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Abstract: Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coor-
dinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse
environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm
by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent
degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer
through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes
with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response
element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and
mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular in-
tervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular
genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative
diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading
to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as
well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that
are able to interact with Nrf2 to enhance its protective efficacy.

Keywords: Nrf2; Keap1; oxidative stress; neuroprotection; neurodegenerative diseases; Alzheimer’s
disease; Parkinson’s disease; Huntington’s disease; amyotrophic lateral sclerosis

1. Introduction

Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is conserved in the meta-
zoan Cap ‘n’ collar (CNC) protein, belonging to the family of basic leucine zipper (bZIP)
transcription factors. The CNC family of proteins comprises p45 NFE2 (nuclear factor
erythroid-derived 2), three NF-E2-related factors (Nrf1, Nrf2, and Nrf3), and two BTB and
CNC homology (Bach) proteins, Bach1 and Bach2 [1]. The CNC transcription factors form
heterodimers with small musculoaponeurotic fibrosarcoma proteins (sMafs) that either
activate or repress the transcription of target genes. The heterodimer Nrf2/sMaf orches-
trates the transcription of proteins that collectively favor cell survival through binding
to the antioxidant response element (ARE, 5′-(A/G)TGACNNNGC(A/G)-3′), a cis-acting
element of DNA, also known as the electrophile response element (EpRE) [2–5]. Nrf2 not
only responds to environmental stressors by the activation of numerous antioxidant, detox-
ifying and cytoprotective enzymes and restoring cellular homeostasis, but also contributes
to constitutive gene expression, as evidenced by cell-transfection and in vivo studies on
Nrf2-/-mice [6–9]. Dysfunctions in the Nrf2/ARE signaling pathway result in a loss of
redox homeostasis, leading to the overloading with reactive oxygen/nitrogen species
(ROS/RNS) that is a common pathological hallmark of neurodegenerative diseases [10].
Furthermore, increasing evidence indicates that Nrf2 also plays a role in many other cellular
activities, such as DNA repair, autophagy, intermediary metabolism and mitochondrial
function (for a review, see [11]).

Int. J. Mol. Sci. 2021, 22, 9592. https://doi.org/10.3390/ijms22179592 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5411-3778
https://orcid.org/0000-0002-4122-4882
https://doi.org/10.3390/ijms22179592
https://doi.org/10.3390/ijms22179592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22179592
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22179592?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 9592 2 of 23

This review discusses the molecular regulation of Nrf2 activity and the contribution
of the Nrf2/ARE-driven transcriptional program in most common neurodegenerative
diseases. It also examines the potential of Nrf2 activation as a therapeutic target in the
treatment of widespread neurological diseases associated with an aging population.

2. Regulation of Nrf2 Transcription

Nrf2 is encoded by the nuclear factor (erythroid-derived 2)-like 2 gene (NFE2L2)
located in the cytogenetic band 2q31.2 of chromosome 2 in humans (gene ID: 4780). The
NFE2L2 consists of five exons interrupted by four introns [12] giving a rise of 8 transcript
variants encoding 6 isoforms of Nrf2 (Table 1) [13–15]. In the NFE2L2 promoter are two
ARE-like sequences, through which Nrf2 can enhance its own expression [16], as well
as the xenobiotic response element (XRE)-like elements binding the aryl hydrocarbon
receptor (AhR) transcription factor that is a transducer of environmental pollutants in
eukaryotic cells [17,18]. The promoter of NFE2L2 does not contain TATA and CCAAT
boxes, the common promoter elements [19], but it is rich in CpG islands, clusters of
CpG dinucleotides whose methylation silences gene transcription [20], hence, NFE2L2 is
under a strong epigenetic regulation (for a review, see [21]). At the upstream of the start
sequence in NFE2L2, the κB2 region for NF-κB binding [22] is present, which allows direct
stimulation of the Nrf2 expression in the course of acute inflammation, or tumorigenesis
by p65 NF-κB [23]. Furthermore, several binding sites for the activating enhancer-binding
protein 2 (AP-2) transcription factor were found in the NFE2L2 promoter [19], which may
interact with a range of proteins that may function as a co-activator or suppressor of gene
transcription [24].

Chromatin immunoprecipitation-sequencing (ChIP-seq) data indicates the existence
of Myc and Jun binding sites at the transcriptional start site in exon1 of NFE2L2 [25].
The proto-oncogenes c-Myc and c-Jun, involved in cell cycle progression and cellular
proliferation, are frequently upregulated in human tumors [26,27]; thus, they enhance
Nrf2-dependent anticancer drug resistance [28]. Similarly, the oncogene KRAS may bind
to the 12-O-tetradecanoylphorbol-13-acetate (TPA)-response element (TRE) present in the
NFE2L2 and reduce the sensitivity of cancer cells to chemotherapeutics [29]. Nrf2 expres-
sion may also be upregulated by the breast cancer type 1 susceptibility protein (BRCA1),
which functions as a co-activator for the nuclear translocator/aryl hydrocarbon receptor
(ARNT/AhR) heterodimer interacting with the XRE-like sequence in the NFE2L2 [30], or it
can act as a direct activator of NFE2L2 [31]. Regarding the mechanisms of Nrf2-dependent
cytostatic drug resistance, NFE2L2 expression is upregulated also by the ubiquitously
expressed specificity protein 1 (Sp1), a nuclear transcription factor belonging to the C2H2-
type zinc-finger protein family. However, this regulation not only increases cancer drug
resistance [32] but also prevents oxidative stress-induced DNA damage and the death of
cortical neurons [33].
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Table 1. List of NFE2L2 transcript variants and encoded protein isoforms.

mRNA Protein

Transcript
Variant

NCBI Reference
Sequence No of Base Pairs Information Isoform NCBI Reference

Sequence No of Amino Acids Information

1 NM_006164.5 2446 bp
The longest transcript variant

encoding the longest
isoform.

1 NP_006155.2 605 aa The isoform has the
canonical sequence.

2 NM_001145412.3 2988 bp

Uses an alternate promoter, 5’ UTR and a
downstream start codon vs. var. 1. It has a

shorter N-terminus
than isoform 1.

2 NP_001138884.1 589 aa

Protein lacks the Keap1
interaction domain, resulting in Nrf2
stabilization. Found in the lung and

head-and-neck cancers.

3 NM_001145413.3 2967 bp

Uses an alternate
promoter, 5’ UTR, downstream start codon,
and an alternate in-frame splice site in the 3’

coding region vs. var. 1. It has a shorter
N-terminus and is missing an internal

segment than. isoform 1.

3 NP_001138885.1 582 aa

Protein lacks the Keap1
interaction domain,

resulting in Nrf2
stabilization.

4 NM_001313900.1 2862 bp
Uses an alternate promoter, 5’ UTR and a

downstream start codon vs. var. 1. It
has a shorter N-terminus than isoform 1.

2 NP_001138884.1 589 aa

Protein lacks the Keap1
interaction domain, resulting in Nrf2
stabilization. Found in the lung and

head-and-neck cancers.

5 NM_001313901.1 2954 bp
Uses an alternate promoter, 5’ UTR and a

downstream start codon vs. var. 1.
It has a shorter N-terminus than isoform 1.

2 NP_001138884.1 589 aa

Protein lacks the Keap1 interaction
domain, resulting in Nrf2 stabilization.
Found in the lung and head-and-neck

cancers.

6 NM_001313902.1 2769 bp
Lacks an alternate in-frame exon in the 3’

coding
region vs. var. 1. It is shorter than isoform 1.

4 NP_001300831.1 575 aa Computationally mapped isoform.

7 NM_001313903.1 2640 bp
Uses an alternate in-frame splice site in the 3’

coding region vs. var. 1. It is shorter than
isoform 1.

5 NP_001300832.1 532 aa Computationally mapped isoform.

8 NM_001313904.1 2917 bp

Uses an alternate
promoter, 5’ UTR and an alternate in-frame
splice site in the 3’ coding region, vs. variant

1. It is shorter than isoform 1.

6 NP_001300833.1 505 aa Computationally mapped isoform.
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Numerous studies have demonstrated that Nrf2 mRNA transcripts are negatively
regulated by microRNAs (miRNAs) [34–37]. These short, single-stranded non-coding
RNAs regulate gene expression, either by an enhancement of a target mRNA degradation or
inhibition of the translation in a sequence-specific manner [38]. The first miRNA identified
as a negative regulator of Nrf2 was miR-144. It was found that miR-144 reduces Nrf2
levels in pathological red blood cells, interacting with two evolutionarily conserved target
sites in the 3′ UTR of NFE2L2 (at 265–271 bp and 370–377 bp) [39]. Following this, miR-28
was found to negatively regulate Nrf2 expression in breast epithelial cells [40]. Since
then, evolutionarily conserved binding sites for other miRNAs (miR-142-5p, miR-153
and miR-237) have been identified in human NFE2L2 that directly downregulated Nrf2
levels [41]. It should be noted, however, that miRNA may also facilitate the activation of
Nrf2 to promote cell survival under stress conditions. Recent studies on cells subjected
to oxygen and glucose deprivation/reperfusion (OGD/R) indicate that miRNA-380-5p
facilitates the activation of the Nrf2-Keap1 signaling pathway through direct repression
of Bach1, a competitor for Nrf2 for binding to the ARE site in DNA [42]. Furthermore,
miR-152-3p overexpression alleviates OGD/R-induced neuronal injury by reinforcing
Nrf2/ARE signaling via direct inhibition of postsynaptic density protein 93 (PSD-93), an
activator of Fyn kinase responsible for Nrf2 degradation [43].

3. Regulation of Nrf2 Activity

Under normal conditions, Nrf2 is a short-lived protein that is continuously ubiquity-
lated and targeted to proteasomal degradation. Following oxidative or electrophilic insult,
Nrf2 is activated by complex and tightly regulated mechanisms. In the modulation of Nrf2
activity, next to the regulation of Nrf2 transcription described above, numerous interactions
of Nrf2 are involved with its inhibitor Keap1 (Kelch-like ECH-associated protein 1), and
the interaction of Keap1 with other proteins. Furthermore, numerous kinases, through
the phosphorylation of amino acid residues in Nrf2 and Keap1, determine the fate of
Nrf2 in the cell, ubiquitination, or sharing transcriptional co-activators for the ARE-driven
gene network.

3.1. Structure of Nrf2 and Keap1 Inhibitor

Nrf2 is a 605 amino acid protein that has seven functional domains called Neh (N2-
erythroid-derived Cap ’n’ Collar homology) domains presented in Figure 1A. The Neh1
domain contains a basic region-leucine zipper motif binding as well as the sequence for
heterodimerization with small Maf transcription co-activators. The Neh2 domain possesses
two motifs, 29DLG31 and 79ETGE82, through which Nrf2 binds to the repressor, the Keap1
homodimer that promotes Nrf2 ubiquitination and 26S proteasomal degradation. The
third DIDLID (17–32 aa) motif in the Neh2 domain is indispensable for Neh2 activity and
appears to be necessary to recruit a ubiquitin ligase to the protein [44]. In the C-terminal, the
Neh3 domain is a transcriptional co-activator that recruits chromodomain helicase DNA-
binding domain protein 6 (CHD6) [45]. The Neh4 and Neh5 domains act synergistically to
recruit transcriptional co-activators, the CREB-binding protein (CBP), and/or repressor-
associated coactivator (RAC) [46]. The Neh6 domain contains two motifs, DSGIS and
DSAPGS, degrons for Keap1-independent Nrf2 degradation through the β-transducin
repeat-containing protein (β-TrCP), creating a complex with the S-phase kinase-associated
protein 1 (Skip1)-Cul1-Rbx1 E3 ubiquitin ligase [17]. Finally, the Neh7 domain mediates the
repression of Nrf2 by retinoid X (RXRs) and retinoic acid (RARs) receptors, which prevent
the binding of the transcription co-activators to the Neh4 and Neh5 domains [47].
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Figure 1. Multi-domain organization of Nrf2 transcription factor and Kelch-like ECH-associated protein 1 (Keap1)—the
repressor of Nrf2. (A) A 605-amino acid Nrf2 contains seven functional domains. The N-terminal Neh2 has two 29DLG31 and
79ETGE82 motifs that bind the Keap1 homodimer, which suppresses Nrf2 and mediates its ubiquitin-dependent proteasomal
degradation; the Neh4 and Neh5 recruit transcriptional co-activators, CREB-binding protein (CBP), and/or repressor-
associated coactivator (RAC); the Neh7 domain mediates repression of Nrf2 by retinoid X (RXR) and retinoic acid (RAR)
receptors; the Neh6 has two 343DSGIS347 and 382DSAPGS387 motifs interacting with β-transducin repeat-containing protein
(β-TrCP) and is responsible for the β-TrCP-mediated proteasomal degradation; the Neh1 contains a basic region-leucine
zipper motif and is responsible for dimerization with small musculoaponeurotic fibrosarcoma (Maf), or BTB and CNC
homology (Bach) proteins, the heterodimeric partners for Nrf2 to recognize the ARE sequence in target gene promoters; the
C-terminal Neh3 domain is a transactivation domain that recruits chromodomain helicase DNA-binding domain protein 6
(CHD6). (B) Keap1 protein, the repressor of Nrf2, comprises five functional domains: the NTR domain in N-terminal region;
the BTB domain, essential for homodimerization and for binding with Cul3-Rbx1 ligase complex; the intervening region
(IVR), containing cysteine residues sensitive to oxidation; the double-glycine repeats (DGR)/Kelch domain, containing six
Kelch-repeats, which operates as the binding sites for Nrf2; and the C-terminal region (CTR).

In the cytoplasm, the half-life of Nrf2 is less than 20 min [48,49], due to its being bound
by the plentiful inhibitor Keap1. Keap1 is a 624-amino acid member of the Kelch-like
family of proteins containing the BTB (broad complex/tram track/bric-a-brac) domain.
This multi-domain protein is composed of (1) the N-terminal region (NTR), (2) the BTB
region essential for forming the Keapl homodimer and for the binding of a Cul3-Rbx1 ligase
(CRL) complex, (3) an intervening region (IVR) that is rich with cysteines, also named the
BTB and C-terminal Kelch (BACK) domain, (4) a double-glycine repeat (DGR) containing
six Kelch repeat motifs which form Nrf2 binding sites, and (5) the C-terminal region
(CTR) (Figure 1B).

3.2. Keap1-Dependent Nrf2 Activation

In the cytoplasm of non-stressed cells, Nrf2 is sequestered by a Keapl homodimer
that complexes the Cul3-Rbx1 E3 ubiquitin ligase, thus promoting Nrf2 polyubiquitination
and continual proteasomal degradation. The presence of increased levels of oxidative or
electrophilic compounds changes the conformation of Keap1 and allows Nrf2
activation [22]. The mechanism by which Nrf2 disconnects from Keap1 remains unclear.
In the “hinge and latch” model, through its BTB domain, Keap1 creates a homodimer that
binds with two motifs in the Neh2 domain of Nrf2 through Kelch domains. The high-
affinity ETGE motif binds one Keap1 molecule as a “hinge”, and a low-affinity DLG motif
functions as a “latch” for another Keapl molecule. The oxidative/electrophilic modification
of cysteines (C273 and C288) in the IVR domain of the Keap1 dimer induces a conforma-
tional change of Keap1 that results in its dissociation from the DLG motif (the hinge) and
disrupts the BTB-Cul3 ligase interaction required for Nrf2 ubiquitination. According to this
“hinge and latch” model, the stoichiometric ratio of Keap1 to Nrf2 in the complex should
be 2:1; however, studies did not confirm this ratio [50]. Therefore, the “quaternary model”
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was proposed. In this model, the Kelch domain of one Keap1 binds Nrf2 through the ETGE
motif, and the other molecule of the dimer binds through the ESGE motif to phospho-
glycerate mutase 5 (PGAM5), anchored in the outer mitochondrial membrane [51]. In this
model, under stress conditions, Nrf2 degradation is impaired, but not the interaction with
the high-affinity motif. However, later stoichiometry measurements supported a 2:1 ratio
of Keap1 and Nrf2 in the complex [52]. Nrf2 may be more accessible for nuclear import
due to blocking the binding site with Nrf2 through Keap1-protein interaction. Among the
proteins containing Keap1-interacting region (KIR)-like ETGE motifs, which compete with
the Nrf2 in binding to Keap1, are p62/sequestosome 1 (SQSTM1), dipeptidyl peptidase 3
(DPP3), the Wilms tumor gene on the X chromosome (WTX) and a partner and localizer of
BRCA2 (PALB2) [53]. It was also found that the p21 protein competes with Keap1 for Nrf2
binding through the DLG motif [54].

3.3. Keap1-Independent Nrf2 Activation

Three E3 ubiquitin ligase complexes, (1) βTrCP-S-phase kinase-associated protein-1
(Skp1)-Cul1-Rbx1, (2) HMG-CoA reductase degradation 1 (Hrd1) and (3) WD-repeat
protein 23 (WDR23)-Cul4-damaged DNA binding protein 1 (DDB1), are known to be
involved in Keap1-independent Nrf2 degradation.

Beta-TrCP binds to DSGIS and DSAPGS degrons in Neh6 domain of Nrf2 through
~40 amino acid motifs, having Trp-Asp (W-D) dipeptide repeats (WD40) and forms the
ubiquitin ligase complex with Skp1, Cul1, and Rbx1 proteins. Phosphorylation of the
DSGIS motif in Nrf2 by GSK-3 enhances the binding of β-TrCP to Nrf2 [55] and Nrf2
degradation. It is possible that the phosphatase and TENsin homology protein (PTEN)
augments GSK-3-mediated phosphorylation of the Nrf2 domain and Keap1-independent
Nrf2 degradation [56]. The inhibition of GSK-3 activity via phosphorylation of its N-
terminal residues by protein kinase B/ serine/threonine-protein kinase (PKB/Akt), p38
mitogen-activated protein kinase (p38 MAPK) or protein kinase C (PKC) increases the
availability of Nrf2 for the transcriptional machinery of ARE-driven genes [57]. Following
activation, GSK-3 increases the nuclear accumulation of Fyn kinase, the Src-A kinase family
member, by which phosphorylating tyrosine residue in the Neh1 domain stimulates the
nuclear export, ubiquitination, and degradation of Nrf2 [58,59]. A cell-based ubiquitylation
analysis revealed another ubiquitin ligase, Hrd1 that, independently from Keap1 and
β-TrCP, attenuates Nrf2 signaling by binding to Neh4–Neh5 domains. It is important
to note that the Hrd1-mediated ubiquitylation and degradation of Nrf2 have only been
reported in the cytosol [60]. The ubiquitination and degradation of Nrf2 are also controlled
by WDR23, a WD40-repeat protein that binds the DIDLID sequence in the Neh2 domain
and interacts with the Cul4-DDB1 complex [61]. Since WDR23 is also localized in the
nucleus [62], it is possible that post-translational regulation of Nrf2 activity may not be
limited to the cytoplasm.

In addition, Nrf2 activity is regulated by kinases that directly phosphorylate the Nrf2
molecule. The phosphorylation of Ser-40 in the Neh2 domain by PKC inhibits complex
formation with Keap1 and facilitates the nuclear import of Nrf2 [63]. The phosphorylation
of serine and threonine in the Neh4 and Neh5 domains by casein kinase 2 (CK-2) increases
the nuclear Nrf2 level and transcriptional activity [64]. Furthermore, the phosphoryla-
tion of serine and threonine residues (S215, S408, S558, T559 and S577) in Neh1, Neh3
and Neh7 domains by MAPKs also enhances Nrf2 nuclear accumulation [46]. Another
possible mechanism of Nrf2 activation is regulated by PI3K. In an oxidative environment,
activated PI3K depolymerizes actin, which tethers the Nrf2-Keap1 complex and allows
Nrf2 to escape from Keap1. Recently, it has been demonstrated that the synergy between
Keap1/Nrf2 and phosphoinositide 3-kinase (PI3K) signaling pathways leads to certain
types of carcinoma [65]. Moreover, Nrf2 translocation to the nucleus is regulated by 5′

AMP-activated protein kinase (AMPK) activity; thus, its activation is strictly dependent on
cellular energy levels [66].
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The transcriptional, posttranscriptional and posttranslational regulation of Nrf2 activ-
ity is presented in Figure 2.
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phosphoinositide 3-kinase; NF-κB, nuclear factor-κB; AhR, aryl hydrocarbon receptor; Fyn, tyrosine-protein kinase Fyn;
GSK-3, glycogen synthase kinase-3; pGSK-3, phosphorylated glycogen synthase kinase-3; KRAS, GTPase KRas; Myc, Myc
proto-oncogene protein; Jun, transcription factor AP-1; AP-2, activating enhancer-binding protein 2; Sp1, specificity protein
1; PKC, protein kinase C; CK-2, casein kinase 2; β-TrCP, β-transducin repeat-containing protein; Hrd1, HMG-CoA reductase
degradation 1; WDR23, WD-repeat protein 23; PGAM5, phosphoglycerate mutase 5; DPP3, dipeptidyl peptidase 3; WTX,
Wilms tumor gene on the X chromosome; PALB2, partner and localizer of BRCA2; p21, cyclin-dependent kinase inhibitor 1;
p62/SQSTM1, sequestosome 1. Figure adapted from [67].

4. Nrf2-Signaling for ARE-Driven Genes

Nrf2 is a master transcription factor that supports cellular defense against exogenous
electrophilic/cytotoxic agents and harmful endogenous processes, by enhancing the ex-
pression of detoxifying enzymes, maintaining redox homeostasis, and coordination of the
cell cycle and intermediary metabolism. Nrf2/ARE transcriptional regulation coordinately
modulates the activity of genes that collectively favor cell survival.

For gene transcription, Nrf2 requires various binding partners, such as co-activators
and chromatin remodelers. Of these, small Mafs (MafK, MafG, and MafF) are obligatory
co-activator dimeric partners that bind to the Neh1 domain through their leucine zipper
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domains, thus allowing them to recognize the ARE sequence of DNA in the target gene pro-
moter region [2]. Nrf2 also dimerizes with Bach proteins, which prevent Nrf2 from binding
to ARE sites. As such, the Nrf2-Bach heterodimer complex inhibits the transcription of
Nrf2-dependent genes. Such downregulation has been demonstrated for heme oxygenase-1
(HO-1) [68,69], NAD(P)H:quinone dehydrogenase 1 (NQO1) [70] and immunoglobulin
heavy chain gene 3‘ enhancer [71].

To make the chromatin structure accessible to the RNA polymerase II and to initiate
transcription, Nrf2 recruits co-activators and components of the transcription machinery
through protein–protein interactions. It has been demonstrated that CBP/p300, which
possesses histone acetyltransferase activity through its cysteine–histidine-rich region 3
(CH3) domains, binds to the Neh4 and Neh5 domains of Nrf2; this results in chromatin
remodeling and the activation of gene transcription via ARE sequences [46,72,73]. However,
it has been demonstrated that Nrf2 and NF-κB compete for binding with CBP/p300, which
facilitates the recruitment of histone deacetylase 3 to MafK [74]; therefore, in case of the
aggravation of inflammation, the Nrf2/ARE pathway can be suppressed by competition for
the same transcriptional cofactors in the nucleus [75]. Another transcriptional co-activator
of Nrf2 is CHD6, which may be involved in recruiting components of the transcriptional
complex and interacts with the VFLVPK motif in the Neh3 domain [45].

In addition to histone-modifying enzymes, Nrf2 interacts with the mediator, an evo-
lutionarily conserved multiprotein complex essential for RNA polymerase II-driven tran-
scription. Sekine et al. [76] report that the mediator complex subunit 16 directly activates
Nrf2 transcription and supports the electrophile-induced transcription of Nrf2-dependent
target genes via either the Neh4/Neh5 or Neh1 domains. Moreover, Nrf2 can regulate
transcription by cooperating with other transcription factors: Jun-D, c-Jun, and Jun-B [77],
activating transcription factors 3 and 4 (ATF3, ATF4) [78,79], runt-related transcription
factor 2 (Runx2) [80], and Yin Yang 1 (YY1) [81]. These participate in the maintenance of cell
homeostasis in the brain and may cooperate with replication protein A1, a single-strand
DNA-binding protein essential for DNA replication, repair and recombination [82].

The Nrf2/ARE pathway controls dozens of genes of enzymes participating in funda-
mental cell-rescue mechanisms. In relation to the specificity of their action, they can be
classified into five categories (Figure 3). The first group of Nrf2/ARE-dependent genes
encodes the proteins involved in ROS and xenobiotic detoxification. This group includes a
wide range of enzymes starting from phase 1 detoxification, such as the family of aldehyde
dehydrogenases, NQO1 and cytochrome P540, through the enzymes of phase 2 conjunctive
enzymes (glutathione S-transferase (GST), UDP-glucuronosyltransferase (UGT), sulfotrans-
ferases, N-acetyltransferases, and methyltransferases) [83], ending with the transporters of
the ATP-binding cassette protein superfamily (ABC) taking part in excretion, or the import
of various molecules across the cell membranes [84]. The second cluster of genes controlled
by the Nrf2/ARE pathway is the group for GSH-produced and GSH-regenerated enzymes
that control cellular redox homeostasis. These include rate-limiting in the synthesis of GSH
glutamate-cysteine ligase subunits: the catalytic subunit (GCLC) and modifier subunit
(GCLM), glutathione reductase (GS), and the cystine/glutamate transporter (xCT) sub-
unit of the xc

− system that supply cysteine to cells for GSH synthesis [85,86]. The third
group consists of genes encoding the proteins responsible for heme and iron metabolism.
To this group belongs HO-1, catalyzing heme molecule breakdown, and subunits of the
ferritin complex, responsible for iron transport and storage: a ferritin light-chain pro-
tein encoded by the FTL gene, and a ferritin heavy polypeptide that is a ferroxidase
enzyme encoded by the FTH1 gene. The other Nrf2/Maf dimer target genes are those for
NADPH-regenerated enzymes, which include glucose-6-phosphate dehydrogenase (G6pd),
6-phosphogluconate dehydrogenase (Pgd), isocitrate dehydrogenase 1 (Idh1) and malic
enzyme 1 (Me1) [87]. The last group of Nrf2-dependent genes is those encoding the thiore-
doxin (TXN)-based antioxidant system, composed of TXN, thioredoxin reductase 1 (TrxR),
and sulfiredoxin 1 (Srx1), that maintain protein thiols in a reduced state [88]. Finally, Nrf2
has the ability to induce the expression of diverse genes with cytoprotective activity; thus,
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it plays a pivotal role in cell response to various stimuli, allowing cellular adaptation and
maintaining homeostasis.
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Cumulative evidence indicates that, among the Nrf2-regulated genes, there are also
those involved in functions other than redox homeostasis. The Nrf2/ARE pathway sup-
ports DNA repair after cell radiation, irrespective of ROS levels, since inhibition of Nrf2
by all-trans retinoic acid and Nrf2 knockdown results in more severe DNA damage [89]
and increases DNA double-strand breaks [90]. Hence, an increase in Nrf2 protein levels
results in the activation of PI3K-related regulators of the DNA damage response and G2
cell cycle arrest, with the aim of maintaining genome integrity [90]. Nrf2 is also recognized
as the transcription factor regulating autophagy gene expression, which can play an im-
portant role in the clearance of neurotoxic protein aggregates in Alzheimer’s disease [91].
Furthermore, it has been demonstrated that Nrf2 plays a prominent role in supporting
mitochondrial function, particularly in stress conditions, through the upregulation of the
transcription of uncoupling protein 3 [92] and mitochondrial genes, such as the gene-
encoding translocase of the outer mitochondrial membrane 70 (TOMM70). In addition,
Nrf2 plays a key role in mitochondrial biogenesis [93], interacting with the peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α), the principal mitochondrial
DNA transcription coactivator [94].

5. Role of the Nrf2/ARE Pathway in Neurodegenerative Diseases and Potential
Therapeutic Targets

The prevalence of neurological diseases, including dementia and motor disorders
caused by neurodegeneration, is expected to increase with a longer life expectancy.
Although oxidative stress has been shown to be involved in various neurodegenerative
diseases [95], the cytopathological role of Nrf2 is multi-directional and multi-level, so that
numerous potential targets in Nrf2 activation and Nrf2-driven gene transcription can be
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applied for the delay in onset of neurodegenerative diseases and even in the therapy of
brain disorders.

5.1. Alzheimer’s Disease

Neurodegenerative diseases offer a broad spectrum of neurological diseases. Most
often they are caused by the accumulation of intraneuronal bundles of hyperphosphory-
lated tau protein, in the form of neurofibrillary tangles, neuritic plaques and dystrophic
neurites [96], as well as extracellular aggregates of beta-amyloid plaques, all characterizing
Alzheimer’s disease (AD). However, the link between amyloid deposits and neurofibrillary
tangles is not yet clear, despite at least three decades of research devoted to finding the
trigger factors of these proteinopathies and to understanding the timeline of molecular
and biochemical events leading to their pathology [97]. To date, views on the amyloid or
tau pathologies in AD compete with each other (arguments for “the amyloid hypothesis”,
see [98], for “tau axis hypothesis”, see [99]). Notwithstanding, whichever proteinopathy
appears first, in both cases, oxidative stress can be an essential factor in their triggering.
Therefore a failure of the Nrf2/ARE signaling pathway responsible for redox/electrophilic
homeostasis can change the enzymatic machinery, leading to sequential amyloidogenic
cleavage of the amyloid precursor protein (APP) [100] and an increase in tau phospho-
rylation by activated GSK-3β, cyclin-dependent-like kinase 5 (Cdk5), and multiple other
kinases [101]. Indeed, in the brain [102,103], as well as in the urine and blood plasma [104]
of AD patients, a significant reduction of antioxidant enzyme activity and increased levels
of oxidative stress markers, such as 4-hydroxynonenal (4HNE), thiobarbituric acid reactive
substances (TBARs), have been demonstrated. In accordance with studies of AD-affected
brains, pre-clinical studies on Nrf2-knockout transgenic mice with amyloidopathy and
tauopathy reported that an Nrf2 deficit was associated with increased markers of oxidative
stress and neuroinflammation, compared to the control mice. Moreover, Nrf2 deficiency
led to an increased accumulation of insoluble phosphorylated tau oligomers and amy-
loid deposits in the hippocampus, which was clinically manifested as impaired cognition
function [105,106]. Contrastingly, increased NQO1 activity and HO-1 levels were reported
in neurons and astrocytes isolated from the post-mortem brains of AD patients [107,108].
It should be considered, however, whether these Nrf2-driven enzymes increased during
the lifetime of the patients or arose as the effect of hypoxia after cardiac arrest.

Some results indicate that Nrf2 signaling may not respond properly to oxidative
stress in an AD brain. Immunochemistry and immunoblotting studies of AD post-mortem
brains have shown the predominantly cytoplasmic, and not nuclear, localization of Nrf2
in the hippocampal neurons and astrocytes, compared to age-mated controls [109]. This
suggests the inefficient expression of Nrf2-driven cell rescue genes, despite marked signs
of oxidative damage to neurons, however specifically in AD, because the same study
revealed the nuclear localization of Nrf2 in the brain of Parkinson’s diseasse patients.
In accordance with this finding, based on analysis of genetic variation in NFE2L2 and
KEAP1 in material from hundreds of AD patients, von Otter et al. [110] demonstrated no
association between the single nucleotide polymorphisms (SNPs) or haplotypes of Nrf2
and AD risk and suggested that amyloid β (Aβ) aggregates impair the Nrf2 system, not
the opposite. However, they have found a faster progression of AD associated with the
GAAAA Nrf2 haplotype.

The pathogenesis of AD is linked to mitochondria dysfunction and defective mitochon-
drion dynamics [111], as well as to enhanced mitophagy [112]. Some of these effects are
evoked by APP and Aβ interaction with mitochondrial proteins [113]. In accordance with
these findings, the over-expression of APP resulted in the downregulation of Nrf2 levels
among numerous other proteins participating in mitochondrial fusion, biogenesis and
mitophagy [114]. Furthermore, the inactivation of Nrf2 in primary neuron culture impaired
the activity of the electron transport chain complexes, decreasing reducing molecules
(NADH, FADH2) levels and the efficacy of oxidative phosphorylation [115]. Therefore, the
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health of mitochondria is strictly dependent on Nrf2/ARE pathway signaling, which likely
does not work properly in the progress of tauopathy and amyloidogenesis in AD patients.

Notwithstanding these points, in vivo and in vitro studies have demonstrated that
the pharmacological activation of the Nrf2/ARE pathway protects against Aβ toxicity.
Treatment with a potent inducer of Nrf2, tert-butylhydroquinone, or transfection with the
Nrf2 gene, increased the cell viability of neurons in vitro and reduced Aβ formation and
ROS generation in double transgenic mice expressing the amyloid-β precursor protein and
mutant human presenilin 1 (APP/PS1) [116–118]. Moreover, the induction of Nrf2 shifted
the balance from the soluble to the insoluble Aβ fraction, thus possibly reducing the levels
of toxic soluble Aβ peptides [119]. Some evidence indicates that Nrf2 may reduce tau
accumulation and induce ARE-driven gene transcription, by upregulation of the nuclear
dot protein 52 (NDP52) and p62/sequestosome1 (SQSTM1), an autophagy adaptor protein
involved in the proteasomal degradation of tau and Keap1 [91,120,121].

An effective strategy to combat oxidative stress is supplementation with cytoprotec-
tive and antioxidant phytochemicals that are capable of relieving neurological symptoms
or even delaying their onset. Numerous preclinical and clinical studies in AD patients
indicate that various phytochemicals, including naringenin, curcumin, methysticin, resver-
atrol, berberine, trigonelline, astaxanthin and sulforaphane, may have beneficial effects, in
part, by enhancing Nrf2/Keap1/ARE pathway activity. Among these, resveratrol yielded
favorable results in reducing Aβ1-42-induced toxicity in a neuronal cell line [122], and
in decreasing the density of Aβ plaques in the cortex and hippocampus of mice [123]. In
addition, resveratrol supplementation in a mouse AD model had neuroprotective and
pro-survival effects, decreasing the amyloid burden and reducing tau hyperphosphoryla-
tion [124]. Curcumin is a supplement that is frequently studied regarding the alleviation
of AD symptoms and is the main component of turmeric (Curcuma longa) extract. How-
ever, the results of clinical trials with curcumin and resveratrol supplementation are not
consistent. Short-term treatment with curcumin [125] was found to have a beneficial effect
on working memory and sustained attention in healthy elderly patients, but not in AD
patients [126]. Similarly, a randomized, placebo-controlled, double-blind trial demon-
strated that one-year dietary supplementation with resveratrol slowed the progression of
cognitive and functional decline in mild to moderate AD subjects [127], while Zhu et al.
demonstrated no significant changes in the cognitive abilities and mental state between the
experimental and placebo groups [128]. These discrepancies may result from the distinct
bioavailability of the phytochemicals used in these studies [129,130], but also may depend
on the stage and symptom severity of AD.

5.2. Parkinson’s Disease

The second most common neurodegenerative disorder after Alzheimer’s disease is
Parkinson’s disease (PD), which is characterized by a loss of dopaminergic neurons in the
substantia nigra and the accumulation in the neurons of α-synuclein (ASN) oligomers,
known as Lewy bodies. Approximately 10% of patients have inherited early-onset PD,
which is associated with a mutation of the SNCA gene encoding ASN, and a mutation
of PRKN gene encoding the E3 ubiquitin-protein ligase parkin, which is essential for
the ubiquitin-proteasome system [131]. However, the vast majority of PD cases have an
idiopathic cause for ASN oligomerization, leading to the destruction of dopamine nerve
terminals projecting to the striatum. Among the etiological factors of sporadic PD, next to
mitochondrial dysfunction and neuroinflammation, oxidative stress and the impairment
of the Nrf2/ARE pathway have been implicated [132]. Many studies indicate an increase
in the markers of oxidative damage, along with decreased antioxidant enzyme activity, in
the brain and blood of PD patients [133–136]. In addition, decreased Nrf2 activity [137],
a loss of the dopaminergic neurons after Nrf2 deletion that are associated with microglia
activation [138], and the exacerbation of synuclein aggregation [139] in mouse models of
PD have been demonstrated. On the other hand, a meta-analysis of nine PD microarray
datasets revealed the increased levels of Nrf2 associated with the downregulation of
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31 genes containing the ARE consensus sequence [140]. Although results concerning Nrf2
expression in PD are inconclusive, impaired Nrf2 signaling is likely to be insufficient to
overcome the oxidative damage of cells. Indeed, the activation of Nrf2 has been associated
with neuroprotection in various PD models. Keap1 knockdown by short interfering
RNA (siRNA) resulted in the increased expression of Nrf2/ARE-driven genes that protect
against oxidative stress in astrocytes. Moreover, these Keap1-silenced astrocytes modestly
protected dopaminergic neuron terminals against the toxicity of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) injected into the striatum [141]. Likewise, in the cellular model
of ASN aggregation, the Nrf2/ARE-dependent upregulation of HO-1 was found to protect
cells against ferrous ion-induced toxicity [142].

The activation of Nrf2 by various natural and synthetic compounds is a potential
therapeutic target for PD. Lou et al. [143] reported that the bioflavonoid naringenin, present
in grapefruit, demonstrates the Nrf2-dependent neuroprotective effect. It was found that
naringenin also protects against 6-hydroxydopamine (6-OHDA) toxicity by increasing the
Nrf2, HO-1, GCL and GSH levels in in vitro and in vivo models of PD. Another natural
compound, Schisandrin B, isolated from Schisandra chinensis, a herb used in traditional
Chinese medicine, has been demonstrated to protect neuroblastoma cells from 6-OHDA-
induced toxicity and 6-OHDA-induced neuron destruction in vivo. Moreover, Schisandrin
B inhibited microR-34a expression and increased the expression of Nrf2/ARE-dependent
HO-1 and NQO1, suggesting that it inhibits the negative regulatory mechanism of miR-34a
on the Nrf2 pathway [144]. Increasing evidence has been shown that sulforaphane (SFN)
may become a candidate for the treatment of PD. In MPTP-treated mice, SFN induced
the expression of antioxidant enzymes, reduced ROS levels, increased mitochondrial
biogenesis, and prevented dopaminergic neuronal loss [145]. In cells treated with SFN, it
suppressed GSK-3β activity and modulated Keap1 cysteines in the BTB domain, IVR, Kelch
repeat domain and C-terminal domain, and disrupted Nrf2-Keap1 binding, thus allowing
the nuclear accumulation of Nrf2 [146,147]. Moreover, virtual screening of the Asinx
and ChemDiv database by Kim and coworkers resulted in the identification of a small-
molecule Nrf2 activator, KKPA4026. This compound induced Nrf2-dependent antioxidant
enzymes, HO-1, GCL and NQO1, effectively attenuated PD-associated behavioral deficits
and protected dopaminergic neurons in a mouse model of PD [148]. In addition, novel
curcumin-based analogs (diethyl fumarate hybrids), acting as dual modulators of both
GSK-3β inhibition and Nrf2 induction, were designed for PD treatment [149]. The hybrids
showed a marked ability to activate Nrf2 and increase neuronal resistance to oxidative
stress, as well as showing neuroprotective effects against ASN and 6-OHDA toxicity.
Actually, the number of natural and synthetic Nrf2 activators that may have an impact on
PD pathology is still increasing.

5.3. Huntington’s Disease

Huntington’s disease (HD), an autosomal dominant neurodegenerative disease, is
caused by an accumulation of the trinucleotide CAG repeats within the HTT gene, resulting
in an expansion of polyglutamine repeats in the huntingtin protein (mutant huntingtin,
mtHtt). Clinically, HD is manifested by motor impairment, including the loss of movement
coordination, as well as various cognitive and psychiatric disturbances. Although the
etiology of the disease is complex, evidence suggests that mitochondrial dysfunction
and the failure of the cellular antioxidant system play a key role in HD pathology. In
the brains of HD patients [150], as well as in the brain and plasma of HD transgenic
mice [151–154], enhanced lipid peroxidation, correlated with disease progression [152,154]
and severity [151], was demonstrated. The insufficiency of the antioxidant mechanism, in
part, may result from the inhibition of Nrf2 activity by mtHtt, which directly interacts with
the CBP/p300 dimer and inhibits its acetylase activity [155,156], and is essential for Nrf2
stability and cellular localization [157].

Although Nrf2 activation was found to protect cortical and striatal neurons, reduce
motor deficits and extend the lifespan in the animal model of HD [158], it is still not fully
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understood how Nrf2 impacts the formation and aggregation of mtHtt. Tsvetkov et al. [159]
have reported that the transfection of striatal neurons with Nrf2 increased the survival of
neurons by shortening the mtHtt half-life and accelerating mtHtt clearance. Similarly, Saito
et al., when using RS9, a triterpenoid Nrf2 activator, found that Nrf2 induced the expression
of microtubule-associated protein 1A/1B-light chain 3 (LC3) and p62 autophagy-related
proteins [160] that form a shell surrounding the aggregates of mtHtt [161], thus facilitating
their clearance and reducing the toxicity of mtHtt.

Therefore, research on new compounds modulating the activity of Nrf2, which can
be used for the treatment of HD, is of great importance. In transgenic mice with HD,
the dietary administration of natural triterpenoids resulted in reduced oxidative stress,
improved motor impairment, and increased longevity in HD mice [158]. Spectroscopic
studies indicate that the activation of Nrf2 can result from the direct binding of triterpenoids
with Keap1 at a 2:1 stoichiometry ratio [162] which reduces the availability of Keap1
for Nrf2. Furthermore, naringin, a flavanone from grapefruit, and protopanaxtriol, a
compound isolated from ginseng, were reported to decrease the levels of hydroxyl radicals,
hydroperoxide and nitrite, as well as inflammatory markers, such as TNFα, COX-2 and
iNOS, in the striatum [163]. In addition, these compounds alleviated body weight loss
and ameliorated behavior disorder in a 3-Nitropropionic acid animal model of HD [164].
Recently, Moretti et al. [165] designed and synthesized a novel non-acidic naphthalene-
derived compound that reversibly binds Keap1 and activates Nrf2. As a result, antioxidant
enzyme expression is induced. Importantly, this compound, in contrast to SFN, did not
downregulate the expression of genes related to HD, and was not neurotoxic.

Besides the pathological deposition of mtHtt, microglia and astrocyte activation also
contributes to the pathogenesis and progression of HD [166], and also chronically ele-
vates pro-inflammatory mediators [167] in other neurodegenerative diseases [168,169].
A bi-directional interplay between the Nrf2 and NF-κB pathways has been extensively doc-
umented in a wide range of cell types [170]. Therefore, the activation of Nrf2 decreases the
expression of pro-inflammatory enzymes [171] and reduces inflammatory mediator levels,
likely via the upregulation of HO-1, which is rapidly induced by oxidative/electrophilic
impact [172]. Since HD is accompanied by peripheral inflammation and glial cell activation,
the Nrf2/ARE pathway participates in the resolution of neuroinflammation evoked by
mtHtt accumulation in neurons. Indeed, it has been reported that the activation of Nrf2
by triazole-containing compounds reduced the IL-6, IL-1β, TNFα and chemokine CCL2
levels in microglia, astrocytes and cortical neurons from HD mice, and in the monocytes
of patients with HD [173]. Therefore, it is not surprising that triazole derivatives that
suppress NF-κB signaling [174] may activate the Nrf2 pathway and be one of the strategies
for HD therapy.

5.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder caused by a
loss of motor neurons in the motor cortex, brain stem, and spinal cord, which subsequently
leads to progressive muscle weakness and the loss of voluntary movement control. About
90% of all ALS cases are sporadic (sALS), while the remaining 10% are classified as the
familial (fALS) form of the disease. Genetic studies have identified a number of mutations
causing familial, as well as sporadic, ALS [175]; among these, the most common are
mutations of the following genes: C9orf72 (chromosome 9 open reading frame 72), SOD1
(superoxide dismutase 1), TARDBP (transactive response (TAR) DNA binding protein
43 kDa) and FUS (Fused in Sarcoma (FUS) RNA binding protein), responsible for 40%, 20%,
~6% and ~5% of fALS, respectively [176]. In addition, oxidative stress, neuroinflammation
and mitochondrial dysfunction have also been linked to ALS pathogenesis [177].

Similar to the described neurodegenerative diseases, reduced neuronal Nrf2 mRNA
and protein expression [178], as well as elevated levels of oxidatively damaged proteins
and lipids in the brain and spinal cord of ALS patients [179], was also observed. It is
suggested that the expression of nuclear ribonucleoprotein K (hnRNP K) is impaired
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in TAR DNA binding protein 43 kDa (TDP-43) mutant cells. This RNA binding protein
modulates the process of gene expression, including mRNA splicing, export and translation.
Hence, a reduction in hnRNP K levels leads to insufficient antioxidant response and motor
neuron degeneration, due to the impaired expression of Nrf2-target transcripts [175,180].
Although many studies indicate a reduction of Nrf2 level in ALS, particularly in motor
neurons [178,181,182], Kraft et al. [183] reported an increased Nrf2 level in the skeletal
muscle of a mouse model of ALS at a very early time point, even before the onset of motor
disability. This finding may support the hypothesis that motor neuron degeneration is
initiated at the level of neuromuscular junctions [184].

Riluzole, a glutamate antagonist, was the only drug since 1995 for ALS treatment,
until 2017, when a new drug, Edaravone, was approved by the Food and Drug Admin-
istration (FDA). Edaravone’s neuroprotective activity is based on its ability to partially
suppress oxidative stress through the Nrf2/ARE pathway [185–187]. Recently, a phase-2
CENTAUR clinical trial showed that a combination of two compounds—sodium phenyl-
butyrate and tauroursodeoxycholic acid, known as AMX0035—slowed functional decline
and significantly extended the life of ALS patients. Both substances increase the expression
of Parkinson disease protein 7 (DJ-1/PARK7) [188,189], which stabilizes Nrf2 by prevent-
ing its association with Keap1, and subsequent Nrf2 ubiquitination [190]. However, new
compounds capable of modulating the Nrf2/ARE pathway are constantly being sought. In
animal models of ALS, promising results were obtained with triterpenoids (e.g., CDDO
ethylamide and CDDO trifluoroethylamide) and acylaminoimidazole derivatives [191,192].
In turn, Kanno et al., using a novel ligand-based virtual screening system, identified a
small molecule, CPN-9, that is able to activate the translocation of Nrf2 to the nucleus in
neuronal cells and suppress oxidative stress-induced cell death through the induction of
antioxidant enzymes (HO-1, NQO1 and GCLM) [193]. Transgenic ALS mice treated with
CPN-9 showed improved motor functions and delayed disease progression. Furthermore,
the greater survival of ALS mice has been demonstrated after treatment with triterpenoids
that stimulate the translocation of Nrf2 to the nucleus of motor neurons and upregulates
Nrf2/ARE-dependent antioxidant gene expression [191]. However, it should be noted
that both the type of the pharmacological inducer and the type of targeted cell may be
important in finding successful Nrf2-mediated therapy for ALS. This is because, in the
astrocytes of transgenic ALS mice, Nrf2 overexpression significantly extended the time of
survival, delayed the disease onset and reduced the rate of motor neuron damage [194],
while the upregulation of Nrf2 in neurons or in type II skeletal muscle fibers delayed the
disease onset but failed to extend survival [195].

6. Conclusions

This review provides a brief overview of the Nrf2/ARE-driven transcriptional co-
ordinated cellular responses to stress conditions that play a pivotal role in maintaining
the adequate function of neurons and glial cells in the brain. Therefore, the failure of
the Nrf2/ARE pathway, along with neuroinflammation and the collapse of mitochon-
drial function, is one of the reasons contributing to the pathogenesis and progression of
neurodegenerative diseases such as AD, PD, ALS and HD. Collectively, the clinical and
experimental studies discussed in the present paper evidence an increase in oxidative
stress markers and attenuated antioxidant/redox enzyme activity in most neurological
disorders. However, Nrf2-driven cytoprotection is multi-directional and multi-level and,
to date, it is not clear which point is primarily disrupted in the Nrf2-coordinated enzymatic
response to harmful aggregates in the brain. Is it a failure of Keap1-dependent and Keap1-
independent Nrf2 activation in the cytoplasm, or the faulty translocation of Nrf2 to the
nucleus, or the shortening of Nrf2 half-life, or finally, the incorrect interaction of Nrf2 with
other transcription factors during the formation of the transcription preinitiation complex?
Furthermore, a consensus has not been achieved regarding whether oxidative stress and
mitochondrial dysfunction result from intracellular and extracellular pathological deposits,
or whether increased ROS levels and defects in mitochondrial bioenergetics are primary
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pathogenic factors in neurodegeneration processes. Notwithstanding this, many natural
and synthetic compounds that target Nrf2/ARE signaling can be employed for the delay
of neurodegenerative disease onset, and even in the therapy of brain disorders. In this
context, we consider that Nrf2/ARE pathway activation could be an important target to
decrease oxidative damage of brain tissue and to reduce cognitive impairment in patients
with neurodegenerative disorders.
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