agent and a normotimic from the group of carboxam-
ide derivatives; Ibuprofen [2-(4-isobutyphenyl) propanoic acid] is a non-steroidal anti-
inflammatory drug from the group of propionic acid derivatives, and Paracetamol [N-(4-
hydroxyphenyl)acetamide] is analgesic and antipyretic from the group of anilides. These
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compounds contain a wide range of functional groups: aromatic rings, amide, carbonyl
groups, etc., all with potentially different chemical reactivity, which was the reason for the
choice of these drugs.

The absorption spectrum of each pharmaceutical was measured, and the peak absorp-
tions all laid in the ultraviolet spectrum at the wavelengths of 285, 220, and 243 nm for
carbamazepine, ibuprofen, and paracetamol, respectively.

2.2. Effect of Contact Time

In case of reversible adsorption, the PP adsorption on an adsorbent is followed by
its partial desorption until the equilibrium of the two processes is reached. To reveal an
optimal time for the adsorption process the contact time of the sorbent with PP was varied.

The adsorption proceeded rather quickly (Figure 3), which could be of practical
importance for the purification of wastewater from pharmaceuticals. For MMT–STA, the
sorption equilibrium was established after 6 h for ibuprofen and carbamazepine and after
24 h for paracetamol with an increase in removal efficiency by 10%. For MMT, the sorption
equilibrium was established after 12 h. Thus, the contact time of 24 h was used for obtaining
adsorption isotherms.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 15 
 

 

the group of anilides. These compounds contain a wide range of functional groups: aro-

matic rings, amide, carbonyl groups, etc., all with potentially different chemical reactivity, 

which was the reason for the choice of these drugs. 

The absorption spectrum of each pharmaceutical was measured, and the peak ab-

sorptions all laid in the ultraviolet spectrum at the wavelengths of 285, 220, and 243 nm 

for carbamazepine, ibuprofen, and paracetamol, respectively. 

2.2. Effect of Contact Time 

In case of reversible adsorption, the PP adsorption on an adsorbent is followed by its 

partial desorption until the equilibrium of the two processes is reached. To reveal an op-

timal time for the adsorption process the contact time of the sorbent with PP was varied. 

The adsorption proceeded rather quickly (Figure 3), which could be of practical im-

portance for the purification of wastewater from pharmaceuticals. For MMT–STA, the 

sorption equilibrium was established after 6 h for ibuprofen and carbamazepine and after 

24 h for paracetamol with an increase in removal efficiency by 10%. For MMT, the sorption 

equilibrium was established after 12 h. Thus, the contact time of 24 h was used for obtain-

ing adsorption isotherms. 

 

Figure 3. Effect of contact time on the removal efficiency of PP by pristine MMT and modified 

MMT–STA. 

2.3. Adsorption Isotherms 

The adsorption isotherm describes the relationship between the residual concentra-

tion of the adsorbate in the liquid phase and its concentration on the surface of the adsor-

bent at a certain temperature. The adsorption isotherms of pharmaceuticals by pristine 

and hydrophobic MMT from water are shown in Figure 4, where Ce is the equilibrium 

concentration of pharmacological preparations in solution and Qe is the amount of ad-

sorbed pharmaceutical per unit adsorbent mass at equilibrium. No isotherm was obtained 

for paracetamol adsorption by pristine MMT, because no sorption occurred in this case. 

The sorption isotherms for all other compounds were linear (C-type), according to the 

classification described by Giles et al. [45]. 

The linear C-type isotherm corresponds to the constant number of adsorption sites 

in a wide range of solute concentrations up to the maximum possible adsorption, i.e., as 

more solute molecules are adsorbed more adsorption sites are created. Such a situation 
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2.3. Adsorption Isotherms

The adsorption isotherm describes the relationship between the residual concentration
of the adsorbate in the liquid phase and its concentration on the surface of the adsor-
bent at a certain temperature. The adsorption isotherms of pharmaceuticals by pristine
and hydrophobic MMT from water are shown in Figure 4, where Ce is the equilibrium
concentration of pharmacological preparations in solution and Qe is the amount of ad-
sorbed pharmaceutical per unit adsorbent mass at equilibrium. No isotherm was obtained
for paracetamol adsorption by pristine MMT, because no sorption occurred in this case.
The sorption isotherms for all other compounds were linear (C-type), according to the
classification described by Giles et al. [45].
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Figure 4. Adsorption isotherm of pharmaceuticals on clays.

The linear C-type isotherm corresponds to the constant number of adsorption sites in
a wide range of solute concentrations up to the maximum possible adsorption, i.e., as more
solute molecules are adsorbed more adsorption sites are created. Such a situation can take
place when the solute has a higher attraction for the adsorbate than the solvent [45].

The adsorption data were treated using the linearized form of the Freundlich equation
(Figure 5). The Freundlich equation is an empirical model describing a multilayer sorption
onto the adsorbent surface, characterized by heterogeneous adsorption energies. High
linearity of the plot determined by the coefficient of determination (R2) points to good
correspondence of the adsorption data to the Freundlich model.
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Figure 5. Adsorption of pharmaceuticals onto clay fitted to linearized form of Freundlich isotherm.

The fitting parameters of the model Kf and n are presented in Table 2. The value of
the Freundlich adsorption capacity n indicates the favorability of adsorption. The n value
of 1–2 indicates moderate adsorption capacity, n < 1 indicates poor adsorption capacity,
and Kf between 2 and 10 points to a good adsorption capacity [46]. All Kf values obtained
were close to 1, meaning moderate sorption capacity of pristine and hydrophobic MMT
sorbents towards the pharmaceuticals studied.
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Table 2. Parameters of the Freundlich equation obtained in the analysis of adsorption isotherms of
pharmaceuticals.

Fitting
Parameters

Adsorption of Pharmaceuticals on Clays

PAR
(MMT-STA)

CBZ
(MMT-STA)

IBP
(MMT-STA) CBZ (MMT) IBP (MMT)

Freundlich Equation

Kf, (mg/g)
(mL/mg) 1/n 63.39 61.99 63.66 66.47 65.07

n 1.013 1.017 1.012 0.999 1.007
R2 0.99965 0.99952 0.99981 0.99983 0.99991

2.4. Effect of pH

The adsorption properties of MMT-STA and MMT at different suspension pH were
determined (Figure 6). Figure 6 shows that the pH of the medium in the range from 4 to 8
has no significant effect on the degree of adsorption. The only exception was adsorption of
ibuprofen by MMT, with adsorption of IBP decreasing insignificantly by 10% at pH 4. Thus,
for practical use, the optimal pH is 6, at which the largest percentage of pharmacological
preparations is adsorbed.
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The pKa of CBZ and PAR are 13.9 and 9.38, respectively; thus, most of their molecules
were uncharged in the studied pH range (pH 4–8). Thus, electrostatic interactions ap-
parently played a little role in the adsorption of these drugs by hydrophobic MMT–STA.
According to octanol-water partition coefficients, all the drugs tested were rather hy-
drophobic, with hydrophobicity decreasing in the row CBZ→ IBP→ PAR. Thus, it is more
probable that hydrophobic interactions contributed to the efficient adsorption of these
drugs by hydrophobic MMT–STA clay. Electrostatic interactions could only take place in
case of IPB adsorption on positively charged MMT–STA, which has pKa of 4.91, indicating
that most of its molecules would be negatively charged at pH about 4. Thus, the removal
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efficiency of the three investigated compounds was quite constant in the pH range from 4
to 8. For CBZ adsorption on MMT clay, similar results on pH dependence were reported
by other research works [47].

2.5. Effect of Temperature

To determine the dependence of the removal efficiency on the temperature, the ad-
sorption properties of clay materials were studied at temperatures of 5 ◦C, 25 ◦C, and
40 ◦C (Figure 7). The temperature had no significant effect on the removal efficiency. The
optimal temperature was 25 ◦C, with adsorption slightly decreasing at higher temperature.
The decrease in clay adsorption capacity at higher temperatures can be connected with
destabilization of the physical forces involved in the adsorbate–adsorbent interactions [48].
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2.6. Removal Efficiency

The removal efficiency of PP by MMT and MMT–STA at different masses of adsorbents
was studied. Hydrophobic montmorillonite had better adsorption properties compared to
pristine montmorillonite (Figure 8). MMT–STA under static conditions with an adsorbate
to adsorbent ratio of 1:300 provided almost complete removal (95–97%) of CBZ and IBP
in concentrations from 10 to 50 µg/mL (Figure 8D). For PAR in concentrations up to
50 µg/mL, the removal was 63–67%. Under the same conditions, pristine MMT efficiently
adsorbed CBZ at concentrations up to 50 µg/mL with the removal rate of 75–80%. IBP was
less adsorbed by MMT–STA at concentrations of 10–50 µg/mL, with the removal rate of
16–23%, while MMT did not adsorb PAR at all.
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The removal efficiency of natural MMT clay for CBZ obtained in this study was
consistent with that observed in [47], which was around 80%. When MMT was used to
remove carbamazepine from deionized water and wastewater, the adsorption efficiency
was 83.8% and 78.2%, respectively [49]. Noticeably, the concentrations of CBZ studied
greatly exceeded those conventionally found in natural wastewaters (up to 6.3 µg/L) [50],
therefore untreated MMT clay can be used as an adsorbent for CBZ in wastewater treatment
plants. The hydrophobic MMT–STA revealed itself as an even more efficient adsorbent for
CBZ, completely absorbing this PP across the whole concentration range studied.

Pristine MMT, in comparison with other clays, kaolinite and goethite, is a better adsor-
bent for ibuprofen [51]. However, hydrophobisation of MMT can dramatically increase its
sorption capacity towards IBP. Thus, the adsorption by MMT-STA was more than four times
higher than that by pristine MMT. In other studies, MMT modified with cationic octadecy-
lamine adsorbed up to 99% ibuprofen at a concentration of 0.1–80 mg/L and the adsorption
process involved electrostatic and hydrophobic interactions [38,52]. Both hydrophobicity
and interlayer spacing of modified MMT clay increases with the increase in the length of the
alkyl chain of cation surfactant used for clay modification [53]. Thus, modification of KSF
MMT with a shorter chain molecule cetyltrimethylammonium bromide greatly increased
the adsorption of IBP compared to non-modified clay, but the maximal removal efficiency
reached only 70% [54]. The comparison of IPB sorption on hexadecyltrimethylammonium
modified MMT and zeolite revealed that the sorption affinity depended on the adsorbent
organic carbon content [55] The better sorption of IBP on hydrophobic MMT compared
to pristine MMT can be partly explained by a positive charge of MMT-STA, favouring the
adsorption of negatively charged IPB at pH = 6. A lower adsorption capacity of pristine
MMT towards IPB compared to MMT–STA is probably associated with the negative charge
of the surface of MMT sheets, preventing electrostatic interactions. Anionic drugs can be
weakly adsorbed by MMT through other interactions, including hydrogen bonding and
Van der Waals forces.

More efficient sorption of CBZ and IBP by hydrophobic MMT–STA compared to
pristine MMT can be understood considering the log Kow values of these compounds
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which indicate their tendency to distribution into non-water phase. According to log Kow,
PAR was the most hydrophilic of all the compounds studied and it was less adsorbed by
hydrophobic MMT–STA. However, in contrast to pristine MMT, the hydrophobic MMT
was capable of PAR sorption, although it demonstrated a tendency to a slight decrease
in sorption at the highest PAR concentration. The higher overall efficiency of MMT–STA
compared to MMT towards all the compounds studied can also be partly explained by
the reported increase in the degree of swelling after MMT modification with trimethyl
stearyl ammonium, which increases the ability of the clay to adsorb a significant amount of
organic matter [53].

The combination of kinetic studies, X-ray diffraction and molecular dynamics calcula-
tions demonstrated that the low adsorption of paracetamol on non-modified smectite clays
can be explained by only one adsorption mode possible in this case [56]. The paracetamol
molecule adsorbed parallel to the clay surface through van der Waals interactions between
the aromatic rings and the clay surface. However, for carbamazepine, an additional adsorp-
tion mode was identified, where the interaction between carbamazepine molecule and the
clay involved hydrogen bonds and coordination between oxygen atoms and cations. For
both paracetamol and carbamazepine, adsorption occurred only on clay external surfaces
and neither of the pharmaceuticals entered the interlayer space.

One of the ways to improve the sorption of paracetamol is the use of modified MMT
nanoclays. However, in previous studies, montmorillonite modified with titanium oxide
exhibited weak sorption properties, adsorbing no more than 20.8% of paracetamol [57].
This value is much lower than that achieved in our study (63–67%) where the hydrophobic
MMT-STA was used. However, not all hydrophobizing agents are equally efficient in
increasing paracetamol adsorption by MMT. For instance, montmorillonite KSF modified
with cetyltrimethylammonium bromide removed maximally 50% of PAR from aqueous
solutions [54].

To increase the removal of pharmaceuticals MMT can be mixed with other clays.
Thus, palygorskite–montmorillonite was used as a filter material for purifying wastewater
from carbamazepine [58]. A natural clay mixture of smectite and kaolinite was used
as an effective and inexpensive adsorbent for water purification from ibuprofen and
carbamazepine [48].

The application of hydrophobic MMT adsorbents can go beyond the wastewater
treatment. In a recent study, hydrophobisation of MMT through modification with di-
octadecyl dimethyl ammonium chloride was used to produce Pickering emulsions for the
acute oral paracetamol intoxication treatment. In this case, hydrophobic MMT particles
both stabilized the detoxifying emulsion and increased the adsorption of paracetamol [43].

3. Materials and Methods
3.1. Chemical Reagents and Adsorbents

Commercially available montmorillonite Montmorillonite–K 30 (MMT) in the powder
form and hydrophobic montmorillonite modified with tertiary ammonium salts (Mont-
morillonite, containing 25–30 wt% trimethyl stearyl ammonium) (MMT–STA)), in the
powder form with a particle size of ≤20 µm were used. The clay minerals were supplied
by Sigma-Aldrich, Saint Louis, MO, USA.

Carbamazepine (CBZ), a white crystalline powder with a purity of> 98%, ibuprofen
(IBP), a white crystalline powder with a purity of> 98%, and paracetamol (PAR), a white
crystalline powder with a purity of 99% were supplied by Sigma-Aldrich, Saint Louis, MO,
USA. The physicochemical characteristics and structural formulas of the drugs are given in
Table 3 [59].
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Table 3. Physico-chemical properties of the pharmaceutical preparations studied (Mw–molecular weight, Sw–solubility in
water, pKa–the negative log of the acid dissociation constant, log Kow–the octanol/water partition coefficient).

Pharmaceutical
Products (PP) Molecular Formula Chemical

Structure
Mw

(g.mol r−1)
Sw

(mg. L−1) pKa log Kow

Carbamazepine (CBZ) C15H12N2O
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3.2. Characterization of Clay Adsorbents

The morphology of clay materials was characterized using several types of micro-
scopies: transmission electron, atomic force, and dark-field microscopy. For transmission
electron microscopy (TEM) investigation [60], a droplet of nanoclay suspension (10 µL) was
placed on a copper grid with a carbon substrate and dried at room temperature. Images
were taken using a transmission electron microscope (Hitachi HT7700 Exalens, Tokyo,
Japan) at 100 kV accelerating voltage. Atomic force microscopy (AFM) images of nanoclays
were obtained using a Dimension Icon microscope (Bruker, Billerica, MA, USA), operating
in the PeakForce Tapping mode [61]. The samples were dried on a glass substrate at room
temperature. The images were obtained using ScanAsyst-air probes (Bruker, Billerica,
MA, USA) (nominal length 115 µm, tip radius 2 nm, nominal spring constant 0.4 N m−1).
The data were processed with the Nanoscope Analysis v.3.0 software (Bruker, Billerica,
MA, USA) [62]. The adhesion images were not edited for reliable results. Square areas
(300 × 300 nm) on the surface of the particles were used for adhesion calculation. Clay
nanoparticles were visualized by dark-field microscopy using an Olympus BX51 (Tokyo,
Japan) upright microscope equipped with a CytoViva® enhanced dark field condenser
and a DAGE CCD camera (CytoViva, Auburn, AL, USA). The hydrodynamic diameters
and zeta potentials of the used nanomaterials were determined using Zetasizer Nano ZS
(Malvern Instruments, Malvern, UK).

3.3. Adsorption Experiments

Stock solutions (1.0 g/L) of carbamazepine, ibuprofen, and paracetamol were prepared
in ethanol and then diluted to desired concentrations using Milli-Q water.

The absorption peak of each pharmaceutical was determined (NanoPhotometer NP80,
Implen, Munich, Germany). The calibration curves were plotted in the concentration range
of 10–70 µg/mL and used to assess the PP concentration in the supernatant after adsorption.
All experiments were performed in triplicate.

To establish the time needed to reach the equilibrium of adsorption, 0.15 g of sorbent
and 10 mL of PP solution with a concentration of 50 µg/mL at pH 6 were placed in a flask.
The suspensions were sonicated for 30 s. The resulting mixture was thoroughly mixed and
kept for 0.5, 1, 6, 12, 24 h at a temperature of 25 ◦C. Then the solid phase was separated by
centrifugation for 15 min at 3500 rpm (CM-6MT, ELMI, Riga, Latvia), and the PP content in
the solution was determined by the spectrophotometric method (NanoPhotometer NP80,
Implen, Munich, Germany). The removal efficiency by adsorption (R) was calculated
according to Equation (1):

R =
Co − Ce

Co
× 100% (1)

where Co is the initial PP concentration in the solution, µg/mL, and Ce is equilibrium
concentration of PP in solution, µg/mL.
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The adsorption of the pharmaceuticals was estimated at different mass ratios of
pharmaceutical to adsorbent (1:100–400). For this, 10 mL of PP solution at concentration
of 50 µg/mL was added to a flask containing nanoclay (0.05–0.20 g) at pH 6. For better
mixing, the suspensions were sonicated for 30 s at 50% amplitude, using a Bandelin
SonoPlus ultrasonic probe (Bandelin, Berlin, Germany). The suspensions were stirred on a
laboratory stirrer for 24 h at a temperature of 25 ◦C, then the solid phase was separated by
centrifugation for 15 min at 3500 rpm and the PP content in the solution was determined
spectrophotometrically

To make an adsorption isotherm, aqueous solutions (10 mL) of drugs were prepared
in the concentration range of 10–800 µg/mL. Then, 0.15 g of adsorbent was added to each
solution at pH 6 and 25 ◦C. The suspensions were sonicated (Bandelin SonoPlus, Bandelin,
Berlin, Germany) for 30 s, stirred on a laboratory stirrer for 24 h, centrifuged for 15 min at
3500 rpm (CM-6MT, ELMI, Riga, Latvia), and the PP content in the solution was determined
by spectrophotometry. The data obtained were used to plot the dependence of the amount
of adsorbed solute per unit adsorbent mass Qe (mg/g) on the solute concentration at
equilibrium Ce (mg/mL). The amount of PP adsorbed per unit clay mass was calculated
according to Equation (2):

Qe =
(Co −Ce)V

m
(2)

where m is the adsorbent mass and V is solution volume.
The experimental data on adsorption were processed using the Freundlich model,

applying Equation (3):

Qe = Kf × C
1
n
e (3)

where Qe is the solute mass adsorbed per unit adsorbent mass at equilibrium (mg/g); Ce, is
the solute concentration in solution at equilibrium (µg/mL); Kf is the Freundlich constant,
and 1/n is the Freundlich exponent indicating the intensity of adsorbent-adsorbate inter-
action. To find the parameters Kf and 1/n the linear form of the Freundlich Equation (4)
was used:

lgQe = lgKf +
1
n

lgCe (4)

The linearity of the plot indicates the fitness of the adsorption data to the Freundlich
model. The parameters Kf and 1/n were obtained using the intercept and the slope of the
plot, respectively.

The dependence of the degree of adsorption on pH and temperature was studied. The
required pH value (pH 4–8, t = 25 ◦C) of solutions was established by adding solutions
of hydrochloric acid or sodium hydroxide (0.1 mol/L) and measured using a pH meter
SevenCompact S220 (Mettler Toledo, Schwerzenbach, Switzerland). To study the effect
of temperature, the adsorption was carried out under static conditions at temperatures of
5 ◦C, 25 ◦C, and 40 ◦C and pH 6. In these experiments, 0.15 g of the adsorbent and 10 mL of
a PP solution with a concentration of 50 µg/mL (mass ratio of PP to adsorbent 1:300) were
placed in the flask and sonicated for 30 s. The suspensions were stirred on a laboratory
stirrer for 24 h, centrifuged for 15 min at 3500 rpm (CM-6MT, ELMI, Riga, Latvia), and the
PP content in the supernatant was determined spectrophotometrically (NanoPhotometer
NP80, Implen, Munich, Germany).

4. Conclusions

Natural sorbents can outperform the synthetic ones due to their significantly higher
availability and hence lower production costs. Additionally, synthetic materials not en-
countered in nature can introduce new environmental pollutants. Nanoclays are natural
sorbents the efficiency of which can be increased by chemical modifications to achieve in-
teractions with desired adsorbates. The adsorption properties of natural and hydrophobic
montmorillonite were investigated by removing carbamazepine, ibuprofen, and parac-
etamol from their aqueous solutions. The experimental data on adsorption were best
described by the Freundlich isotherm model. Within the pharmaceutical concentration
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range of 10–50 µg/mL, the optimal mass ratio of adsorbates to adsorbents was 1:300,
pH 6, and a temperature of 25 ◦C. In general, the pH and temperature of the medium did
not significantly affect the degree of adsorption of pharmaceuticals, with the adsorption
slightly decreasing at 40 ◦C and pH 4. Comparative analysis of pristine and hydrophobic
montmorillonite showed that MMT-STA had betted adsorption properties and removed
95–97% of CBZ or IBP and 63–67% of PAR at concentrations from 10 to 50 µg/mL. For IPB
and PAR this was a rather high efficiency in comparison with previous studies, where other
modified MMT adsorbents were used. Under the same conditions, pristine montmorillonite
effectively adsorbed only CBZ (75–80%), to a lesser extent IBP (16–23%) and did not adsorb
PAR. Thus, hydrophobisation significantly increased the sorption properties of MMT, and
MMT–STA can be regarded as a promising adsorbent for removing hydrophobic organic
contaminants from wastewater. Moreover, the high adsorptive capacity of MMT-STA
towards pharmaceuticals studied can find applications not only in wastewater treatment
but also for detoxification purposes in case of pharmaceutical overdose.
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