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Abstract: Analysis of differential abundance in proteomics data sets requires careful application of
missing value imputation. Missing abundance values widely vary when performing comparisons
across different sample treatments. For example, one would expect a consistent rate of “missing at
random” (MAR) across batches of samples and varying rates of “missing not at random” (MNAR)
depending on the inherent difference in sample treatments within the study. The missing value
imputation strategy must thus be selected that best accounts for both MAR and MNAR simultane-
ously. Several important issues must be considered when deciding the appropriate missing value
imputation strategy: (1) when it is appropriate to impute data; (2) how to choose a method that
reflects the combinatorial manner of MAR and MNAR that occurs in an experiment. This paper
provides an evaluation of missing value imputation strategies used in proteomics and presents a case
for the use of hybrid left-censored missing value imputation approaches that can handle the MNAR
problem common to proteomics data.

Keywords: bottom-up proteomics; label-free quantitation; spectral counting; peak intensity; missing
value imputation

1. Introduction

Improvements in mass spectrometry instrumentation and methodologies, along with a
growing interest in the exploration of multi-omics, incorporating proteomics with genomics
for targeted therapeutics, have led to a generation of large, high-density datasets and
introduced a new confounding factor in data analysis of data-dependent acquisition (DDA)
methods: missing values [1–4]. Missing values in mass spectrometry-based proteomics data
analysis can range from 5 to 50% in any given replicate for observed peptide abundances.
Two approaches to deal with missing values are (1) removing peptides/proteins that have
insufficient samples for analysis or (2) imputing values as placeholders for the missing
values [5–12]. The former approach may be acceptable when analyzing a small number
of samples with similar proteomic profiles and few missing values. However, the latter
imputation approach, when appropriately applied, can avoid unnecessarily excluding data
from analysis.

The most common sources of missing values in proteomics experiments are (1) the
biology and/or technical sample preparation, (2) actual presence below the instrument’s
limit of detection (LOD) threshold and (3) presence above the LOD but an error in data
preprocessing [13]. Furthermore, missing values in proteomics data can be classified into
one of three categories: missing completely at random (MCAR), missing at random (MAR)
or missing not at random (MNAR) [14]. MCAR is independent of the data and observed
values, much as its name suggests, and is likely to occur across the entire distribution of
data. This type of missingness originates from inaccurate instrumentation or oversight
in experimental sample preparation. MAR covers a wider range than MCAR, and the
missingness is due to conditional dependency on observed values. This class of missing
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values can arise when the peptide sequence is mapped incorrectly or software erroneously
assigns shared peptides to precursors leading to misidentification in some samples and
missing values in others.

MAR methods considered for this study include k nearest neighbors (kNN), singular
value decomposition (SVD) and maximum likelihood estimate (MLE). The kNN algorithm
imputes missing values to the protein of interest from proteins with similar expression
profiles. The missing value is estimated from a weighted average of the k closest proteins
to the protein of interest [15]. The SVD method converts the dataset to eigenproteins, a
principle component protein expression matrix. This algorithm fills in missing values with
row averages and performs consecutive iterations with eigenprotein regression until the
total change in the matrix falls below 0.01 [15]. MLE assumes that data are a function
of an unknown parameter θ. The imputed value is a random draw of the MLE of θ that
maximizes the probability of the observed data [6,16,17].

MNAR is a non-ignorable case of missing values contrasting the previously mentioned
MAR, where the missing values arise as a direct relationship with the data. MNAR may
result from experimental effects in proteomics such as (1) enzyme miscleavages, (2) true
presence/absence (as seen in immunoprecipitation (IP) when comparing a treatment to an
immunoglobulin control (IgG)) and (3) instrumentation effects (dynamic range or LOD
occurring when peptide measurements are low in abundance compared to background
noise or constitute low ionization efficiency). Because the missingness is influenced by
the low abundant nature of these values, this category of missing values is considered
left-censored where the distribution of values (if present in the data) would fall on the left
tail of the total observations in the dataset.

Non-ignorable MNAR methods considered for this study include deterministic min-
imum (MinDet), probabilistic minimum (MinProb) and quantile regression imputation
of left-censored data (QRILC). MinDet replaces each missing value with the smallest de-
tectable intensity across the entire dataset or observed within each sample [18,19]. Similar
to MinDet, MinProb also replaces missing values with the smallest value, but only after the
data are first centered on the MinDet value. Then, the replacement for the missing value is a
random draw from the Gaussian distribution [6,20]. The QRILC approach utilizes quantile
regression to construct a truncated distribution from the leftmost tail of the data, and the
missing values are then replaced with random draws from this reduced allotment [9].

The current literature on missing values imputation has explored the type of impu-
tation (single/multiple), nature of missingness (MAR, MCAR or MNAR) applied across
entire datasets, statistical algorithms to determine differentially expressed/enriched pro-
teins (DEP) (reviewed further in [7,8,11,21–24]) and development of software tools to
visualize the results (discussed further in [25–31]). Single imputation strategies work well
with datasets that are very similar in nature (low number of missing values), simulated
missing values and very large time course studies containing multiple time points and
biological replications [6,24,32,33]. However, as the number of missing values increases, it
has been suggested that a single value estimate is not capable of generating the missing
value accurately or capturing the variability. Additionally, a value too small or too large
from the “true value” will heavily influence the downstream statistical analysis [10,34].

The multiple imputation (MI) approach addresses the single value estimate concern
by performing consecutive iterations of a chosen method to generate m imputed datasets,
followed by a selection step that combines every m imputations into a final dataset for
downstream analysis. These methods work well with small datasets, but the imputation
method and modeling approach are data-dependent, sensitive to parameter selection and
may need further optimization for effective implementation [10,35,36]. In contrast, multiple
imputations in multi-factor analysis (MI-MFA) were successfully applied to large datasets
without a priori knowledge of the missingness. However, the MI-MFA approach assumes
that missing values are MAR, require good donor-recipient matches and may introduce
bias if the sample size is too small, yielding too few donors in the donor pool [34].
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As it is often difficult to determine the main contributor to missing values, approaches
that combine MAR and MNAR methods are important to consider. Here, we provide a
comparison of several different combinations of workflow imputation methods available
via the imputeLCMD package in R [6,37] and offer insight into the most appropriate
workflow and method for handling the missing data problem in proteomics. We further
demonstrated that across increasing numbers and type of missingness, the MNAR/MAR
MI SFI-hybrid approach consistently outperformed other methods, as evidenced by the
percentage of significant proteins captured in the simulated/amputed data (with one
exception), along with the accurate calculation of logFC protein expression values and
q-value significance in DEP comparisons when applied to actual proteomics data.

2. Results
2.1. Imputation with Simulated Dataset

As described in the methods section, data were simulated from the MDA-MB-468
dataset by treatment group using the mean and standard deviation of the observed values.
This resulted in a dataset consisting of 3807 proteins with three or six total observations
(three missing values in one treatment group or zero missing values). The dataset was used
to establish a baseline for comparing imputation methods wherein we know the source of
missingness. The total missingness was 9.2%, including 12.2% in the glucose deprivation
(GD) treatment group and 6.2% in the high glucose (HG) treatment group (Table 1 and
Table S1). After 25 consecutive iterations and using a threshold of 0.05 for significance
cut-off, the following DEP lists were observed: 2570 significant proteins when using kNN,
1794 for MLE, 2494 for SVD, 2647 for MinDet, 2527 for MinProb, 2509 for QRILC and 2537
for SFI-hybrid (Table 1 and Table S1). The simulated dataset and resulting DEP analyses
signify the ground truth for this data.

Table 1. Metrics for simulated and one amputed dataset by imputation method. MDA-MB-468 data were simulated as
described in the methods section, and shown is the number of differentially expressed (DE) proteins (Sig IDs, q-value < 0.05)
and the percentage of missing values (% MV) by treatment group (Note: the total number of potential observations in the
dataset is 3807 proteins × 6 or 22842). The amputed metrics are from the High MAR instance, where the % Sig IDs is the
percentage of the original Sig IDs captured after imputation and DE analysis. GD = glucose deprivation treatment group,
HG = high glucose.

Simulated Dataset Amputed Data

High MAR (0.8 MAR: 0.2 MNAR)

Method % MV
GD

% MV
HG

% MV
Total

Sig
IDs

% MV
GD

% MV
HG

% MV
Total

Sig
IDs

% Sig
IDs

Sig
Lost

Sig
Gain

kNN

12.2 6.2 9.2

2570

MAR
6.5

MNAR
1.5

TOTAL
8.0

MAR
7.0

MNAR
1.6

TOTAL
8.6

MAR
6.8

MNAR
1.5

TOTAL
8.3

1223 47.6 1368 21

MLE 1794 1256 70.0 583 45

SVD 2494 1601 64.2 916 23

MinDet 2647 1378 52.1 1276 7

MinProb 2527 1273 50.4 1267 13

QRILC 2509 1166 46.5 1347 4

SFI-Hybrid 2537 2386 94.1 254 103

2.2. Type of Amputation and Increasing Missingness Influences on Significance

To investigate how missingness alters the performance of MAR, MNAR and hybrid
imputation methods and downstream statistics when attempting to determine significance,
datasets containing different missing value combinations were generated from the MDA
simulated data using the ampute function from the mice package in R. Missing value
combinations are data patterns of variables containing missing values and variables that
remain complete as determined primarily by two user-provided factors: the missingness
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mechanism (MAR or MNAR) and the proportion of missingness. In this study, four
different types of amputation were performed on the simulated data to introduce more
missing values: low missing values (Low MV, 0.2: 0.2 MAR: MNAR), mid missing values
(Mid MV, 0.5: 0.5 MAR: MNAR), high MAR (0.8: 0.2 MAR: MNAR) and high MNAR (0.2:
0.8 MAR: MNAR). Following amputation, total missingness increased by 3.3% in Low MV,
8.8% in Mid MV, 8.3% in high MAR and 8.5% in high MNAR (distribution can be found
in Table S1). The percentage of significant proteins captured following imputation of the
amputed datasets ranged from 40.1% in the High MNAR with the QRILC method to 94.1%
in the High MAR with the hybrid method (Table 1, Figure 1a and Table S1).
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2.3. Imputation with Small Dataset of Similar Proteomic Profiles 

Figure 1. Summary of imputation method performance with increasing missingness (amputation
type) in simulated data and protein expression profiles in hybrid. (A) The percentage of significant
proteins remaining from the original simulated data as missingness increased for each of the im-
putation methods. (B–E) Significance versus protein expression for each of the amputed datasets
following the hybrid imputation method. Proteins in green represent significant proteins with
expression or imputed expression above the lowest (leftmost) MNAR model selector value, while
non-significant above the MNAR model selector value are in gray. Those in red are imputed below
the lowest MNAR model selector value and are significant above the black line (q-value < 0.05) and
not significant below the black line.

With the exception of High MNAR, the hybrid method outperforms all other imputa-
tion methods in terms of capturing the most (highest percentage of) significant proteins
from the original simulated data (Figure 1). The High MNAR amputation data resulted
in the highest proportion of missing values imputed below the MNAR model selector
threshold when compared to the other three amputation datasets (Figure 1b–e).
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2.3. Imputation with Small Dataset of Similar Proteomic Profiles

The PXD013966 dataset consisted of triple-negative breast cancer cells MDA-MB-468
exposed to high glucose (n = 3) or glucose deprivation (n = 3) for 48 h prior to sample
preparation and analysis for bottom-up mass spectrometry. This whole cell proteomics
experiment is representative of a small dataset with treatment and control in biological
triplicate, where most of the proteins are present, and changes in protein expression levels
are detected. The number of missing peptide values ranged from 8 to 16% across samples
with a similar protein expression as seen by the distribution pattern of observed and
missing peptides (Figure 2a).
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Figure 2. Distribution of number of missing values in the two datasets analyzed for this manuscript.
The MDA data (A) are very similar in terms of the number of missing values (depicted as yellow
lines) ranging from 8 to 14% relative to observed values (depicted as blue lines), while the IP data
(B) demonstrates a presence/absence dataset with missing values ranging from 5 to 52%.
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Following filtering of contaminants (proteins present in cRAP and MaxQuant Databases),
the data were further filtered to reduce sparse data from the analysis. Sparse data are
proteins with an abundance <215 in 50% of the samples. After filtering, 3165 total pro-
teins remained in the dataset. After performing 25 consecutive imputations, calculated
logFC values remained fairly stable, and the ranges of protein expression values were not
influenced by the number/type of missing values in the methods examined (Figure S1).
By using a threshold of 0.05 for significance cut-off, the following DEP lists were observed:
1186 significant proteins when using kNN, 1180 for MLE, 1106 for SVD, 1299 for MinDet,
1312 for MinProb, 1292 for QRILC and 1669 for SFI-hybrid. Each imputation method DEP
list was ranked by q-value mean, and the top 200 DEPs from each method were classified
into the number and type of missingness as follows: missing 0, 1, 2, or 3 values in one
sample group (0, 1, 2, 3) or missing any combination of 2 or 3 values in both groups (B2, B3).
With the exception of the SFI-hybrid method, the majority of the proteins determined to be
significant were those with all observations present (no missing values; far left, 0 missing
values; Figure 3 and Figure S2).
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Figure 3. Frequency of missingness across MAR (Top Panel) and MNAR (Bottom Panel) imputation
methods with the top 200 significant proteins in MDA data. After 25 consecutive iterations, each
imputation dataset was rank-ordered by q-value mean. The top 200 proteins from each method were
binned according to the type of missingness: 0, 1, 2 or 3 missing values in one sample group or a
combination of 2 or 3 in both groups (B2, B3).

The SFI-hybrid approach was the only method where missing values did not have
a detrimental effect on downstream statistics as approximately 80% of proteins deemed
significant were split equally between the 0 and 3 missing value groups (Figure 3 and
Figure S2). Furthermore, the SFI-hybrid approach demonstrated the most reproducibility in
terms of the standard deviation of logFC expression and maintaining q-value significance
in all protein identifications (Figures S1 and S2).

To further examine the reproducibility and accuracy of the methods in terms of
handling missing values and imputation, a common top protein list was constructed. The
top 10 proteins from each imputation method were merged to a single list, retaining only
the unique protein IDs. This list contained 19 total proteins with the following distribution
of missing values: 0 missing values—11 proteins, 1 missing value—1 protein, 2 missing
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values—1 protein and 3 missing values—6 proteins. This list of 19 proteins was applied
as a filter to each of the seven individual DEP lists in order to extract the mean logFC,
mean −log10 q-value, and standard deviations of both measurements. These data were
visualized as spread plots in Figure 4. The SFI-hybrid performed best, followed by the
MNAR methods (Figure 4 and Table S3). The MAR MLE method performed the worst,
with kNN and SVD falling in the middle (Figure 4 and Table S3).
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Figure 4. (A–F) Spread plots of −log q-value vs. logFC for merged top proteins across all imputation
methods for MDA-MD-468 data. Following 25 consecutive iterations, each dataset from each imputa-
tion method was ranked by q-value mean. The top 10 proteins from each method were pooled into a
top protein list (Supplemental Table S2) and plotted here. The ellipse represents a 95% confidence
interval. Note MinDet is not shown as this method imputes the same value after each iteration.

2.4. Imputation Influences with Increasing Number and Type of Missing Values

The PXD004462 sample set consists of NTERA2 (NT2) pluripotent embryonic carci-
noma cells treated with retinoic acid for 8 days to induce neuronal differentiation. There-
fore, we expected the nuclei that were isolated for immunoprecipitation tandem mass
spectrometry (IP-MS/MS) with EZH2 (n = 3), SUZ12 (n = 3) and IgG (n = 3) to have a
true presence/absence in protein profiles. The number of missing values in this dataset
ranged from 8 to 52% (Figure 2b). Data were ranked by q-value mean following multiple
imputations and classified as described in the methods below.

Following filtering of contaminants (proteins present in cRAP and MaxQuant Databases),
the data were further filtered to reduce sparse data from the analysis. Sparse data are
proteins with an abundance <215 in 50% of the samples. After filtering, 601 total proteins
were retained in the EZH2 IP dataset. With a q-value threshold of 0.05, DEP lists included:
338 significant proteins when using kNN imputation, 348 for MLE, 375 for SVD, 326 for
MinDet, 179 for MinProb, 198 for QRILC and 365 for SFI-hybrid. With the same filtering
criteria as mentioned above, the SUZ12 IP contained 350 proteins. The resulting DEP
lists included: 119 significant proteins when using kNN, 97 for MLE, 102 for SVD, 127 for
MinDet, 120 for MinProb, 111 for QRILC and 187 for SFI-hybrid.
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Approximately one-half of the proteins determined to be significant contained all
observations (no missing values) in every imputation method for both IP experiments
(Figures S5 and S10). The increasing number of missing values resulted in a wider range of
logFC protein expression values across imputation methods for the EZH2 and SUZ12 IPs
(Figures S3 and S8) than seen in the MDA data. A common top protein list was generated
as described above. This merged top protein list for EZH2 IP consisted of 21 proteins
(3 missing values—3 proteins, 2 missing values—3 proteins, 1 missing value—3 proteins,
and 0 missing value—12 proteins) while the SUZ12 IP list contained 23 total proteins
(3 missing value—11 proteins, 1 missing value—4 proteins, and 0 missing value—8 pro-
teins). The SFI-hybrid method performed better with an increasing number of missing
values, as evidenced by the narrow ellipses in the spread plots showing the tighter ranges
of values for logFC and −log10 q-values (Figures S3, S4 and S6–S9). These data illustrate
the impact the missingness and appropriate choice of imputation method can have on the
range of values obtained in DEP analysis. The combined protein ranks were determined
as described in the methods section and used to evaluate the relative rank of each of the
canonical PRC2 complex members from both the EZH2 and SUZ12 IPs. These rankings
show that the SFI-hybrid method outperformed all other imputation methods, followed by
the MNAR methods (MinDet, MinProb, QRILC), SVD, kNN and MLE (Figure 5a,b,d and
Table S1).
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3. Discussion

Mass spectrometry experiments are prone to MNAR and MAR due to the nature
of the prevailing bottom-up proteomic experimental design. Data-dependent and data-
independent experiments prioritize observations of higher abundance species that in-
herently induce stochasticity at the low end of detection. Targeted mass spectrometry
experiments prioritize observations based on a few selected targets, providing less overall
coverage but a better sampling of peptide abundances. DDA experiments can employ
dynamic exclusion in an attempt to improve the sampling of low abundance species.
However, these scheduled prioritizations can also induce missing values when peaks are
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sampled early or late, leading to poor quality MS2 scans that may not be matched to a
peptide sequence. This paper focuses solely on the evaluation of how different missing
value imputation methods function in label-free quantitative data analysis across a range
of missingness specific to DDA bottom-up proteomics.

We chose to work with the methods within the imputeLCMD package because they
span a wide range of imputation methods in an accessible R package (described in more
detail in [6,37]). Additionally, the imputation wrappers and functions can be altered to
allow a multiple imputation strategy, and the model selector can be changed for all MAR or
all MNAR imputation patterns and, importantly, contains the function impute.MAR.MNAR
to simultaneously model the data in a combinatorial manner. As described here, we first
investigated how missingness can influence the statistics in DEP analyses by evaluating
the performance of seven separate imputation methods with simulated and amputed data.
We then applied the same imputation methods to model two dissimilar sets of data to be
all or mostly all MAR, MNAR or a combination of the two.

The fixed random seed generator included in the imputation wrappers and functions
was changed to allow a multiple imputation approach to address issues discussed in the
introduction. Further, for kNN and SVD, this meant that the algorithms would be limited to
the iteration number of the loop (ranging from 1 to 25) for the nearest neighbor or principal
component calculations of the imputation variable that would replace the missing value.
For example, iteration 10 of the multiple imputation loop would allow either 10 nearest
neighbors or principal components to draw potential imputation variables from. In the
case of all MARs, the model.selector argument in the impute.MAR function was converted
such that all rows in the dataset would be flagged strictly MAR. Our aim was to develop a
robust technique that would be applicable across many types of data with transparency,
accuracy and reproducibility.

Here, we propose utilizing a combinatorial MAR/MNAR, or SFI-hybrid, with a
typical model selector but performing imputation separately for each treatment or group
of data. This approach is shown to most accurately model data regardless of type. This
observation is not unexpected in that even for highly similar datasets with replication and
few missing values, the left-censored nature of proteomics data is well suited to hybrid
imputation methods.

The SFI-hybrid method considerably outperforms the other imputation methods with
most instances of amputed data by consistently capturing 80.5% of the simulated significant
proteins with the Mid MV instance, 91.7% in the Low MV instance and 94.1% in the High
MAR instance (Figure 1a and Table S1). However, this method was only able to capture
45.3% of the simulated significant proteins in the High MNAR instance. Specifically, in this
instance, the MAR methods (kNN, MLE, SVD) equally outperformed the MNAR methods
(MinDet, MinProb, QRILC) and the SFI-hybrid by capturing 60.3%, 66.1% and 65.1% of the
simulated significant proteins, respectively (Figure 1a and Table S1). Further examination
of the amputed data demonstrated the High MNAR instance had the largest number of
missing values imputed below the lowest MNAR model selector value, resulting in a
drastic change in significance as evidenced by the smaller q-value range (Figure 1b–e).
These observations in the High MNAR instance suggest the left-censored techniques may
not be performing as well because the original data consist of more MAR values or the
data, following amputation, contain too few observations to model the data properly.

Analysis of the MDA proteomics dataset revealed the SFI-hybrid method maintained
the same level of significance across all missing value types with the smallest standard
deviations (Figures S1 and S2). Additionally, there was a negative trend toward non-
significance with the increasing number of missing values in all methods, excluding the
SFI-hybrid (Figure S2). To examine the top significant proteins in the MDA dataset, we
binned each protein into the number (0, 1, 2, 3) and type of missing value (B for missing in
both treatments). As expected, fewer proteins were designated as significant when there
were missing values present in both treatment groups (Figure 3 and Figure S2). We found
all methods, other than the SFI-hybrid, favored complete cases with greater than 60% of



Int. J. Mol. Sci. 2021, 22, 9650 10 of 17

significant identifications containing no missing values. This observation suggests that
either the methods have a bias to choose complete cases, or the algorithms are imputing
values too close to the observed to be considered significant.

To further investigate the performance of the missing value imputation methods for
preserving accurate logFC and q-values, spread plots were constructed as described in the
results and methods sections. The SFI-hybrid and MNAR methods performed better at
preserving the significance level than the MAR (Figure 4 and Table S2) as all proteins were
found to be significant, and the confidence ellipses representing the standard deviation
were located above the threshold cut-off (-log10 (q-value) > 1.3). This is expected as MNAR
methods are designed specifically for the low-abundant nature of these absences and
impute the left-censored data appropriately. The MLE method appears to have performed
the worst, as six of the 19 proteins were not significant (Table S2). Upon closer examination
of the data, this only occurs when there are three missing values and can be explained by
the large standard deviation after multiple imputations. The four proteins not significant
with the kNN method and with opposite logFC values in the SVD method were also
from the three missing value types (Table S2). When investigating proteins with three
missing values that are imputed using kNN or SVD, we observe that logFC is highly
variable (characterized by large standard deviations) and can change direction as well
(oscillate between positive and negative values). We would caution the choice to use a
single imputation strategy with these two methods and, instead, encourage the use of
15–16 nearest neighbors with kNN and 6–7 principal components with SVD to ensure
the algorithms are performing optimally for missing value imputation (having enough
donor information to impute values that are not negatively influencing the downstream
statistics). Altogether, these results imply the missing data are not all MAR or all MNAR
and imputation should be performed with a strategy to reflect that.

A similar analysis was performed with the EZH2 and SUZ12 IPs (as mentioned
above with the MDA-MB-468 data). The SFI-hybrid method maintained a similar level of
significance across all missing value types with the smallest standard deviations in both IPs
(Figures S4 and S9). The range of logFC values varied in the SUZ12 IP (Figure S8) and is
attributed to a large amount of missingness when compared to EZH2 IP. The more stringent
SUZ12 IP resulted in fewer observed values leading to under-represented variation after
imputation. Interestingly, there was an opposing trend with increasing missingness in the
EZH2 IP; logFC values shrank towards zero when using MAR methods and expanded
when imputing with MNAR methods (Figure S3). All imputation methods, excluding
the SFI-hybrid, trended toward non-significance and large variance across q-value as
missingness increased (Figures S4 and S9). As mentioned above, these observations offer
further support that the algorithms for MAR methods are imputing values too close to the
observed to be considered significant or have an inherent bias to favor complete cases.

Once the top 100 significant proteins in the IPs were binned according to missingness,
we found the SFI-hybrid significant protein list evenly distributed across missingness
with approximately 40% in complete cases or three missing values (Figures S5 and S10).
In the EZH2 IP, all methods excluding the SFI-hybrid favored complete cases. Excluding
MLE, when three missing values were present, all other methods demonstrated a statistical
difference in the pair-wise comparison of EZH2 to IgG (Figure S5). In the case of SUZ12
to IgG, the kNN and MLE MAR methods favored complete cases while SVD and MNAR
modeled the same trend as seen with the SFI-hybrid in the EZH2 IP (Figure S10).

Missing values and type of imputation, specifically when using MAR methods kNN
and MLE, did influence the downstream statistics when considering the top protein lists
generated for both sets of IPs (described in the methods section; Tables S3 and S4). Further,
the SFI- hybrid method is most consistent with imputing values for both sets of IPs, as
seen by the tight confidence ellipses (Figures S6 and S7). The kNN and MLE methods
were the worst performers with the SUZ12 IP data; the top protein list was characterized
by the largest variances (Figure S7) and the greatest number of non-significant protein
identifications at 7 and 11 when imputing with these approaches (Table S4). Additionally,



Int. J. Mol. Sci. 2021, 22, 9650 11 of 17

two of the seven and five of the seven PRC2 complex proteins were determined as not
significantly enriched in the kNN and MLE methods. It is interesting to note that these were
instances where three missing values occurred. These observations suggest the missing
data are not all MAR or all MNAR, and caution should be taken to choose an imputation
strategy that appropriately models the data, such as the MI SFI-hybrid approach.

To determine the overall performance of the methods presented in this study, we
focused on the IP dataset since it is more representative of a bottom-up presence/absence
proteomics experiment with values MNAR. We decided to examine the data from both IPs
in a combinatorial manner because we did not want the results biased from the large range
of missing values or the non-specificity of the EZH2 antibody (Figure 2b). The canonical
PRC2 complex (Figure 5c) consists of seven proteins: AEBP2, EED, EZH2, JARID2 (JARD2),
RbAp46 (RBBP7), SUZ12 and PCL family. We arbitrarily chose the PCL protein MTF2 for
our ranking analysis. Following the MI strategy and ranking by q-value mean, we recorded
the overall position (in ascending order, lowest q-value to highest) for each of the PRC2
components for each IP across each method separately (Table S1). This information was
then used to determine the performance of each imputation strategy as described in the
methods and results sections. This ranking approach demonstrated MinDet performed best,
followed closely by SFI-hybrid for the EZH2 IP data. The MNAR and SFI-hybrid methods
outperformed the MAR methods when dealing with large amounts of missing data as in
the SUZ12 IP as noted by the rankings of proteins in the canonical PRC2 complex with the
exception of EED (Figure 5a,b). Upon closer examination of the dataset, we observed EED
was the only protein in the complex observed in all three conditions (0 missing values). This
observation suggests the algorithms for MAR methods have an inherent bias to emphasize
significance with instances where there are complete cases (all observations). Overall, we
determined the SFI-hybrid had the best ranking from the summed ratings of the canonical
PRC2 components, followed by MNAR and MAR methods (Figure 5d).

4. Materials and Methods
4.1. Proteomic Datasets
4.1.1. Glucose Deprivation

The RAW Thermo files for the analysis of this manuscript were downloaded from
the PRoteomics IDEntifications database (PRIDE): PXD013966. This dataset originated
from Lee et al. [38], in which triple-negative breast cancer cell line MDA-MB-468 was
exposed to high glucose (25 mM, n = 3) or glucose deprivation (0 mM, n = 3) for 48 h.
Cells were lysed as described in the methods section [38]. Protein from each sample was
prepared for bottom-up proteomics by reduction/alkylation with DTT and iodoacetamide.
Mass spectra were collected on a Q Exactive™ (Thermo Fisher Scientific, Waltham, MA,
USA) operated in data-dependent acquisition (DDA) mode. In the Lee et al. publication,
the authors identified 2525 proteins and determined 681 DEPs (p-value < 0.01). For this
investigation, RAW mass spectrometry files were converted, searched and quantified as
described in the methods sections below. Samples were grouped according to treatment
(high glucose or glucose deprivation), and differential expression analysis was carried out
to determine if any proteins were significant (q-value < 0.05). This dataset was used as the
baseline data for the creation of a ground truth simulated data set (assuming all significant
differences are true positives). It was also used to reevaluate and confirm findings and
trends seen in the simulated/amputed data described below and further investigate the
way different imputation methods alter the downstream statistical calculations and false
discovery rate (FDR).

4.1.2. Pluripotent Cell Differentiation

The RAW Thermo files for the analysis of this manuscript were downloaded from the
PRIDE database: PXD004462. The NTERA2 (NT2) dataset consisted of proteins quantified
and identified after IP of polycomb repressive complex 2 (PRC2) subunits EZH2 (n = 3)
and SUZ12 (n = 3) along with IgG control (n = 3) [39]. Detailed sample preparation
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is described in the methods section of Oliviero et al. [39]. Briefly, NT2 cells were left
undifferentiated or treated for 8 days with retinoic acid (10 µM) to induce differentiation
and nuclei from both cell lines were isolated for IP with EZH2, SUZ12 or IgG. Proteins from
each pull-down were eluted from beads and prepared for bottom-up proteomics analysis
by tryptic in-solution digestion. Mass spectra were collected on a Q Exactive™ (Thermo
Fisher Scientific) operated in DDA mode. In the Oliviero et al. publication, 366 candidate
EZH2-interactors and 191 candidate SUZ12-interactors were identified (false-discovery
rate (FDR) threshold = 0.05). For this investigation, RAW mass spectrometry files were
converted, searched and quantified as described in the methods sections below. Samples
were grouped according to experimental immunoprecipitation conditions (EZH2, SUZ12 or
IgG) and two pair-wise differential expression analyses were carried out to determine if any
proteins were significant (EZH2 vs. IgG and SUZ12 vs. IgG, q-value < 0.05). This dataset
was used to evaluate the effect of imputation methods on data with a high occurrence
of MNAR.

4.2. Database Searching and Label-Free Quantitation (LFQ)

Mass spectra from both sample sets were searched with the OpenMS platform (v 2.5.0)
and X!Tandem search engine against a reviewed UniProt human proteome (19 May 2019)
containing the cRAP and MaxQuant contaminant FASTAs with the following parameters:
full trypsin digest, 2 missed cleavages, variable modifications (oxidation of methionine
+15.99491, carbamidomethyl of cysteine +57.02146), precursor (MS1) mass tolerance 20 ppm
and fragment (MS2) mass tolerance 0.02 Da. PSM rescoring was completed with Percolator,
and protein inference was performed with FIDO across all samples, setting peptide and
protein FDR to 0.05.

4.3. Generation of Simulated and Amputed Datasets

The MDA-MB-468 data were used as the basis for creating simulated sets of treatment
data to evaluate the effect of imputation on differential protein abundance analysis. The
MDA-MB-468 dataset was filtered to remove lowly expressed protein (protein was removed
if total intensity was <215 (32,768). Samples were grouped according to the different
treatments (high glucose—HG or glucose deprivation—GD). Protein expression values
for simulated replicates were created separately for the HG group and GD groups using
the mean and standard deviation of each protein within a group, excluding observations
of NA. This simulated dataset was then utilized for testing MAR (kNN, MLE or SVD),
MNAR (MinDet, MinProb or QRILC) and hybrid (kNN + QRILC) imputation methods.
Additionally, the final simulated dataset and resulting DEP analyses were used as the
ground truth for the comparison of imputation methods. We then proceeded to test
if missing values would influence the downstream statistical calculations and FDR by
performing data amputation on the simulated data, effectively producing four new datasets
with four separate types and amounts of missingness.

Amputed data were created from the simulated data using the ampute function from
the mice package in R. Briefly, the missing value pattern was generated for each mechanism
(MAR or MNAR) and applied to the simulated data at the appropriate proportion (0.2,
0.5 or 0.8) separately. Next, a random allocation vector consisting of 1′s and 2′s was created
to select the missing value pattern (1 = MAR, 2 = MNAR) for the final data matrix. This
was performed for 4 different proportions of missingness by altering the proportion of
MAR: MNAR in the following combinations: 0.2: 0.2, 0.2: 0.8, 0.5: 0.5, 0.8: 0.2. Source code
for these data is included as R scripts in Supplementary Materials (Supplemental File 1).

4.4. Data Processing, Imputation and Differential Expression Analysis of Simulated Datasets

Prior to imputation and differential expression/enrichment analysis, the MAR func-
tions (kNN, MLE and SVD) in the imputeLCMD R package [6,37] were altered slightly to
allow the random seed generator to freely sample imputation values within consecutive
iterations of that method. Additionally, the first element of the model selector that flags
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the data as a ‘1’ for MAR or ‘0’ for MNAR was replaced with a vector of ‘1 s’ so that all
MAR values would be imputed. Data were processed by Selection-Filter-Imputation (SFI
Method). During selection, data columns were first grouped by sample or treatment type
and then chosen for the appropriate pair-wise comparisons. Lowly expressed/enriched
proteins were removed from the data set if the minimum number of observations was
<3 and total intensity was <215. Missing values were imputed as all MAR (kNN, MLE
or SVD), all MNAR (MinDet, MinProb or QRILC) or MAR/MNAR (kNN + QRILC) for
25 consecutive iterations. For the MAR methods, the model selector was converted to
disallow MNAR imputation values from occurring. The typical model selector was uti-
lized during the MAR/MNAR strategy. However, it is important to note imputation was
performed separately within each treatment or group of data. Therefore, we introduced
this as a hybrid method. Quantile normalization was performed, and limma was used
to determine DEPs. Specifically, significance was determined with a modified Student’s
t-test using the decideTests function in limma that uses a Bayesian model to moderate
standard error across proteins [40]. The calculated p-value is adjusted for multiple testing
by Benjamini-Hochberg correction. To control the FDR, the resulting adjusted p-values
are converted to q-values with the q-value function. The protein list from the differential
expression analysis was then ordered by q-value in ascending order (rank-ordered by
q-value). Rank-ordering by -p-value was used by many labs, including our own, to aid in
downstream informatic analysis and validation of potential targets [3,41–43]. However, to
assess how imputation affects the FDR, we chose to determine the q-value and use it as a
standard for thresholding [44–47]. A q-value cut-off of less than 0.05 was designated as a
significant difference.

4.5. Data Processing, Imputation, Differential Expression/Enrichment Analysis and Top Protein
Lists with Proteomic Data

Proteomic data from MDA-MB-468 and NT2 IPs were processed and analyzed as
described in the simulated and amputed methods section above. Following DE analy-
sis, datasets from each method were rank-ordered by q-value mean to generate the top
200 protein lists. Spread plots were generated from the same rank-ordered lists: the data
were filtered for the top 10 proteins from each method and merged into one common list,
retaining all unique identifications and removing duplications.

4.6. Relative Ranking of Analyses

To compare each method, we chose to assess the relative q-value ranking for canonical
PRC2 complex members (AEBP2, EED, EZH2, JARID2, PCL (MTF2 in this case), RbAp46
and SUZ12) as all of these proteins were identified in both IP analyses. The protein list from
each DEP analysis was first rank-ordered by q-value mean, with the lowest q-value being
the highest rank. For each component of the PRC2 complex, the q-value ranking (overall
position) was used to determine the rank of each protein across all the methods. For a
given protein (row), the method with the lowest q-value was rated as 1, the next lowest a 2,
and so on for 3 through 7. We reported the rank for the PRC2 complex of proteins across
all methods by adding the ratings down each column. The final rating was determined
by summing the ranking totals of both IPs (adding the 7 method columns for both IPs
together). All source code for this investigation was completed with various packages
using R (version 3.6.2) [48] and is available in Supplemental Materials (Supplemental
File S1).

5. Conclusions

In summary, we explored MAR (kNN, SVD, MLE), MNAR (MinDet, MinProb, QRILC)
and SFI-hybrid (kNN + QRILC) missing value imputation strategies used in intensity-based
proteomics workflows. We evaluated the performance of these methods with simulated
and real data while considering the extreme ends of missing values (small number of
missing values with similar protein expression profiles and a large number of missing
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values in presence/absence proteomics) encountered in this type of bottom-up proteomics
data analysis. From this investigation, we can conclude:

• Single MAR or MNAR strategies are acceptable approaches in proteomics only when
the nature of missingness is known to the researcher;

• When an entire protein observation is missing from a treatment or group (three missing
values in this case), a single MAR or MNAR imputation strategy is not recommended
as the downstream statistics demonstrate the majority of significant identifications
contain no missing values. This observation suggests that either the methods have a
bias to choose complete cases, or the algorithms are imputing values too close to the
observed to be considered significant;

• The statistics with single MAR or MNAR strategies (not the SFI-hybrid) are negatively
impacted by increasing number and type of missingness, characterized by large stan-
dard deviations, logFC sign fluctuations and an overall trend toward non-significance
as seen by the loss in the number of significant proteins from the ground truth and
known protein complex interactors;

• To avoid unnecessarily excluding data as in a complete case analysis, a combinatorial
MAR/MNAR approach, such as SFI-hybrid, that imputes missing values separately
for each treatment group most accurately and reproducibly models bottom-up pro-
teomics data regardless of the missing value type (with the exception of high MNAR
as explained in the discussion section).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22179650/s1, Figure S1: MDA-MB-468 whole cell proteomics logFC protein expression,
Figure S2: MDA-MB-468 whole cell proteomics −log10 q-value mean, Figure S3: EZH2 IP logFC
protein expression, Figure S4: EZH2 IP −log10 q-value mean, Figure S5: EZH2 IP missingness
distribution of top 100 proteins, Figure S6: EZH2 IP spread plots of −log10 q-value mean vs. logFC,
Figure S7: SUZ12 IP spread plots of −log10 q-value mean vs. logFC, Figure S8: SUZ12 IP logFC
protein expression, Figure S9: SUZ12 IP −log10 q-value mean, Figure S10: SUZ12 IP missingness
distribution of top 100 proteins, Table S1: Simulated and amputed data metrics including number
and distribution of missing values and number of differentially expressed significant proteins by
imputation and amputation methods, Table S2: Ranking of PRC2 proteins identified in EZH2 and
SUZ12 IPs, Table S3: MDA-MB-468 whole cell proteomics merged top 10 protein list across the
6 imputation methods, Table S4: EZH2 IP merged top 10 protein list across the 6 imputation methods,
and Table S5: SUZ12 IP merged top 10 protein list across the 6 imputation methods.
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Abbreviations

DDA data-dependent acquisition
MAR missing at random
MNAR missing not at random
LOD limit of detection
MCAR missing completely at random
kNN k nearest neighbors
MLE maximum likelihood estimation
SVD singular value decomposition
IP immunoprecipitation
IgG immunoglobulin
MinDet deterministic minimum
MinProb probabilistic minimum
QRILC quantile regression imputation of left-censored data
DEP differentially expressed/enriched proteins
MI multiple imputation
MI-MFA multiple imputation in multi-factor analysis
PRIDE PRoteomics IDEntifications
NT2 NTERA2 cells
PRC2 polycomb repressive complex 2
FDR false discovery rate
LFQ label-free quantitation
GD glucose deprivation
HG high glucose
SFI select filter imputation
IP-MS/MS immunoprecipitation tandem mass spectrometry
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