
 International Journal of 

Molecular Sciences

Article

Hybrid Deep Learning Based on a Heterogeneous Network
Profile for Functional Annotations of Plasmodium
falciparum Genes

Apichat Suratanee 1,2 and Kitiporn Plaimas 3,4,*

����������
�������

Citation: Suratanee, A.; Plaimas, K.

Hybrid Deep Learning Based on a

Heterogeneous Network Profile for

Functional Annotations of

Plasmodium falciparum Genes. Int. J.

Mol. Sci. 2021, 22, 10019. https://

doi.org/10.3390/ijms221810019

Academic Editor:

Humberto González-Díaz

Received: 27 August 2021

Accepted: 14 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North
Bangkok, Bangkok 10800, Thailand; apichat.s@sci.kmutnb.ac.th

2 Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute,
King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

3 Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer
Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

4 Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University,
Bangkok 10330, Thailand

* Correspondence: kitiporn.p@chula.ac.th

Abstract: Functional annotation of unknown function genes reveals unidentified functions that
can enhance our understanding of complex genome communications. A common approach for
inferring gene function involves the ortholog-based method. However, genetic data alone are often
not enough to provide information for function annotation. Thus, integrating other sources of
data can potentially increase the possibility of retrieving annotations. Network-based methods
are efficient techniques for exploring interactions among genes and can be used for functional
inference. In this study, we present an analysis framework for inferring the functions of Plasmodium
falciparum genes based on connection profiles in a heterogeneous network between human and
Plasmodium falciparum proteins. These profiles were fed into a hybrid deep learning algorithm to
predict the orthologs of unknown function genes. The results show high performance of the model’s
predictions, with an AUC of 0.89. One hundred and twenty-one predicted pairs with high prediction
scores were selected for inferring the functions using statistical enrichment analysis. Using this
method, PF3D7_1248700 and PF3D7_0401800 were found to be involved with muscle contraction
and striated muscle tissue development, while PF3D7_1303800 and PF3D7_1201000 were found
to be related to protein dephosphorylation. In conclusion, combining a heterogeneous network
and a hybrid deep learning technique can allow us to identify unknown gene functions of malaria
parasites. This approach is generalized and can be applied to other diseases that enhance the field of
biomedical science.

Keywords: heterogeneous network; hybrid deep learning; functional annotations; protein net-
work profiles

1. Introduction

Identification of gene functions is a fundamental application for comparative genomic
studies. Ortholog inference is a famous method for transferring functional annotations
from one organism to another. Orthologous genes are used to demonstrate evolutionary
relationships between different species, and it has been shown that orthologous genes
often reveal significant functional similarities [1–4]. Identifying gene functions leads to a
better understanding of the complexity of a genome. Malaria is a critical disease caused by
Plasmodium parasites. The global technical strategy (GTS) for malaria from 2016 to 2030
aims to reduce the case incidence and mortality rates of malaria by at least 90% by 2030 from
the 2015 baseline, as reported by the World Health Organization’s (WHO) malaria report in
2020. However, drug resistance has emerged as an issue, particularly in southeast Asia [5,6],
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which carries the potential to cause further spread. This worsening antimalarial resistance
threatens plans for malaria treatment, control, and elimination. Among all Plasmodium
species infecting humans, Plasmodium falciparum (P. falciparum) is the most common malarial
parasite and the most likely to result in severe infections. It is fatal if not hastily treated. The
first-line treatment for P. falciparum malaria is artemisinin in combination with a partner
drug. P. falciparum parasites resistant to first-line therapies are found across Southeast
Asia, particularly in the Greater Mekong Subregion (GMS) [7,8]. Moreover, we have a
limited understanding of the immune mechanisms for malaria protection [9], and several
Plasmodium genes remain functionally unannotated [10,11].

A common approach to functional inference for an annotated gene is to find or-
thologs. Many orthologous genes often retain similar biological functions preserved across
species [4,12–14]. Despite the availability of Plasmodium genomes for more than a decade,
there still remains many Plasmodium genes with unknown functions [10,15]. Genetic data
alone are often not enough to provide information for functional annotations. Instead of
using only genetic data, therefore, other information, such as associations and interactions
between proteins, can be used to identify proteins in large-scale multiple connection views,
which assist in inferring the functions of uncharacterized proteins [16,17], associations of
proteins and drugs [18,19], and associations among diseases [20]. This knowledge poten-
tially helps to reveal novel therapeutic approaches to treating malaria. A heterogeneous
network—that is, a network connecting two or more different types of networks—has
been applied in several studies [16,21,22]. Suratanee et al. [16] used a network propagation
algorithm on a heterogeneous network to find associations between Plasmodium vivax and
human proteins. To draw information from the network, topological features could be
extracted. Liu et al. [21] extracted topological features from a heterogeneous network of
drugs and diseases and used a deep neural network (DNN) to predict new drug–disease
associations. A deep neural network was also used to predict protein–protein interactions
from common protein descriptors [23]. Machine learning algorithms integrating network
topology features of a heterogeneous network have been successfully used to identify
parasite and human proteins [22].

One of the more famous machine learning algorithms is a technique known as deep
learning. This technique is capable of extracting features directly from data and managing
large-scale and high-dimension data. Therefore, deep learning methods have become
unprecedentedly famous in several studies of biomedical applications, including learning
protein sequences for protein contact prediction [24], protein structure prediction [25], and
chemistry and drug design [26–28]. In particular, convolution neural networks (CNNs)
have been successfully used to solve problems in computational biology. These can map
spatial patterns from protein sequences and generate more complex features amenable
to predicting protein structures [29,30]. Another famous deep learning method is the
recurrent neural network (RNN). An RNN’s architecture contains loops wherein the output
of a neuron is fed back to itself. The neural states that result from this looping enable the
network to hold memory from the previous state. Therefore, RNNs obtain the present and
recent past input sources and combine them to produce the current internal state. The final
state will summarize the whole input sequence [30]. RNNs have been successfully used to
solve many sequence-based problems, and they are suitable for predicting a protein struc-
ture based on protein sequences. However, RNNs can easily suffer from gradient vanishing
or gradient explosion problems in which the error decreases or increases exponentially
during training [31]. To alleviate these problems, a special RNN, known as long short-term
memory (LSTM) [32], has been widely used. LSTM enables long-range dependencies by
introducing an intermediate storage step within the memory cell that is controlled by gates.
The gates can add or remove information to the cell state [33]. Bidirectional LSTM has been
used for protein secondary structure prediction [34,35]. In addition, LSTM and CNN have
been fused to predict eight classes of the secondary structure of proteins [36,37]. These
techniques usually deal with long sequence data.
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To infer functions across organisms using network analysis methods, a network with
a high completion rate for interactions and protein functions is required. Under this
assumption, the human protein network was selected for inferring functions. With many
human proteins and P. falciparum proteins, we could obtain a broad view of the complex
relationships within a network. Thus, in this study, we utilized a hybrid deep learning
method by combining a CNN and LSTM to learn a high-dimensional network profile from
the constructed heterogeneous network of human and P. falciparum proteins to infer gene
functions. Ortholog information between human and P. falciparum genes was applied for
deep learning. With the network profile and ortholog information between human and
P. falciparum genes fed to the hybrid deep learning system, the prediction of human genes
associated with P. falciparum genes was performed. Then, gene functions were inferred from
the predicted human genes using statistical analysis. Finally, a list of functions annotated
as being related to unknown function genes was compiled.

2. Results
2.1. Performance Evaluation of the Hybrid Deep Learning Method with Heterogeneous
Network Profiles

Network connection profiles of all human and Plasmodium gene pairs were extracted
from the heterogeneous network. These profiles were used for a binary classification
to distinguish between known and unknown orthologs. However, the dimensions of
the data were very large because all connections of a human protein corresponding to a
human gene in a gene pair to all proteins in the human network and also connections of a
P. falciparum protein corresponding to a P. falciparum gene in the gene pair to all proteins
in the P. falciparum network were integrated. In addition, all connections of a protein
corresponding to a gene pair to all proteins across the network of another organism were
also integrated into the profiles. In total, 28,782 profiles were extracted for a given gene pair.
To handle this large number of features, the convolutional neural network was employed to
extract the latent features from these network connection profiles. In addition, we enhanced
the performance of the classification process by introducing LSTM followed by CNN. A
hybrid deep learning structure was constructed. Importantly, to avoid any biases in our
performance evaluations, any connections between Plasmodium and human proteins found
in the test set were excluded from the heterogeneous network during the training processes.
This means that information about the protein pairs in the test set is not contained in the
features of the training set in each experiment.

Five-fold cross-validations were performed to measure performance. For each fold, the
training data were divided by 20% for validation. Several hyperparameters were optimized.
The performances measured from the test set were obtained. The ranges of hyperparame-
ter values are shown in Supplementary Table S1. Finally, we yielded the area under the
receiver operating characteristics curve (AUC) with a standard deviation of 0.8787 ± 0.005
(Mean ± SD) and the area under precision recall curve (AUCPR) of 0.8724 ± 0.005. Select-
ing the cut-off showing the highest accuracy, we obtained ACC, REC, PREC, and F1 of
0.7997 ± 0.005, 0.8149 ± 0.007, 0.7910 ± 0.009, and 0.8027 ± 0.005, respectively.

2.2. Refining Heterogeneous Network Profiles for Classification

With high-dimensional data, sparse features could be found. We attempted to reduce
the number of features by selecting only relevant ones. Instead of using all proteins in both
the P. falciparum and human networks for consideration, we selected only proteins found in
the positive protein pairs. With this restriction, we obtained a set of reference proteins with
1694 P. falciparum proteins and 4032 human proteins. To obtain proteins that impacted the
network structures and also related to the selected set, we sought high-degree proteins in
the network that were enriched in the set of reference proteins. The thresholding method
was performed by gradually decreasing the degree-cutoff, starting from the maximum
degree of nodes in the network. The proteins that have a higher degree than the cutoff
were selected and examined if they were enriched in the set of reference proteins. The



Int. J. Mol. Sci. 2021, 22, 10019 4 of 18

enrichment test was done by a one-sided Fisher’s exact test with the false discovery rate
(FDR) correction. We selected the highest optimal cutoff at which the selected proteins
were enriched, with a p-value of < 0.0001 in the reference proteins. Then, the selected
enriched proteins were integrated into the reference proteins. With this protein selection,
we obtained two more P. falciparum proteins and 169 human proteins. Finally, we obtained
1696 P. falciparum proteins and 4201 human proteins to be our reference proteins. There-
fore, the dimensions of our data with modified heterogeneous network features became
11,794 features, which is a 41% reduction from the original set. Classification using hybrid
deep learning was performed with this modified set of features and yielded improved
AUC, AUCPR, ACC, PREC, and F1 of 0.8881 ± 0.004, 0.8838 ± 0.006, 0.8122 ± 0.004,
0.8212 ± 0.005, and 0.8095 ± 0.005, respectively. Only the REC of the performance value of
the CNN-LSTM with refined reference proteins was inferior to the value of the CNN-LSTM
with complete reference proteins. The compared performances of the CNN-LSTM with
complete reference proteins and the CNN-LSTM with refined reference proteins are shown
in Figure 1.

In addition, we investigated the computational time when we performed the clas-
sifications with complete reference proteins from the heterogeneous network features
compared to the computational time when we performed the classification with the refined
heterogeneous features. The processing times of the hybrid model with the complete and
refined reference proteins after running the five-times five-fold cross-validations in each
experiment were analyzed. We found that the processing time of the hybrid model with the
refined reference proteins was 2.9 times faster than that of the hybrid model with the com-
plete reference proteins. The model with the refined reference proteins spent an average of
61,153 s (approximately 17 h) per experiment, while the model with the complete reference
proteins spent an average of 178,589 s (approximately 49 h) per experiment. Therefore, the
hybrid model with the refined reference proteins could improve the learning times.
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Figure 1. Average performances of CNN-LSTM with the complete reference proteins compared
to CNN-LSTM with the refined reference proteins. The error bar indicates the standard deviation.
The average AUC, AUCPR, Accuracy, Precision, and F1-measure of CNN-LSTM with the refined
reference proteins are greater than the average performances of CNN-LSTM with the complete
reference proteins.
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2.3. Impact of the Reference Proteins on the Learning Process

From the results of the previous section, we found that reference proteins were im-
portant for the performance of classifications. Therefore, we performed experiments to
investigate the impact of reference proteins. We considered proteins that were important
for the network structures. The top proteins ranked by topological degree were selected to
be the reference proteins. Accordingly, we performed the experiments by ranking proteins
in the P. falciparum network and human network separately and selecting the top 10%, 20%,
30%, . . . , 90% of proteins from the ranked lists to be reference proteins. Each experiment
was performed using the same procedures as the previous experiments. The results showed
that the performance results of these experiments were inferior to the results from the
previous sections. All results are shown in Supplementary Table S2. Moreover, we further
attempted to reduce the number of reference proteins. With this consideration in mind,
we reduced the set of proteins D using a single value decomposition (SVD) method and
selected the reference proteins to be equal to the number of reference proteins from our
refined features. The results showed very low performance for the classification, with an
average AUC of 0.5358 and a standard deviation of 0.016. The results from our experi-
ments demonstrated that our refined features still showed optimal results. Therefore, we
used 1696 P. falciparum proteins and 4201 human proteins as our reference proteins for the
final models.

2.4. Comparison to Other Prediction Methods

We also ran other classification algorithms and compared their results to the per-
formance of the hybrid deep learning method. Five different classifiers, consisting of
random forest, decision tree, linear kernel support vector machine, radial basis function
kernel support vector machine, and Naïve Bayes classifiers, were performed using the
extracted features from various convolution kernels. Using the optimal kernel size of 1000,
strides of 250 and 200 kernels were applied. In addition, 1D max pooling with a pool
size of 20 and strides of five were set. The Glorot Uniform initializer [38] was used to
initialize the kernel weights. Five experiments were performed to obtain the results. All
hyperparameters of these classifiers were optimized. The results showed that the hybrid
algorithms outperformed all standard methods. Among these four standard classifiers,
the random forest yielded the best performance, with an average AUC of 0.7520 and a
standard deviation of 0.003. The decision tree, linear kernel support vector machine, ra-
dial basis kernel support vector machine, and Naïve Bayes yielded an average AUC and
standard deviation of 0.7161 ± 0.006, 0.6206 ± 0.008, 0.6176 ± 0.002, and 0.5997 ± 0.001,
respectively. The respective performances of these methods are shown in Figure 2, and the
respective performances of these classifiers are shown in Table 1.

As expected, the hybrid method demonstrated higher performance than the other
methods. This is because the hybrid method combines the efficiency of both CNN and
LSTM. The CNN comprised learned kernels in the convolution layer. The weight values in
the kernels were learnable during the training phase. In addition, the CNN applied the
same set of local convolutional filters used in one part of the input data across other parts
of the input data. This process brings the advantage of avoiding overfitting problems. The
pooling layer in the CNN helps to achieve translational invariance that the CNN is able
to predict orthologs. If the connections among proteins and their neighboring are change
slightly, it would not affect the values of most of the pooled outputs. The outputs from the
CNN were fed to LSTM, which is capable of handling long-term dependencies with fusing
ability and mapping to static classes of outputs.
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Table 1. The performance of CNN-LSTM with the refined reference proteins compared to the standard classifiers.

Method AUC AUCPR ACC REC PREC F1

CNN-LSTM with complete
reference proteins 0.8787 ± 0.005 0.8724 ± 0.005 0.7997 ± 0.005 0.8149 ± 0.007 0.7910 ± 0.009 0.8027 ± 0.005

CNN-LSTM with refined
reference proteins 0.8881 ± 0.004 0.8838 ± 0.006 0.8122 ± 0.004 0.7983 ± 0.009 0.8212 ± 0.005 0.8095 ± 0.005

Random forest 0.7520 ± 0.003 0.7534 ± 0.004 0.6836 ± 0.002 0.6641 ± 0.013 0.6912 ± 0.006 0.6773 ± 0.005

Decision Tree 0.7161 ± 0.006 0.7235 ± 0.008 0.6526 ± 0.002 0.5877 ± 0.043 0.6769 ± 0.019 0.6279 ± 0.015

Linear kernel SVM 0.6206 ± 0.008 0.6174 ± 0.008 0.5977 ± 0.009 0.4256 ± 0.047 0.6496 ± 0.009 0.5129 ± 0.032

RBF kernel SVM 0.6176 ± 0.002 0.6139 ± 0.001 0.5941 ± 0.001 0.4106 ± 0.024 0.6493 ± 0.010 0.5026 ± 0.015

Naïve Bayes classification 0.5997 ± 0.001 0.5999 ± 0.002 0.5948 ± 0.001 0.3908 ± 0.007 0.6603 ± 0.005 0.4910 ± 0.005

2.5. Functional Annotations for Unknown Function Genes

Hybrid deep learning was successfully used to predict orthologous genes between
humans and P. falciparum. It is of great interest to further investigate the gene functions
of P. falciparum genes. Functional inference was performed by integrating the predicted
pairs of P. falciparum and human genes. Note that one P. falciparum gene could be pre-
dicted to be associated with more than one human gene. Only pairs with high prediction
scores were investigated. We focused on the unknown function genes. Therefore, we
sought unknown function P. falciparum genes from the PlasmoDB database and found 256
unknown function genes that were among our investigated genes in our network. We
investigated the associations of these unknown genes with all the investigated human
genes. A total of 3,081,458 pairs not found in our known orthologous pairs were obtained,
and 270 pairs were found in the known set. These pairs with heterogeneous network
profiles were predicted to be orthologous or not using 25 learned models. The average
probability for each pair was calculated and assigned as a score for the pair. The scores of
these two groups were investigated, and it was found that the pairs found in the known
orthologous set showed significantly higher prediction scores than those of pairs found
in the unknown orthologous set (p-value < 2.2 × 10−17). With this prediction score, we
focused on pairs not found in the ortholog database. To obtain more precise prediction
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results, we selected a more stringent prediction score of more than 0.99. With this criterion,
we obtained 121 pairs with four P. falciparum genes and 83 human genes. Then, we inferred
the functions of these P. falciparum genes using functions of their orthologous human genes.
Supplementary Table S3 shows all 121 pairs with their prediction scores, and the network
of these 121 pairs is shown in Figure 3. From the figure, we can see that a P. falciparum
gene can be associated with more than one human gene. In addition, these P. falciparum
genes shared some common human genes. To demonstrate the degree of each gene, the
nodes of the network were visualized in a pie chart indicating the number of neighboring
nodes. To find the function of these unknown function P. falciparum genes, all human genes
predicted to be orthologous to a P. falciparum gene were collected. The enrichment analysis
of these human genes was performed on the gene ontology data to find the GO terms in
biological processes that these genes overrepresented. With this analysis, we obtained the
representative GO terms that were inferred to be the functions of the P. falciparum gene.
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Table 2 shows the predicted gene functions of four unknown function P. falciparum
genes. From the enrichment analysis, overrepresented GO terms in the human genes
for each P. falciparum gene were obtained. The conserved protein PF3D7_1248700 was
predicted to be orthologous to 71 human proteins. We found five gene ontology terms
that these human proteins enriched. These were muscle contraction, actin-myosin filament
sliding, striated muscle tissue development, regulation of synaptic vesicle endocytosis,
and entrainment of the circadian clock by photoperiod. Interestingly, classical symptoms
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of patients suffering from malaria infections include effects on skeletal muscle functions,
such as muscle contractures, muscle aches, muscle pain, muscle fatigue, and muscle
weakness [39,40]. For PF3D7_0401800, also known as the PfD80 Plasmodium exported
protein (PHISTb), 38 human proteins were predicted to be orthologous. Five GO terms
were enriched for the human proteins. Their enriched GO terms were related to the muscle
system and were close to the GO terms for PF3D7_1248700, except that transepithelial
transport and receptor catabolic process were different. For PF3D7_1303800, seven human
proteins were predicted to be orthologous and four GO terms were enriched. Two of them
were related to the circadian clock. The other two terms were protein dephosphorylation
and regulation binding. The other Plasmodium exported protein (PHISTb), PF3D7_1201000,
was predicted to be related to two human proteins consisting of the protein phosphatase
1 catalytic subunit beta (PPP1CB) and the protein phosphatase 3 catalytic subunit alpha
(PPP3CA). These two proteins were not found to be enriched in any GO terms. Therefore,
we focused on the GO terms of these two human proteins and used them as the gene
functions for PF3D7_1201000. With this consideration, we found nine GO terms that
protein dephosphorylation was included. Table 2 shows these three P. falciparum genes,
and Supplementary Table S4 shows their enriched GO terms and all results of enrichment
analysis in biological processes. The enrichment analysis results of the molecular functions
and cellular components are presented in Supplementary Tables S5 and S6, respectively.

Table 2. The predicted gene functions for selected P. falciparum genes.

P. falciparum Gene Symbol GO ID (Human) GO Term (Human) Corrected p-Value

PF3D7_1248700 GO:0006936 muscle contraction 4.16 × 10−14

GO:0033275 actin-myosin filament sliding 5.80 × 10−12

GO:0014706 striated muscle tissue development 1.00 × 10−5

GO:1900242 regulation of synaptic vesicle endocytosis 0.00177
GO:0043153 entrainment of circadian clock by photoperiod 0.00541

PF3D7_0401800 GO:0006936 muscle contraction 6.62 × 10−14

GO:0030049 muscle filament sliding 1.33 × 10−12

GO:0014706 striated muscle tissue development 2.56 × 10−6

GO:0070633 transepithelial transport 0.00103
GO:0032801 receptor catabolic process 0.00164

PF3D7_1303800 GO:0006470 protein dephosphorylation 1.17 × 10−5

GO:0009649 entrainment of circadian clock 1.82 × 10−5

GO:0043153 entrainment of circadian clock by photoperiod 1.82 × 10−5

GO:0051098 regulation of binding 0.00234

PF3D7_1201000 GO:0006470 protein dephosphorylation

N/A

GO:0006606 protein import into nucleus
GO:0007420 brain development
GO:0030335 positive regulation of cell migration
GO:0032922 circadian regulation of gene expression
GO:0038095 Fc-epsilon receptor signaling pathway
GO:0042060 wound healing
GO:0045944 positive regulation of transcription by RNA polymerase II
GO:0051301 cell division

2.6. Investigating Relevant Functions from Neighboring Genes

To investigate whether the inferred GO terms of a P. falciparum gene are similar or
closely related to the GO terms of its neighboring gene, the neighboring genes of these
four genes (PF3D7_1248700, PF3D7_0401800, PF3D7_1303800, and PF3D7_1201000) were
observed in the P. falciparum network and their close or common functions were sought out.
Only one neighbor gene of PF3D7_1248700 was found: PF3D7_1023900. PF3D7_0401800
also had one neighbor, PF3D7_1218300. For PF3D7_1201000, there were three neighbor-
ing genes: PF3D7_0402000, PF3D7_0624600, and PF3D7_0818700. For PF3D7_1303800,
there were twelve neighboring genes: PF3D7_0628600, PF3D7_0630300, PF3D7_0718100,
PF3D7_0823300, PF3D7_0824800, PF3D7_0904900, PF3D7_1013600, PF3D7_1014600,
PF3D7_1118600, PF3D7_1138800, PF3D7_1362200, and PF3D7_1448500. GO term similarity
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was computed, and similarity scores ranging from 0 to 1 of PF3D7_1303800, PF3D7_1201000,
PF3D7_1248700, and PF3D7_0401800 are shown in Figure 4a–d, respectively.
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For PF3D7_1303800, we found protein dephosphorylation (GO:0006470), which was
close to other GO terms of PF3D7_130800’s neighbors. The highest similarity score, 0.88,
was calculated between GO:0006470 and the regulation of transcription, DNA-templated
by GO:0006355, of PF3D7_1118600. GO:0006470 also showed a high similarity score in
relation to other GO terms of PF3D7_1303800’s neighbors with a similarity score of more
than 0.7. These included GO:0006468, GO:0006357, GO:0045892, GO:0006281, GO0045944,
GO:0016310, and GO:0000122. Therefore, protein dephosphorylation may be a primary
function of PF3D7_1303800.

Interestingly, for PF3D7_1201000, we also found the function of protein dephosphory-
lation. However, the similarity scores of this function to the GO terms of PF3D7_1201000’s
neighbor were quite low (less than 0.1). Similar to the GO:0006470, the GO terms for the
PF3D7_1201000 showed a low similarity score in relation to the GO term of its neighbor-
ing genes.

For PF3D7_1248700, we found the function of regulation of synaptic vesicle endo-
cytosis (GO:1900242) to be closely related to DNA duplex unwinding (GO:0032508) and
chromatin remodeling (GO:0043044) with a similarity score of 0.26. In addition, we also
found a very low similarity (less than 0.1) of actin-myosin filament sliding (GO:0033275)
with DNA duplex unwinding (GO:0032508) and chromatin remodeling (GO:0043044).

For PF3D7_0401800, transepithelial transport (GO:0070633) was related to vesicle-
mediated transport (GO:0016192), intracellular protein transport (GO:0006886), and en-
docytosis (GO:0006897), with similarity scores of 0.4012, 0.3852, and 0.3702, respectively.
Therefore, PF3D7_0401800 may be related to transport processes.

An unknown function gene might relate to more than one GO term. However,
it is interesting to find the most relevant GO term for each investigated P. falciparum
gene. Therefore, we calculated the sum of the GO similarity scores for each GO term
and the GO terms of the gene’s neighbors. The results are shown in Figure 5. For
PF3D7_1303800, we found that GO:0006470 presented the highest sum of the similar-
ity scores. For PF3D7_1201000, five GO terms, consisting of GO:0006470, GO:0006606,
GO:003035, GO:0045944, and GO:00051301, showed similar values for the scores. These
were quite low. For PF3D7_1248700, we found GO:1900242 showed a sum of GO similarity
score higher than the sum scores of other GO terms in the same group. For PF3D7_0401800,
we found that GO:0070633 showed the highest sum scores compared to the score of other
GO terms.

From the abovementioned, we found that protein dephosphorylation was highly
related to other GO terms. To further investigate this term and observe other terms, we
aggregated all investigated interactions and constructed a network, which is illustrated in
Figure 6. Only neighboring genes with at least one of their GO terms showing a similar
GO score of more than 0 compared to the GO terms of the unknown function genes were
presented in the figure. From the network, we found that GO:0006470 showed a high
value for degree centrality: 38. In addition, this term was directly and indirectly related
to PF3D7_1303800, PF3D7_1201000, and PF3D7_1248700, except PF3D7_0401800, whose
subnetwork was separated from others. Dephosphorylation processes are important for the
regulation of signaling pathways, and protein dephosphorylation was remarkably effective
for therapeutic strategies, especially in the regulation of P. falciparum [41].
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Figure 6. The network shows the connections among PF3D7_1303800, PF3D7_1201000, PF3D7_1248700, and PF3D7_0401800,
their neighboring genes, and their corresponding GO terms. Notice that PF3D7_1303800 has ten neighboring genes while
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some commonly shared GO terms among PF3D7_1303800, PF3D7_1201000, and PF3D7_1248700.
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3. Conclusions and Discussion

In this study, we proposed an analysis framework for predicting the functions of
unknown function P. falciparum genes using the CNN-LSTM model. Network connection
profiles were obtained from the constructed heterogeneous network, and these profiles
were fed to the hybrid deep learning system to predict the orthologs between P. falciparum
and human genes. The CNN-LSTM method was capable of handling a large number of
heterogeneous network profiles. Our experiments have shown that our model can precisely
predict orthologs with high performance and that it outperforms typical classifiers. In
this work, the human network was used because it contains a high number of reliable
interactions with a large number of annotated functions, and it is a host of P. falciparum.
However, from the large number of interactions, we obtained a large set of features, which
expended a lot of computer memory and computational time. In addition, network profiles
with sparse features were usually found, especially in network features extracted from
incomplete networks. Therefore, we refined the features to obtain a smaller set of features
that used less memory and time but still had high classification performance.

From the deep learning algorithm, the orthologs were predicted based on the heteroge-
neous network features that integrated several pieces of information regarding interactions
between gene products. The results show that a P. falciparum gene can be predicted to
be related to more than one human gene. These results are useful because we were able
to identify several functions from the predicted human genes using the enrichment test.
Although we performed the clustering of the GO terms to obtain only the top-ranking
GO term in each cluster that was a function for the P. falciparum gene, the GO terms with
the second or third ranking with significant p-values also warrant further investigation.
To obtain more relevant gene functions, we considered the functions of the neighboring
P. falciparum genes and investigated whether they were closely related. Although the
functions of the neighboring genes are not necessarily similar, they could be used as clues
for inferring or filtering the related functions of the given P. falciparum gene. From our
selected four unknown function P. falciparum genes, we found that some of them might be
related to muscle functions and dephosphorylation processes important for P. falciparum
regulation. Our functional annotation based on the heterogeneous network using a hybrid
deep learning method is comprehensive and could be performed for other organisms.

4. Materials and Methods
4.1. Heterogeneous Network Construction and Ortholog Collection

To construct a reliable network, high-quality datasets need to be used. For the
P. falciparum interaction network and the human interaction network, we employed in-
teractions from the STRING database (version 11.0) (Copenhagen, Denmark; Heidelberg,
Germany; Lausanne, Switzerland) [42]. Only confidence interactions with confidence
values greater than or equal to 900 were collected. Accordingly, two interaction net-
works were reconstructed. The associations between P. falciparum and human proteins
were functionally annotated based on orthologs that were carried out using EggNOG
(version 5.0) (Heidelberg, Germany) [43], which is a widely used database providing com-
prehensive functional annotations of proteins. With this database, the ortholog associations
between P. falciparum proteins and human proteins were retained. Finally, 12,038 human
proteins and 2353 P. falciparum proteins were obtained. In total, 313,359 interactions be-
tween human and human, 36,050 interactions between P. falciparum and P. falciparum, and
11,024 interactions between human and P. falciparum proteins were obtained. Apart from
the orthologous information from EggNOG and interaction information from STRING, we
obtained functional annotation data of the P. falciparum gene from PlasmoDB [44] (accessed
on 29 May 2021; Athens, Georgia, USA; Philadelphia, Pennsylvania, USA) for our analysis.

4.2. Heterogeneous Network Profile Extraction

To find the network profile describing the relationship of any two nodes in a hetero-
geneous network, complete connections between one node and the other nodes, either
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among the same or different types in the network, can be extracted. One piece of precious
data that integrates information from all nodes of the network is feature extraction from
the heterogeneous network. Sets of features have been successfully applied for the identifi-
cation of drug–disease associations [21] and are known as heterogeneous network profiles.
Thus, in this work, we also extracted these profiles from the heterogeneous network to find
Plasmodium and human protein associations.

Considering m Plasmodium proteins and n human proteins in the heterogeneous net-
work, we have expressed the following: App

(m×m)
, representing a Plasmodium–Plasmodium

protein interaction matrix; Ahh
(n×n), representing a human–human protein interaction matrix;

and Aph
(m×n), representing a Plasmodium–human interaction matrix. To extract a hetero-

geneous feature Fpihj for a pair of Plasmodium and human protein associations from the
network, we constructed four vectors corresponding to pi and hj, extracted from App

(m×m)
,

Ahh
(n×n), and Aph

(m×n). Then, we concatenated these vectors to obtain the heterogeneous
network feature for a pair.

The first vector, api P =
(

app
i1 , app

i2 , app
i3 , . . . , app

im

)
= App(pi, :), is a vector of protein pi to all

Plasmodium proteins. The second, api H =
(

aph
i1 , aph

i2 , aph
i3 , . . . , aph

in

)
= Aph(pi, :), is a vector of pro-

tein pi to all human proteins. The third vector, aPhj =
(

aph
1j , aph

2j , aph
3j , . . . , aph

mj

)T
= Aph(:, hj), is a

vector of protein hj to all Plasmodium proteins. Finally, ahjH =
(

ahh
j1 , ahh

j2 , ahh
j3 , . . . , ahh

jn

)
= Ahh(hj, :)

is a vector of protein hj to all human proteins. The heterogeneous network feature of a
pair (pi, hj) is defined as Fpihj = api P ⊕ api H ⊕ aPhj ⊕ ahj H . The symbol ⊕ denotes
concatenation of the feature vectors. This feature vector is generated for all possible pairs
of pi and hj in the heterogeneous network.

4.3. Refining the Heterogeneous Network Profile Relative to the Entirety of Heterogeneous
Network Information

The heterogeneous network profile containing the connection features for a pair
(pi, hj) could be used to represent all network information between pi and the other nodes
in the network and also between hj and the other nodes in the network. It could be used
effectively for both small and moderated network models. However, for our large-scale
analysis of a number of Plasmodium and human proteins in the network, a very large
number of features for each protein pair would be generated. In addition, the obtained
features could be a sparse vector because of the rare number of known protein interactions
across the two species. To reduce redundant information, a refined set of features could be
proposed. Instead of considering the interactions of a Plasmodium protein and a human
one for a given protein pair to all proteins in the network, we focused on a smaller set
of influenced proteins called reference proteins (D). The proteins in D were P. falciparum
proteins and human proteins found in the set of known orthologous proteins. We used
the denotation that DP is the set of Plasmodium proteins in D and DH is the set of human
proteins in D, where D = DP ∪ DH . Moreover, we realized there was some precious
network topological information. Accordingly, we investigated the proteins that influence
the network structures. With this consideration, we extracted high-degree proteins in both
the P. falciparum and human networks that enriched in the set of DP and DH , respectively,
and included them in the reference proteins D. For the modified heterogeneous feature,
the vectors api P, api H , aPhj , and ahj H could be adapted. We made the following definitions:
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App∗ = App(:, DP), Ahh∗ = Ahh(:, DH), Aph∗ = Aph(:, DH), and Ap∗h = Aph(DP, :).
Therefore, the refined heterogeneous feature for a pair (pi, hj) is generated by

F
pihj
re f ined = api P∗ ⊕ api H∗ ⊕ aP∗hj ⊕ ahj H∗, where

api P∗ =
(

app∗
i1 , app∗

i2 , app∗
i3 , . . . , app∗

iu

)
= App∗(pi, :),

api H∗ =
(

aph∗
i1 , aph∗

i2 , aph∗
i3 , . . . , aph∗

iv

)
= Aph∗(pi, :),

aP∗hj =
(

ap∗h
1j , ap∗h

2j , ap∗h
3j , . . . , ap∗h

uj

)T
= Ap∗h(:, hj), and

ahj H∗ =
(

ahh∗
j1 , ahh∗

j2 , ahh∗
j3 , . . . , ahh∗

jv

)
= Ahh∗(hj, :).

(1)

Suppose that the number of Plasmodium and human proteins in D are u and v, re-
spectively. Given this, the number of refined heterogeneous network features is equal to
2× (u + v). The refined heterogeneous network features were used in conjunction with a
deep learning model to determine an association between Plasmodium and human proteins.

4.4. Hybrid Deep Learning Model Construction and Assessment

Determining whether two proteins are orthologous or not is a binary classification
problem. To perform the classification, we utilize a hybrid deep learning method that
combines a CNN and LSTM. This is known as a convolutional long-short term memory
(CNN-LSTM) network. The CNN-LSTM architecture uses CNN layers to extract informa-
tion from input features and combine it with LSTMs to make predictions. Specifically, for
the heterogeneous network feature, we used a 1D convolutional neural network on the
CNN layer. The architecture and hyperparameters were optimized using the Adam algo-
rithm [45], which is a stochastic gradient descent method based on adaptive estimation of
first-order and second-order moments. The hyperparameters were tuned using a random
search algorithm. The list of hyperparameters is shown in Supplementary Table S1. The
architecture of the hybrid deep learning model is shown in Figure 7. These heterogeneous
network profiles were fed as inputs to the CNN-LSTM model. The model started with a
layer of 1D-CNN for extracting information from the heterogeneous features. The sigmoid
function was used as the activation function at this stage. After the 1D-CNN layer was
processed, batch normalization and the max pooling layer were applied. The output from
the pooling layer was fed as an input to the LSTM layer. In the LSTM, a unit dropout
technique was applied to the inputs to avoid an overfitting problem. A fully connected
dense layer with a rectified linear activation function is applied to the LSTM output. The
latent features from the dense layer were flattened. Then, a dense layer with a Softmax
activation function was employed as the final layer.

To evaluate the performance of the model, 5-fold cross-validations were conducted.
The data were randomly partitioned into five folds. For each fold, a single fold was retained
as validation data for testing the model, and the remaining four folds were used for learning
the model. Five repetitions of 5-fold cross-validations were performed. In each fold, the
data were balanced in a one-to-one ratio by randomly under-sampling the majority class to
train the algorithm. Overall, we performed 5-fold cross-validations for five experiments. To
evaluate the predictive ability of the model, six measurements, including area under curve
(AUC), area under precision recall curve (AUCPR), accuracy (ACC), precision (PREC),
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recall (REC), and the F1-measure (F1), were used. The ACC, PREC, REC, and F1 were
calculated as follows:

ACC =
(TP + TN)

(TP + FP + FN + TN)
,

PREC =
TP

(TP + FP)
,

REC =
TP

(TP + FN)
,

F1 =
2× PREC× REC
(PREC + REC)

.

(2)
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TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively. The positive set is the set of known orthologous proteins, and the negative
set consists of the undefined orthologous proteins. The high-performance models are the
models that have high values for the above metrics.

4.5. Statistical Analysis for Functional Annotations

The results from the predictions consisted of pairs of P. falciparum and human proteins.
To infer the functions of unknown function proteins of P. falciparum, we investigated the
functions of human proteins predicted to be orthologous to P. falciparum proteins. Notice
that one P. falciparum protein can be matched to more than one human protein. In this
case, enrichment analysis could be employed to find the relevant functions of those human
proteins. To this end, we employed an enrichment test using the ClusterProfilers [46]
package in R (Guangzhou, China) to determine the gene ontology (GO) terms in biological
processes overrepresented in the set of human proteins. A two-sided hypergeometric test
with Benjamin–Hochberg corrections (p-value less than 0.01) was performed to find the
significant GO terms. Similar GO terms were grouped based on their descriptions. The
most representative of a given GO group was identified using the Revigo tool [47] (Zagreb,
Croatia; Barcelona, Spain). To find the closeness between two GOs, a similarity measure
of gene ontology from the GoSim package [48] in R (Heidelberg, Germany; Tuebingen,
Germany) was employed. With this package, GO term similarity was measured using
Lin’s pairwise similarity [49]. The network visualization was performed using Cytoscape
version 3.8.2 [50].
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