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Abstract: Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful in-
tracellular pathogen that is responsible for the highest mortality rate among diseases caused by
bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface
antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-
rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical
inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to con-
tribute to the early inflammatory response that is needed for an effective anti-TB response through
production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. How-
ever, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation
that is pathological to the host. Several studies have explored the use of medicinal plants and/or
their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated
factors, thus reducing immunopathological response in the host. This review describes the molecular
mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection.
Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their deriva-
tives will also be explored, thus offering a novel perspective on the alternative control strategies of
M. tuberculosis-induced immunopathology.

Keywords: NLRP3 inflammasomes; alveolar macrophages; pulmonary epithelial cells; medicinal plants;
medicinal plant derivatives; Mycobacterium tuberculosis; immunopathology; interleukin 1 cytokines

1. Introduction

Mycobacterium tuberculosis has proven to be a successful pathogen over the years,
responsible for an estimated 1.2 million deaths, with 10 new million cases annually. This
opportunistic pathogen is also accountable for another 0.2 million estimated deaths among
HIV-TB co-infected individuals [1]. The success of M. tuberculosis as a human pathogen is
due to the emergence, persistence and transmission of genetically diverse drug resistant
strains in different geographic locations [2], delays in diagnosis [3,4], and failure of the
individual’s immune system to contain and eliminate the pathogen [5].

In the initial stages of pulmonary TB infection, physical barriers and innate immune
response are present to prevent and control the infection. Initial interaction between the
M. tuberculosis bacillus and the alveolar lining present an opportunity for containment of
infection by innate cells, such as type I and type II pulmonary epithelial cells [6], resident
alveolar macrophages, and surrounding dendritic cells and neutrophils [7,8]. The highly
abundant pulmonary epithelial cells in the alveolar lining are connected by tight junctions,
adherens junctions, and desmosomes [9,10] that are relatively impermeable [11]. Residence
alveolar macrophages are ideally located to render microbicidal action through the acti-
vation of phago-lysosome against invading bacilli [12]. Surrounding dendritic cells and
neutrophils link the innate and adaptive immune responses and produce toxic mediators to
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eliminate the invading bacilli, respectively [13,14]. M. tuberculosis is a successful pathogen
due to its ability to bypass the host innate defence mechanisms, which eventually leads to
the granuloma formation [15].

Innate cells express a range of host pathogen recognition receptors (PRRs) that in-
teract with pathogen associated molecular patterns (PAMPs) in M. tuberculosis [16–18].
Interaction of the M. tuberculosis cell surface lipid antigens with the host [18] innate cells
receptors such as TLR4 stimulate the activation of the NLRP3 inflammasome pathway
through the Myeloid differentiation primary response 88 (MyD88) adaptor molecule [19,20].
Activation of the NLRP3 inflammasome is critical in the production of inflammatory cy-
tokines of the IL1 family [21,22]. Several studies have shown that inflammasome activation
and early production of IL1 cytokine family contribute to the early immune response to
M. tuberculosis, thus, offering an effective control strategy [23,24]. Paradoxically, overstim-
ulation of the inflammasome resulting in high production of IL1 cytokines has been shown
to be detrimental to the host due to overstimulation of the immune system, leading to
immunopathology in the host [25,26]. Thus, controlling overstimulation of the alveolar
inflammasome provides an ideal target for prevention of the inflammatory response that is
associated with immunopathology during TB infection.

Several studies have shown the effectiveness of medicinal plants and their bioactive
derivatives as a promising approach to TB treatment since these are naturally sourced
compounds with minimal side effects [27–30]. Medicinal plants and their respective ac-
tive compounds exhibit their anti-inflammatory mechanisms through inhibition of the
NLRP3 inflammasome-associated transcripts [31,32], inflammasome assembly [33,34] and
production of inflammasome proteins, including IL1 cytokines [35] in in vitro and in vivo
M. tuberculosis infection models. The current review reveals the molecular mechanism be-
hind inflammasome activation on resident alveolar macrophages and pulmonary epithelial
cells that results in IL1 cytokine production, which have been shown to contribute to the
alveolar inflammatory response during M. tuberculosis infection. Furthermore, medicinal
plants and their active derivatives that can be explored to prevent overstimulation of the
alveolar NLRP3 inflammasome and their mechanisms of action will be reported as a novel
host-directed therapy against M. tuberculosis.

2. M. tuberculosis Interaction with Alveolar Macrophages and Pulmonary Epithelial Cells

Initial interaction between M. tuberculosis PAMPs and mammalian PRRs is crucial for
the bacilli to gain entry into the cells and initiate the pathogenesis process. Several studies
have shown that macrophages express complement (CR) [36,37] and Fc gamma (Fcγ)
receptors [38] during M. tuberculosis infection. Reduced M. tuberculosis bacterial uptake was
observed in macrophages isolated from CR3-knockout mice compared to the wild type [39].
Moreover, several studies [40–42] have revealed an important role of CR receptors in
opsonic and non-opsonic phagocytosis of M. tuberculosis in human macrophages. Initially,
the Fcγ receptors were thought to contribute to M. tuberculosis killing because they mediate
uptake of Immunoglobulin G (IgG)-opsonised mycobacteria [43], however, they were later
shown to reduce the Th1 response by attenuating IL-12p40 production [38]. Collectively,
these findings suggest that both CR and Fcγ receptors are involved in M. tuberculosis uptake
in macrophages through opsonic and non-opsonic phagocytosis.

Mannose receptors (MR) are transmembrane C-type (calcium dependent) lectins that
recognise and bind to the expressed mannose sugars in the lipoarabinomannan (LAM)
of M. tuberculosis surface [44–47]. Interaction between the MR and M. tuberculosis man-
nosylated LAM promotes phagocytosis in macrophages [44], which may be dependent
on virulence of the strain [47]. Other well characterised receptors that contribute to the
update of M. tuberculosis in alveolar macrophages include Surfactant Protein A [48,49],
Dectin-1 [50,51], NOD2 [52], and CD14 [53]. TLRs [54,55] are one of the well-known
host PRRs that are expressed by alveolar macrophages in recognition of the diverse
PAMPs in M. tuberculosis surface as excellently reviewed by Faridgohar and Nikoueine-
jad [18]. Despite the advances and knowledge generated on host PRRs expressed on
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alveolar macrophages, differential activation of these receptors by different lineages of
M. tuberculosis remains to be investigated as this can contribute to better understanding of
the inflammatory response induced by genetically diverse clinical strains.

Previously, not much was known about specific receptors expressed by pulmonary
epithelial cells during M. tuberculosis infection. Bermudez and Goodman [56] initially pro-
posed that M. tuberculosis use microtubules and microfilament pathways to gain entry into
pulmonary epithelial cells. This was shown by significant reduction of intracellular bacilli
when these pathways were blocked [56]. Lee et al. [57] revealed an upregulation of Dectin-1
receptors in a TLR-2 dependent manner of A549 pulmonary epithelial cells during M.
tuberculosis infection. Through the production of a Dectin-1 receptor protein, they showed
that these non-phagocytic cells might use this receptor for recognition of M. tuberculosis.
The M. tuberculosis strains of East-African Indian and Euro-American lineages both induced
down-regulation of the NOD1 receptor of the A549 pulmonary epithelial cells at 72 h
post-infection [58]. However, a time course analysis of the NOD-associated receptors is
needed to establish their involvement in the recognition of M. tuberculosis. Mannose and
DC-SIGN receptors have not been linked to M. tuberculosis invasion of pulmonary epithelial
cells and this area remains to be investigated.

TLRs are involved in the recognition of different M. tuberculosis cell wall-associated
structures, such as acylated lipoproteins (TLR1, TLR2, TLR6), ESAT-6, mycolic acid (TLR2),
acylated lipomannan (TLR4), and trehalose dimycolates (TLR3, TLR4, and TLR9), respec-
tively [18]. Sequeira et al. [59] showed the role of TLR2 of pulmonary epithelial cells in the
production of pro-inflammatory cytokines during infection by M. tuberculosis. Inhibition of
TLR2-mediated response by mycolic acid and mce1 operon mutant significantly reduce
the production of both IL8 and MCP-1, which suggests that TLR2 is essential to effective
inflammatory response of pulmonary epithelial cells to M. tuberculosis. Previously, we
showed an increased expression of TLR2, TLR3, TLR5, and TLR8 in pulmonary epithelial
cells at 48 h post-infection by genetically diverse M. tuberculosis clinical strains of East-Asian
and Euro-American lineages, leading to production of a diverse range of inflammatory
cytokines. Upregulation of TLR4 was only induced by the Beijing (East-Asian) and F11
(Euro-American) strains, while TLR1, TLR6, TLR7, and TLR9 were downregulated by all
strains [60].

A transcriptomic study performed by Hadifa et al. [58] revealed an increased expression
of TLR1 and TLR3 by East-African Indian and Euro-American lineages of M. tuberculosis at
72 h post-infection of A549 pulmonary epithelial cells. Furthermore, the East-African Indian
strain induced increased expression of TLR2, TLR5, and TLR9; while the Euro-American
strain induced down-regulation of TLR4, TLR5, and TLR9. Both transcriptomic studies [58,60]
indicate the TLRs are activated by different lineages of M. tuberculosis in pulmonary epithelial
cells at 48 and 72 h post infection and these PRRs may be the main receptors used by this
pathogen to gain entry into these cells.

Upon stimulation of the alveolar macrophages and pulmonary epithelial cells TLRs by
M. tuberculosis PAMPs, the MyD88, TIR-domain-containing adapter-inducing interferon-β
(TRIF), TRIF-related adapter molecule (TRAM), Toll-interleukin 1 receptor domain con-
taining adaptor protein (TIRAP), B-cell adaptor for PI3K (BCAP), and sterile alpha and
TIR motif containing (SARM) are adaptor molecules that are central components of the
TLR signalling pathway [61]. Previously, we showed that genetically diverse strains of
M. tuberculosis induced high enrichment of the TLR signalling pathways in pulmonary
epithelial cells with increased expression of the MyD88 adaptor molecule [62]. Several
studies have linked phagocytosis of M. tuberculosis by alveolar macrophages to the MyD88-
signalling pathway [63,64] with a highly impaired inflammatory response in MyD88-
knockout studies [65,66]. Thus, the activation of these adaptor molecules in pulmonary
epithelial cells and alveolar macrophages results in downstream signalling cascade, leading
to the activation transcriptional factors that are responsible for expression of inflammatory
cytokines, including interferons and IL1 cytokine family [67]. Moreover, interaction be-
tween M. tuberculosis surface antigens with TLR4 triggers the NF-kB signalling pathway to
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induce expression of IL1β and IL18, whose maturation and production is dependent on
the inflammasome assembly [68].

3. Activation of the Alveolar NLRP3 Inflammasome during M. tuberculosis Infection

Inflammasome is a multi-protein complex intracellular structure, which induces mat-
uration of inflammatory cytokines, IL1β, and IL18 through the activation of caspase-1 and
caspase-4/11 [69]. The activation of the inflammasome is triggered by signalling pathways
that involves host PRRs, such as NOD-like receptors and TLRs [19]. Inflammasomes func-
tion in modulating host defence response, as well as pyroptosis, which is an inflammatory
induced lytic mode of cell death that can be caspase-1 or caspase-11 dependent [70]. The
assembly of an inflammasome is a coordinated signalling event, which is essential to
producing an immune response after sensing M. tuberculosis [71,72]. The canonical NLRP3
inflammasomes is mediated by the activation of Caspase 1, while the non-canonical NLRP3
activation can be activated downstream of Caspase 4/11, respectively [19,67].

The canonical inflammasome pathway is initiated through the activation of caspase 1
by NLRP3, which responds to stimulation by IL1R, Tumor necrosis factor (TNF) or a TLR
ligand that binds its cognate receptor, which results in the translocation of NF-κB into
the nucleus. Thereafter, the expression of NLRP3 and pro-IL1β are induced, while pro-
IL18 is constitutively expressed within cells. Several studies [18,54,55,58,60] have shown
that M. tuberculosis activate TLR4 that initiate the canonical inflammasome in alveolar
macrophages and pulmonary epithelial cells. Infection by genetically diverse clinical
strains of M. tuberculosis revealed an upregulation of NFKB1 and NFKB2 transcriptional
factors that lead to the transcription of IL1β, while IL18 was slightly down-regulated at 48 h
infection by East-Asian and Euro-American lineages [60]. The Euro-American lineage strain
induced upregulation of both NFKB1 and NFKB2 transcriptional factors at 72 h, while
both transcripts were downregulated by the East-African Indian lineage strain, leading to
downregulation of IL1β by both strains [58]. The M. tuberculosis Beijing strains of the East-
Asian lineage were differentially recognised by TLR2 and TLR4 in macrophages resulting
in distinct cytokine profiles, including IL1β [73], activating the canonical and non-canonical
NF-κB signalling pathways [74]. Collectively, these findings indicate that M. tuberculosis
interact with the TLR4, resulting in the activation of the NF-κB transcriptional factor, which
is responsible for the transcription of pro-inflammatory cytokines, including IL1 by the
alveolar macrophages and pulmonary epithelial cells. Furthermore, M. tuberculosis lineage-
specific differences of the canonical inflammasome activation suggest that genetically
diverse strains may induced diverse inflammasome patterns in the alveolar lining.

The second signal of the canonical inflammasome pathway involves the assembly of
the NLRP3 inflammasome complex, which results in the recruitment of adaptor molecule,
CARD and pro-caspase-1 in order to induce the processing and secretion of IL1β and
IL18 cytokines. Pulmonary epithelial cells exhibit increased regulation of NLRP3 (by only
F11 and H37Rv strains) PYCARD (ASC) and CASP1 during early infection by clinical
strains of M. tuberculosis [60]. This upregulation may be time and lineage specific since the
Euro-American lineage downregulated CASP1 at 72 h [58] in pulmonary epithelial cells.
High levels of the mature IL18 were predominantly observed in M. tuberculosis-stimulated
pulmonary epithelial cells, which indicated the upregulation of IL18 expression at both
transcriptional and post-transcriptional levels, suggesting the involvement of CASP1 en-
zymatic activity [75]. There were no significant differences in the production of IL1β by
pulmonary epithelial cells, which increased from 24, 48, and 72 h post-infection by wild
type, Mycobacterium tuberculosis curli pili (MTP) mutant and complemented strains of
M. tuberculosis [76], suggesting that IL1 cytokine production is not dependent on the MTP
antigen. It should be noted that the activation of the canonical NLRP3 inflammasome
pathway in pulmonary epithelial cells, if present, may be dependent on the lineage of the
infecting strain, as well as the infection time as shown by the differences observed for
the Euro-American and East-African Indian lineages [58,60]. Stimulation of the canonical
inflammasome by Mycobacterium and it associated factors is well described and charac-
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terised in alveolar macrophages [72,77,78], as these cells have been shown to produce
inflammatory IL1β and IL18 [77–79].

Non-canonical NLRP3 inflammasome mediated by CASP4/11 [80] has been shown to be
activated by intestinal Gram-negative bacterial such as Citrobacter rodentium, Escherichia coli,
Legionella pneumophila, Salmonella typhimurium, and Vibrio cholera [67] and other parasites such
as Leishmania amazonensis [81]. The pathogen’s LPS and other surface antigens have been
associated with non-canonical NLRP3 inflammasome activation through interaction with
Guanylate binding proteins (GBPs). To our knowledge, there is no evidence of the non-
canonical stimulation of the NLRP3 inflammasome by M. tuberculosis in pulmonary epithelial
cells from transcriptomics and proteomics studies; this area remains to be investigated.
However, the NLRP3 CASP4/11-dependant inflammasome is activated in macrophages
during M. tuberculosis infection [82]. Collectively, these studies indicate that M. tuberculosis
stimulate alveolar macrophages canonical and non-canonical NLRP3 inflammasome, leading
to production of inflammatory cytokines, IL-1β, and IL18 in a TLR4-NF-kB dependent
manner. Furthermore, despite increased expression of the NLRP3 inflammasome transcripts
and subsequence IL1 cytokine production in pulmonary epithelial cells, the presence of this
complex and other types of inflammasomes such as NLRP6, NLRC4, and AIM2 remains to be
investigated and confirmed in future studies. The activation of a canonical and non-canonical
alveolar NLRP3 molecular mechanism during M. tuberculosis infection is depicted in Figure 1.
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Figure 1. Overview of the alveolar NLRP3 inflammasome activation on alveolar innate cells during M. tuberculosis infection.
The host PRRs (TLR4) is activated by M. tuberculosis surface PAMPs stimulate the NF-kB transcriptional factor to transcribe
IL1, IL18, and CASP4/11 that are processed by activation of the inflammasome complex through NLRP3 and CASP1. Image
was created in BioRender.com (accessed on 23 August 2021).

It is apparent that alveolar macrophages produce IL1 cytokines [72,75,76,82,83] through
the activation of canonical and/or non-canonical NLRP3 inflammasome by the TLR-MYD88
signalling pathway, which results in stimulation of NF-κB transcriptional factors that tran-
scribe pro-inflammatory cytokines during M. tuberculosis infections. However, this mecha-
nism remains to be confirmed for pulmonary epithelial cells. IL1 are among the group of
pro-inflammatory cytokines that are essential in host defence against M. tuberculosis [77].
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Mice with IL1α and IL1β double knockouts and IL1R type I-deficient mice display a
defective granuloma phenotype accompanied with increased mycobacterial growth [79].
IL18 is known as an interferon-γ inducing factor, which has a vital role in T helper1
(Th1) response [84,85] and has been shown to be responsible for the production of pro-
inflammatory cytokines, chemokines, and transcriptional factors [86,87]. Moreover, IL18
defective mice were shown to be highly susceptible to M. tuberculosis and BCG strains [88].
Despite the critical role played by IL1 cytokines of the NLRP3 inflammasome, overpro-
duction of pro-inflammatory cytokines without efficient anti-inflammatory response has
been associated with increase disease severity and high bacterial burden [89] that can com-
promise effective host response during TB infection. The presence of IL1β was associated
with caseous granulomatous inflammation during M. tuberculosis, while blocking IL1β
production relieved pulmonary inflammation [90]. Significantly high IL1β and IL18 was
identified in drug resistant compared to drug susceptible TB [91], while high cytokine
concentrations were identified in patients with a severe disease [92]. Therefore, the ability
of pulmonary epithelial cells and alveolar macrophages to produce IL1 (IL1β and IL18)
cytokines through the activation of the inflammasome may contribute to the inflammatory
response during early infection by M. tuberculosis that is pathological to the host, thus novel
strategies must be exploited to regulate this response.

4. Medicinal Plants and Their Bioactive Derivatives as Regulators of Alveolar NLRP3
Inflammasome during M. tuberculosis Infection

The high prevalence of TB worldwide is partly due to development of drug resis-
tant strains, rendering the current treatment regimen ineffective [93–95]. Several studies
have proposed the use of medicinal plants or their bioactive compounds with antimy-
cobacterial activity [29,33,96–99]. However, recent studies have also exploited the use
of medicinal plants and/or their derivatives that are regulators of the immune system
during M. tuberculosis infection [100–102]. Medicinal plants and their respective bioactive
compounds that regulate the components of the immune system may be a promising
strategy in controlling Mycobacterial infections because they are not directly targeting
the bacillus, reducing the pathogen’s need to develop drug resistance and selective pres-
sure [103]. Therefore, medicinal plants and their bioactive derivatives may provide a novel
host-directed perspective in controlling immunopathology in the alveoli through inhibition
of the NLRP3 inflammasomes pathways that are crucial in the production of IL1β and
IL18 cytokines during M. tuberculosis infections. Medicinal plants and/or their bioactive
derivatives that are used to inhibit NLRP3 inflammasome gene transcription, formation of
the inflammasome complex and production of NLRP3 inflammasome proteins (including
IL1 cytokines) are reviewed below.

4.1. NLRP3 Inflammasome Transcript Inhibitors

Michelia compressa and Michelia champaca plants from the Magnolia family [104]
possess the natural guaianolide sesquiterpene lactone, micheliolide, with a potent anti-
inflammatory activity [105–108]. Zhang et al. [31] used an in vitro mouse macrophage-like
cell line to investigate the anti-inflammatory activity of micheliolide during M. tuber-
culosis infection. The NF-κB transcriptional factor and NLRP3 inflammasome that are
essential for transcription of IL1β, IL18, and pro-caspase 11 transcripts were downreg-
ulated, accompanied by reduction of inflammatory cytokines (IL1β and TNF-α) in a
dose-dependent manner. This study concluded that the micheliolide downregulates the
activation of NLRP3 inflammasome by modulating the inflammatory response induced by
M. tuberculosis through the PI3K/Akt/NF-κB pathway.

NLRP3 inflammasome-specific transcript can be inhibited through the adaptor molecules
that signal to activate transcriptional factor, NF-κB. Guttiferone K is the active compound
isolated from Garcinia yunnanensis Hu plant [109] and has anti-cancer activities, including
inhibition of autophagy and metastasis while promoting apoptosis of cancer [110]. The anti-
inflammatory activity of Guttiferone K was observed through phosphorylation inhibition
of the NF-κB transcriptional factor by Interleukin-1 receptor associated kinase (IRAK1) in
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the TLR signalling pathway of the M. tuberculosis H37Ra (avirulent) infected macrophages.
This inhibition resulted in significantly reduced TLR-NF-κB inflammatory mediators, IL1β,
TNF-α, IL6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) [32].
The Guttiferone K anti-inflammatory molecular mechanism remains to be investigated in
the virulent strains of M. tuberculosis.

There are many medicinal plant bioactive derivatives that act as NLRP3 inflamma-
some transcript inhibitors identified in non-M. tuberculosis models. These include Arcti-
genin [111], Silymarin [112], Rutin [113], Genistein [114], Aloe emodin [115], Anemoside
B4 [116], epigallocathechin-3-gallate [117], Resveratrol [118], Silibinin [119], Artemisinin [120],
Icariin [121], Polydatin [122], Cinnamaldehyde [123], Huangkui capsule [124] whose ad-
ministration results in the inhibition of the inflammasome-associated transcription on both
in vitro and in vivo models (Figure 2). It is crucial that these medicinal plant compounds
be tested in M. tuberculosis in vitro and in vivo models to identify their potential use as host-
directed immunomodulatory plant derivatives that can be used to prevent lung pathology
during infection.
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4.2. NLRP3 Inflammasome Protein Inhibitors

Medicinal plants and their derivatives can exert their anti-inflammatory activity in
the NLRP3 inflammasome by directly inhibiting production of proteins that regulate this
inflammatory pathway, including production of IL1 cytokines. The anti-inflammatory
activity of andrographolide, the labdane diterpenoid isolated in the stems, and leaves of
Andrographis paniculate was observed in macrophages co-cultured with pulmonary epithe-
lial cells that had significantly reduced IL1β cytokine production during M. tuberculosis
infection. This IL1β reduction in macrophages resulted in declining chemokine (IL8 and
MCP-1) expression in neighbouring pulmonary epithelial cells. The proposed molecular
mechanism behind IL1β inhibition is the activation of macrophage autophagy to degrade
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NLRP3, thus inhibiting the inflammasome activation and IL1β production. Moreover, an-
drographolide downregulated the phosphorylation of Akt/mTOR and NF-κB p65 subunit,
which will interfere with the NLRP3 inflammasome transcript expression that is essen-
tial for the maturation of the inflammasome complex [35]. Andrographolide is a natural
labdane diterpenoid that was isolated in Andrographis paniculate plant [125] with many
biological activities, including anti-cancer, antimicrobial, anti-diabetic, anti-inflammatory,
etc. [126].

Several in vitro and in vivo models have identified other medicinal plant derivatives
that have been found to inhibit NLRP3 inflammasome proteins and subsequent IL1 pro-
duction; and these include Ginsenosides (Retinoblastoma and Compound K) [127,128],
Curcumin [129], Genipin [130], Mangiferin [131], Salvianolate [132] that were derived
from Panax ginseng, Curcuma longa, Gardenia jasminoides, Mangifera indica, Salvia miltiorrhiza
medicinal plants, respectively.

4.3. Inhibitors of the NLRP3 Inflammasome Complex

Several medicinal plants and/or their bioactive derivatives can interfere with the for-
mation of the inflammasome complex or the components that are needed for a complete
NLRP3 inflammasome to facilitate maturation of the IL1 cytokines. The flavonoid Baicalin,
isolated from Scutellaria baicalensis possess an anti-NLRP3 inflammasome activity during
M. tuberculosis through decreased phosphorylated protein kinase B and mammalian target
of rapamycin, decreasing NLRP3 inflammasome and subsequently IL1β production [34].
The COX-2 regulates the activation of the NLRP3 inflammasome through increased expres-
sion of LPS-induced pro-IL1β and NLRP3 by NF-κB [133]. The crude petroleum ether, ethanol,
dichloromethane extracts of South African medicinal plants, Abrus precatorius subsp. Africanus,
Ficus sur, Pentanisia prunelloides, and Terminalia phanerophlebia were shown to inhibit the
COX-2 enzyme, thus may contribute to the anti-NLRP3 inflammasome response during
M. tuberculosis infection [33]. The bioactive compound in these plants and their possible
molecular mechanism against the NLRP3 inflammasome remains to be characterised.

NLRP3 inflammasome complex inhibitors in other models include Sweroside [134],
Oridonin [135], Isoliquiritigenin [136], Cardamonin [137], Ginsenosides (Rg3, Rg1, 20S-
protopanaxatriol, 25-OCH3-PPD) [138–141], Triptolide [142], Glycyrrhizin [143], Saikosaponin
A [144], Quercetin [145], Dihydroquercetin [146], Casticin [147], Phloretin [148], Pterostil-
bene [149], Apocynin [150], Lycorine [151], Matrine [152], Tetramethylpyrazine [153], As-
taxanthin [154], Danggui Buxue Tang [155], Quamoclit angulate plant [156], 4- Sulforaphane
(methylsulfnylbutyl isothiocyanate) [157], Obovatol [158], Berberine [159] (Figure 2). Both
in vitro and in vivo M. tuberculosis models exploring these bioactive plant derivatives remain
to be investigated for their potential use as regulators of the alveolar NLRP3 inflammasome.

There is growing appreciation of medicinal plants and their bioactive molecules
in management of inflammatory response regulated by the NLRP3 inflammasome as
excellently reviewed by several authors [160–163]. To date, only five studies [31–35] have
explored the use of medicinal plants and/or their bioactive derivatives in the management
of the inflammasome in M. tuberculosis infection models. There is a growing understanding
that M. tuberculosis infection is a multifaceted condition that is also driven by the host
inflammatory response. Thus, controlling the alveolar NLRP3 inflammasome seem to be
one of the novel strategies for host directed control measures of pathological response
induced by M. tuberculosis.

5. Conclusions

The activation of the NLRP3 inflammasome in alveolar macrophages and potentially in
pulmonary epithelial cells is an essential response of innate cells to M. tuberculosis that results
in the production of IL1 inflammatory cytokines. Overstimulation of the alveolar NLRP3 in-
flammasome may contribute to the exaggerated inflammatory response that is pathological to
the host. Recently, several studies have shown that medicinal plants and/or their derivatives,
Andrographolide, Baicalin, Micheliolide, Guttiferone K, Abrus precatorius subsp. Africanus,
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Ficus sur, Pentanisia prunelloides, and Terminalia phanerophlebia can inhibit the NLRP3 inflamma-
some at transcriptional and post-transcriptional levels in M. tuberculosis models. Therefore,
these plants and bioactive derivatives can be explored for anti-TB host directed adjuvants to
control the M. tuberculosis-induced inflammatory response. Furthermore, many studies have
identified many regulators of the NLRP3 inflammasome that remains to be tested on both
in vitro and in vivo M. tuberculosis models. Future studies should investigate the ideal route
of administration of these medicinal plants and their bioactive derivatives due to challenges
associated with oral availability of medicinal drugs. Exploring alternative strategies such
as using medicinal plants and their bioactive derivatives to regulate the host inflammatory
response in TB may bring us closer to winning the battle against M. tuberculosis.
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