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Abstract: The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis,
a balance in internal environment (temperature, mood, and immune system) and energy input and
output in living, biological systems. In addition to regulating physiological processes, the ECS
directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous
functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation,
fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several
pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases.
In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest
in medicine, research, and drug discovery and development. The distribution of the components
of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-
signalling pathways in many diseases, all offer promising opportunities for the development of
novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically
or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or
antagonism of the receptors of the ECS. This modulation results in the differential expression/activity
of the components of the ECS that may be beneficial in the treatment of a number of diseases. This
manuscript in-depth review will investigate the potential of the ECS in the treatment of various
diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa
L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead
compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.

Keywords: Cannabis sativa L.; endocannabinoid system; cancer; anxiety; depression; cannabinoids;
phytocannabinoids; endocannabinoids

1. Introduction
1.1. History

The Endocannabinoid System (ECS) is a complex molecular/biological system discov-
ered in 1988 by scientists Allyn Howlett and W.A. Devane [1,2]. The word “Endocannabinoid”
was first coined after the discovery of membrane receptors for ∆9-tetrahydrocannabinol (∆9-
THC or simply “THC”) in 1988 [3]. The ECS plays critical roles in multiple physiological
processes such as homeostasis, anxiety, feeding behaviour/appetite, emotional behaviour,
depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning,
memory, pain sensation, fertility, pregnancy, and pre-and post-natal development [4–6].

In recent years, there has been increasing interest in the role of the ECS in health
and disease processes, and its components have been implicated as an emerging target of
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pharmacotherapy for a wide range of diseases including, but not limited to, general pain,
headache, migraine, glaucoma, mood and anxiety disorders, obesity/metabolic syndrome,
osteoporosis, neuromotor, neuropsychological and neurodegenerative diseases, respiratory
diseases such as asthma, cardiovascular diseases such as stroke, atherosclerosis, myocardial
infarction, metabolic disorders, arrhythmias, and hypertension [7–9].

Due to the involvement of the ECS in multiple pathophysiological processes, it offers
promising opportunities for the development of novel cannabinoids-based therapeutic
drugs that may be designed to target different components and/or cell-signalling pathways
of the ECS, which may ultimately be of therapeutic benefit.

Cannabimimetic drugs such as small-molecule cannabinoid receptor agonists and
antagonists may be designed to target the ECS and its enzymes and either enhance the
bioactivity or activation of endocannabinoids or inhibit their inactivation [3,10]. On the
same tangent, blockade of cannabinoid receptor-type 1 (CB1R) has been shown to reduce
body weight, activation of extracerebral cannabinoid receptors has been shown to alleviate
pain, and inhibition of endocannabinoid degradation has been implicated in the modulation
of pain and anxiety [11].

1.2. Components of the ECS

The ECS has increasingly become a favourable target for the treatment of various
diseases as many of its components are distributed widely throughout the body and take
part in cell-signalling pathways involved in the pathophysiology of many types of diseases.

The components (proteins) of the ECS include receptors, their ligands, and enzymes
responsible for their biosynthesis and degradation/deactivation and are widely distributed
throughout mammalian tissues and cells [12]. Components of the ECS include: (1) the
three main receptor classes that cannabinoids interact with (i) G-Coupled Protein Receptors
(GPCRs) (e.g., CB1R and Cannabinoid-receptor type 1 (CB2R)) and which share 44% overall
homology [13], (ii) Ligand-sensitive ion channels (e.g., Transient Receptor Potential Vanil-
loid 1—TRPV1). TRPV1 is also activated by chemical agents, physical stimuli, capsaicin,
and ions, and (iii) Nuclear receptors (e.g., PPARs) [14,15]; (2) the endogenous ligands anan-
damide or N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG); and (3)
the endocannabinoid metabolic enzymes responsible for endocannabinoid synthesis and
degradation such as diacylglycerol lipase isozymes α and β, fatty acid amide hydrolase,
monoacylglycerol lipase, and N-acylphosphatidylethanolamine-selective phospholipase
D [3,16]. Refer to Table 1 for components of the ECS.

Table 1. Components of the ECS and possible targets for the treatment of various diseases.

Endo-Cannabinoids
(“Endogenous

Cannabinoids”/
eCBs)

Enzymes Receptors Transport
Proteins

Synthesizing Degradative

- 2-AG [17]
- AEA [17]
- PEA [17]
- OEA [17]

- DAGL (2-AG) [18]
- NAPE-PLD (AEA) [19]

- FAAH (AEA) [19]
- NAAA (AEA) [19]
- ABHD6 and ABHD12

(2-AG) [18]
- MAGL (2-AG) [18]

- CB1R/CB2R
- (2-AG and AEA)
- GPR18 [20]
- GPR55 [21,22],
- GPR119 [23],
- TRPV1 (AEA) [24]
- PPARγ [15]

- FABPs [25,26]
- HSP70s [27]
- Serum albumin [27]
- FAAH-like AEA

transporter (FLAT) [28]
- AMT aka EMT [19,29,30].

2. The ECS as a Therapeutic Target

In recent years, genetic and pharmacological manipulation of the ECS has gained
significant interest in medicine, research, and drug discovery and development. It’s
important physiological and pathophysiological roles offer promising opportunities for the
development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic
drugs that, genetically or pharmacologically, modulate the ECS via inhibition of metabolic
pathways and/or agonism or antagonism of the receptors of the ECS. This modulation
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results in the differential expression/activity of the components of the ECS—beneficial in a
number of diseases.

2.1. Mood and Anxiety Disorders

Anxiety is the body’s natural survival response to harm or dangerous situations, and
is characterized by increased responsiveness, defensiveness, and vigilance. Neuropsy-
chiatric/ anxiety-related disorders include Panic Disorder (PD), Social Anxiety Disorder
(SAD), Generalized Anxiety Disorder (GAD), Post Traumatic Stress Disorder (PTSD), and
Obsessive-Compulsive Disorder (OCD) [31]). Globally, these anxiety-related disorders
are the most prevalent of any mental disorder. As a result, they are of great social and
economic burden. Currently available anxiolytic and anti-depressant agents have limited
response rates, limited tolerability, and unfavourable side-effect profiles, thus, cannabi-
noids may be promising novel alternative therapeutic agents to traditional anxiolytics and
anti-depressants.

Activation of the cannabinoid 1 receptor (CB1R) mediates natural rewards (such as
social interaction, sexual intercourse, and delicious food) and drug rewards (desirable
effects) [32]. As such, the CB1R may be a promising, novel drug target for the treatment
of mood and anxiety disorders. It is via this receptor that ∆9-THC produces the desirable
effects on an individual’s mental health, however fleeting. The ECS also potentially mod-
ulates synaptic transmission of neurotransmitters, such as mesocorticolimbic dopamine,
acetycholine, glutamate, opiate peptides, and GABA, which play significant roles in the
control of our emotions and behaviours [33]. The CB1R is densely populated in the brain,
in areas responsible for the mediation of reward, such as the amygdala, hippocampus,
and orbitofrontal cortex [34,35] and, thus, the ECS also plays a role in “emotional metasta-
sis” [32,33]. On the same tangent, single nucleotide polymorphisms (a type of mutation)
in the cannabinoid receptor 1 (CNR1) gene that that encodes the CB1R has been linked to
depression [36,37], nicotine dependence [38], alcohol dependence [39], and possibly other
substance-use disorders that are the result of mood and anxiety disorders.

Cannabidiol (CBD) was first observed to be anxiolytic when it was shown to reverse
∆9-THC’s psychotic and anxiogenic effects, via a CB1R-independent mechanism [40]. There
is strong preclinical evidence that supports CBD’s great potential as an anxiolytic, pani-
colytic, and anti-compulsive agent. Pre-clinical and animal studies have shown that CBD’s
activity decreased condition fear, mitigated the adverse effects of chronic stress, decreases
autonomic arousal, prevents fear reconsolidation, and promotes fear extinction [31]. CBD
is postulated to regulate fear and anxiety through interaction with the serotonin 5-HT1A,
the TRPV-1 receptor, and, to a lesser extent, CB1R [31]. CB1R activation results in anxiolytic
effects and plays a role in regulating/preventing fear and preventing chronic stress. CB1R
seems to mediate the anti-compulsive activity of CBD [31]. Activation of the serotonin
5-HT1A receptor (5-HT1AR) by CBD has been implicated in the regulation of fear and
prevention chronic stress [31]. Another proposed mechanism of action by which CBD
may produce anxiolytic effects is by upregulating hippocampal AEA, an endogenous
cannabinoid with anxiolytic properties [41].

A 2011 preliminary study by Bergamaschi and colleagues investigated the effect of
a single dose of CBD on subjects undertaking a simulation public speaking test (SPST).
A total of 24 patients with Social Anxiety Disorder (SAD), who were never treated prior,
received a single 600 mg dose of CBD before the SPS test. There was an improvement in
speech performance, a reduction in anxiety, cognitive impairment, and alert anticipatory
speech [42].

In murine models, CBD was able to reduce the depression induced by the Forced
Swimming Test (FST), tests of conditioned fear, conflict tests, and restraint stress tests [31].
The mechanism of action is suggested to be by activation of the 5-HT1A receptor. It has
also been postulated that CBD increases brain-derived neurotropic factor (BDNF), thereby
reducing depression [43]. The BDNF protein is responsible for neurogenesis (formation of
nerve cells), and the growth, maintenance, and survival of nerve cells.
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2.2. Pain Management

Pain is a symptom of many diseases. Both anecdotal and scientific evidence support
the use of C. sativa L. and its secondary metabolite for overall pain management, and is
effective even against chronic pain—both as a stand-alone drug and as an adjuvant, and
there is record of the use of C. sativa L. in pain management in Chinese pharmacopoeia—some
5000 years ago.

More recently, the ECS has been implicated in the management of pain as cannabinoids
have been shown to target components of the ECS [44] such as the CB1R, CB2R, non-
CB1R/CB2R cannabinoid G protein-coupled receptor (GPCR) 55 (GPR55) [45], GPCR
18 (GPR18) aka N-arachidonoyl glycine (NAGly) receptor [46], opioid/serotonin (5-HT)
receptors [47–49], TRPV1 [50,51], and PPARα and γ [15]. Additionally, it is notable that, in
a murine model, the GPR55 receptor modulates the proinflammatory cytokines IL-4, IL-10,
IFN gamma, and GM-CSF, thereby mitigating hyperalgesia [45].

Antagonists of CB2R have been reported to demonstrate antinociceptive proper-
ties in models of inflammatory and nociceptive pain [52]. One mechanism of action
is possibly by inhibition of AEA metabolism; another possibility is via modulation of
peroxisome proliferator-activated receptor α agonists, TRPV1 antagonists, and/or α2-
adrenoceptor modulators [52]. In some cases, this is accomplished via activation of opioid
system/enhancement of µ-opioid receptor agonists [52]. On the same tangent, cannabi-
noid and opioids, and cannabinoids and non-steroidal anti-inflammatory drugs (NSAIDs),
have been shown to act synergistically [52]. Current evidence suggests that CBD, in
particular, may have therapeutic benefits in treating Rheumatoid arthritis, Fibromyalgia,
arthritis, chronic back pain, chronic abdominal pain due to surgery, and chronic pancreatitis,
headache, and facial pain.

Studies in murine models of arthritic pain have also shown great promise [53]. In
one animal model, cannabinoids were shown to inhibit neuropathic nociception caused
by traumatic nerve injury, disease, and toxic insults [54]. In yet another animal model,
cannabinoids demonstrated therapeutic efficacy against thermal pain, noxious pain, post-
operative pain, cancer pain, and spinal cord injury-related pain [55]. On the same tangent,
the endocannabinoid AEA demonstrated antinociceptive properties at the spinal level [50].

In general, C. sativa L., and its secondary metabolites thereof, may be a safer, non-
addictive alternative to opioids, non-steroidal anti-inflammatory drugs (NSAIDs), and
most painkillers. This has contributed to CBD’s growing popularity, particularly in pro-
fessional sports and cancer-management. Furthermore, CBD is well-tolerated across wide
dose ranges.

CBD could be particularly useful in cases where chronic cancer pain is refractory to
treatment with traditional analgesics. A 2018 review article/meta-analysis by Vučković
and colleagues explored scientific studies conducted between 1975 and March 2018 to
examine CBD’s therapeutic applicability in treating cancer-associated pain, fibromyalgia,
and neuropathic pain, and concluded that the current scientific evidence supports the
use medical cannabis in pain management [44]. There are many components to the many
different types of pain. Vučković and colleagues, 2018, also postulate a number of possible
mechanisms of action of CBD-induced analgesia [44]. These include the reduction in
inflammation, activation of some pain inhibition pathways, inhibition of neuropeptide and
neurotransmitter release, and/or regulation of neuron excitability (particularly in the case
of neuropathic pain).

In the present day, Nabiximols (Sativex®), a synthetic cannabinoid oromucosal spray,
has been approved in some European countries and in Canada for the treatment of cancer-
related pain. It is also used for spasticity and neuropathic pain in patients with Multiple
Sclerosis.

Components of the ECS are also expressed in migraine-related structures [56] and, as
such, the ECS may also be a target for the treatment of migraines. Refer to Table 2 for a list
of synthetic cannabinoids and their therapeutic window for pain.
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Table 2. Synthetic cannabinoids and their therapeutic window for pain.

Synthetic Cannabinoids Therapeutic Window References

1. HU-308 and AM-124 (CB2R
agonists) Pain and inflammation [6]

2. Pyrimidinecarboxamide (and its
derivatives) (CB2R modulators)

Acute, chronic, and
inflammatory pain [6]

3. JWH-133 (intrathecal
administration)

Reduction in
post-operative
hypersensitivity

[57]

4. Peripherally restricted CB1R
agonists Chronic pain [58]

2.3. Cannabinoids as an Alternative to Opioids

Opioid overdose (OOD) is a worldwide crisis, primarily due to over-prescription of
opioids for the management of chronic pain, and also to the illicit drug market. Opioid
overdose accounts for approximately 69,000 deaths worldwide, whereas some 15 million
people are addicted [59].

An opioid (narcotic) is a class of drugs manufactured synthetically or from the opium
plant. The mechanism of action is by binding to opioid receptors (G protein-coupled)
located primarily in the central and peripheral nervous system and the gastrointestinal
system. Ligands, the endogenous opioids that bind to said receptors, include endor-
phins, endomorphins, enkephalins, and dynorphins. These receptors mediate analgesia
and nociception, and are typically used as pain relievers and anaesthetics. Other uses
are to suppress diarrhoea and coughing, and to relieve shortness of breath. This class
of drugs include heroin and synthetic opioids such as Fentanyl (Actiq®, Duragesic®,
Fentora®, Abstral®, and Onsolis®), codeine, Hydrocodone (Hysingla® and Zohydro
ER®), Hydrocodone/acetaminophen (Lorcet®, Lortab®, Norco®, and Vicodin®), Hydro-
morphone (Dilaudid® and Exalgo®), Meperidine (Demerol®), Methadone (Dolophine®

and Methadose®), Morphine (Kadian®, MS Contin®, and Morphabond®), Oxycodone
(OxyContin®, and Oxaydo®), Oxycodone and Acetaminophen (Percocet® and Roxicet®),
and Oxycodone and naloxone. Fentanyl is 50 to 100 times more potent than morphine [60].
Side effects of opioid abuse include nausea, respiratory depression, sedation, euphoria, con-
stipation, urinary retention, and itchiness. Side effects of opioid overdose include pinpoint
pupils, drowsiness, cyanosis, slow breathing, loss of consciousness, and even death.

The analgesic effects of C. sativa L. and its secondary metabolites have made them
promising tools in combatting the opioid crisis. This if further confirmed by the presence of
cannabinoid receptors in peripheral, spinal, and supraspinal neurons associated with mod-
ulation of nociceptive signalling [61–65] and the implication of ECS in opiate dependence
withdrawal [48]. In a sample of 4,840,562 persons, the legalization of medical cannabis
directly correlated with lower chances of opioid use [66].

A preliminary cohort study reported a clinically and statistically significant relation-
ship between enrolment in a New Mexico Medical Cannabis Program (MCP) and pain
reduction, opioid prescription cessation (no prescription of opioid medication within the
last 3 months), reduction in daily intravenous (IV) injection of opioid medications, reduced
hospitalization due to prescription opioid medications (POMs) [67], reduced health care
costs [67], and improvements of overall quality of life, social life, concentration, and activity
levels [68]. A 41% opioid dose reduction (ODR) was also achieved using medical cannabis
in cancer and rheumatological patients [69].

An association was also found between a reduction in opioid related deaths in Col-
orado and the legalization of recreational cannabis in Colorado (increasing access to medical
cannabis via dispensaries) [70–73]. Another found a direct relationship between the imple-
mentation of medical cannabis access laws and the reduction in the probability a provider
prescribes any opioids net of any offsetting effects, the total number of patients receiving
opioids and total days’ supply of opioids prescribed [74]. Other studies suggest that the
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implementation of more flexible medical and adult-use marijuana laws may directly corre-
late with a reduction in opioid overdose death rates [75,76] and lower opioid prescribing
rates (5.88% and 6.38% lower, respectively) [77].

A 2020 study by Blake explored the prescription rates of opioids in 19 states where
medical cannabis is legal [78]. Results of this study show that, in these states, opioid
prescriptions decreased. In another study, the decreased opioid use (in persons aged
18–55—Medicare/Medicade populations) was only associated with the implementation of
a medical cannabis law (as opposed to a recreational cannabis law) [73,79]. On the same
tangent, a 2019 study by Flexon and colleagues report no relationship between medicinal
cannabis legislation and opioid misuse [80]. In another study, medical cannabis access
and use directly correlated with and increased rate of cessation of injection of opioids [81].
Cannabis may also have a safer side-effect profile, lower abuse potential, and may even be
used to treat some side effects of opioid use such as nausea [82].

At this point, it is suggested that cannabinoid-based analgesics may be used as an
adjuvant, rather than an alternative form of therapy, and may even produce a synergistic
result when used in combination with opioid analgesics [83–85]. A 2019 study by Capano
and colleagues evaluated the effects of CBD hemp extract on opioid use and quality of
life in a prospective cohort study in patients suffering from chronic pain. Patients given a
CBD-rich extract were able to significantly improve their quality of life, and significantly
reduce, or completely cease, the use of opioids [86]. No positive correlation between
frequent cannabis use and frequent opioid use (whether illicit or prescribed) for pain was
reported in this study.

On a different tangent, in contrast to opioids, the primary analgesic used to treat cancer-
induced bone pain (CIBP) caused by malignant cancers such as breast cancer that tend to in-
vade bone, peripherally restricted CB1R agonists such as 4-{2-[-(1E)-1[(4-propylnaphthalen-
1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI), have demonstrated signifi-
cant alleviation of CIBP [87].

2.4. Inflammation

Inflammation may accompany many diseases, including many types of cancers,
asthma, and autoimmune disorders such as rheumatoid arthritis, hepatitis, colitis, multi-
ple sclerosis, and common dermatologic conditions. Cannabinoids, in general, are very
potent anti-inflammatory agents. Endocannabinoids, such as AEA and 2-AG, and phy-
tocannabinoids, such as ∆9-THC and CBD, have demonstrated anti-inflammatory and
immune-suppressive properties via CB1R and CB2R [88]. Cannabinoids have demon-
strated the ability to downregulate cytokine and chemokine production and, in doing so,
are able to suppress inflammatory responses [88]. As such, both endocannabinoids and
phytocannabinoids may be promising tools in the treatment of inflammatory disorders.

It has been postulated that CBD binds to an adenosine A2A receptor, and decreases
inflammation by way of inhibition of adenosine uptake. This has been confirmed in murine
models. In another murine model, CBD was able to mitigate LPS-induced inflammation
through said A2A receptors. CBD also had the same effect on inflammation in animal
models for multiple sclerosis. In yet another murine model, CBD, by way of the TRPV-1
receptor, was able to reduce the levels of pro-inflammatory cytokines (eotaxin1, IL-2, IL-6,
IL-12, IL-17, TNF-α, IFC-c, and MCP-1) [89]. AEA is also implicated in the treatment of
inflammation [90].

It has also been postulated that CBD is a functional antagonist to the GPR55 recep-
tor [91]. Via inhibition of GPR55 receptor activity, CBD may mediate levels of inflammation
by controlling the release of pro-inflammatory cytokines IL-12 and TNF-α [92]. Addition-
ally, by binding to and blocking the GPR55 receptor, CBD may exhibit analgesic effects in
neuropathic pain, and anti-inflammatory activity in Inflammatory Bowel Disease [92].

CBD interacts with the PPAR-y receptor to mitigate beta-amyloid (Aβ)-induced neu-
roinflammation [92]. Through said receptor, CBD also promotes neurogenesis in the
hippocampus. The anti-inflammatory actions of CBD were also reported in murine models
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of Type 1 Diabetic Cardiomyopathy, Pneumococcal meningitis, Colitis, Alzheimer’s, and
Inflammatory Bowel Syndrome [92]. In murine models, CBD also has the ability to decrease
Reactive Oxygen Species (ROS), thereby inhibiting inflammation [92]. The extent to which
these results in murine models may be applied to humans requires further study.

2.5. Cardiovascular Disorders

Studies have shown that cannabinoids, including CBD, have a cardioprotective role–-
preventing heart damage, reducing the risks thereof, and maintaining a “healthy” heart and
vasculature [93]. Cannabinoids have also shown promise against arrhythmias, atheroscle-
rosis, and stroke [94,95]. Studies also show that cannabinoids may lower the risk of
cardiovascular diseases, heart attack (myocardial infarction), and injury as a result of re-
duced/restricted blood flow (ischaemia) [93]. CBD and other cannabinoids have also been
shown to cause relaxation of the blood vessel walls (vasorelaxation) [93]. It is suggested
that CBD decreases blood pressure, attenuates atherosclerosis, and increases the available
nitric oxide by way of PPARy antagonism [93]. Nitric oxide is a neurotransmitter and
blood vessel relaxant, that improves blood circulation, reduces blood pressure, regulates
heart rate, prevents clogged arteries, regulates contractility of the heart and vascular tone,
prevents adhesion of cells to the endothelium, and prevents the formation of blood clots
by inhibiting platelet activation. As an anxiolytic agent, CBD mitigates the cardiovascular
response when we become anxious or stressed.

Proposed mechanisms of action by which CBD exerts its activity on the cardiovascular
system are by TRPV channel activation, nuclear factor-kB (NFκB), and map kinase (MAPK)
pathways [93]. AEA also activates TRPV1, and is implicated in the treatment of cardiovas-
cular disorders [90]. Other cannabinoids may act by way of CB1R activation. CBD is also
shown to prevent hypotension by inducing arteriolar and venular vasodilation [93].

2.5.1. Diabetes

Diabetes is a metabolic disease characterized by high blood-sugar levels and is a
significant risk factor for cardiovascular diseases (CVD) such as stroke, blood vessel
disease, and coronary artery disease, as it damages the nerves and the blood vessels of the
heart/cardiovascular system and possibly other organs, such as the eyes and kidney [96,97].
The hormone responsible for the regulation of blood glucose is insulin. In Type 1 diabetes,
an autoimmune disease, the pancreatic cells that make insulin are attacked and destroyed
by the individual’s own immune system. In Type 2 diabetes, the individual becomes
resistant to insulin and, as a result, there is an accumulation of sugar in the blood [98].

Both CBD and ∆9-tetrahydrocannabivarin (∆9-THCV) a non-psychoactive cannabi-
noid, have been shown to play a role in lipid and glucose metabolism in animal models,
and may be opportunities for glycaemic control in the case of patients with type 2 diabetes
mellitus (T2DM) [99]. The CB1R has also been implicated as a therapeutic target for the
treatment of T2DM, as the ECS has demonstrated a role in insulin resistance characteristic
of T2DM [100]. ∆9-THCV has been implicated in the clinical management of type 2 diabetes
as it has demonstrated the ability to decrease appetite, up-regulate energy metabolism, and
increase satiety [101].

CBD also seems to have therapeutic activity against endothelial dysfunction [93]. The
endothelium is a layer of single-celled tissue which lines organs, in this case the heart.
Endothelial dysfunction is characterized by inflammation, blood clotting (thrombosis),
and impaired vasodilation. High glucose intake, as in cases of diabetes, is a cause of
endothelial dysfunction. Another proposed mechanism of action of CBD on diabetes is
through the upkeeping of the blood–retinal barrier. Disruption of the blood–retinal barrier
is characteristic of diabetes [93].

2.5.2. Stroke

The wide distribution of the components of the ECS makes it a promising target in
the treatment of CNS diseases/neurological disorders such as strokes [7]. A stroke is a
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type of cardiovascular disease that is characterized by brain damage and other possible
signs and symptoms such as severe headache, loss of coordination, dizziness, confusion,
blurred vision and even temporary blindness, slurred speech, and numbness/paralysis
of face or limbs [102]. Strokes are the result of a lack of oxygen and nutrients to the brain
due to interruption or restriction of blood supply to brain [102]. Types of strokes include:
(1) ischemic stroke due to a blocked artery, and (2) haemorrhagic stroke due to a leaking or
burst blood vessel [102].

∆9-THC has demonstrated positive effects on brain oxygenation and increased hemo-
dynamic blood flow to the prefrontal cortex, and may possibly be beneficial in the treatment
of (frontal lobe) strokes [103]. The anti-spastic properties of CBD may also be beneficial for
patients with post-stroke spasticity [103].

In in vivo and in vitro animal models, CBD plays a neuroprotective role in the patho-
physiology of ischaemic stroke–the most common type of stroke—characterized by block-
age of blood vessels in the brain by blood clots. Studies show that CBD increases cerebral
blood flow (CBF), thereby reducing the risk of ischaemic strokes [93]. HU-211 has also
demonstrated therapeutic promise against CNS diseases [104].

Another proposed mechanism of action of CBD on CBF is through antagonism of the
serotonin (5HT3) receptor (5-HT1AR) [93]. CBD facilitates 5-HT1AR signalling in animal
models. Yet, another proposed mechanism of action of CBD on strokes is through the
upkeeping of the blood–brain barrier [93]. Disruption of the blood–brain barrier is one
proposed cause of ischaemic stroke.

An increased infarct size is characteristic of heart attacks (myocardial infarction).
Studies have shown that CBD reduces infarct size by reducing inflammation [93,105,106].
There is also evidence that CBD influences blood cell function, including promoting the
survival and migration of white blood cells, mediating programmed cell deaths, and
regulating platelet aggregation [93].

2.6. Cancer

Cannabinoids have demonstrated well established analgesic, antinauseant, antide-
pressant, antiemetic, anti-nociceptive, and orexigenic properties and, as a result, they have
been studied and utilized in the treatment of cancer patients receiving chemotherapy or
radiotherapy, and in AIDS/HIV patients [107–110]. In addition to the well-established
palliative properties that ∆9-THC and CBD exert on cancer-related symptomology, sev-
eral phyto-, endo-, and synthetic cannabinoids all exert their anti-cancer properties via
several different proposed mechanisms of action including, but not limited to: induction of
apoptosis, autophagy and cell-cycle arrest, inhibition of cancer cell migration, metastasis,
angiogenesis, neovascularization, adhesion, and/or invasion [111–117]. These properties
are likely attributed to their role in endocannabinoid signalling pathways involved in
cancer processes such as the MEK-extracellular signal-regulated kinase signalling cascade,
and the adenylyl cyclase, cyclic AMP-protein kinase-A pathway [113,118]. Ultimately, the
use of cannabinoids to target the ECS-signalling involved in the pathogenesis of these
cancers, is a very promising target that is currently being given increasing attention in the
medical landscape.

Multiple studies also confirm the direct correlation between the upregulation of said
cannabinoid receptors, endocannabinoid metabolic enzymes, and endogenous ligands in
cancerous tissue [119–125].]. Signalling between cancer cells is also shown to be mediated
by cannabinoids [119]. One study suggests that the ECS may play a role in tumour sup-
pression [126]. Multiple studies have also demonstrated the apoptotic, anti-metastatic,
anti-angiogenic, anti-inflammatory properties of cannabinoid and non-cannabinoid sec-
ondary metabolites of C. sativa L. This suggests that cannabinoid-based therapeutics may
be promising in the treatment of many different types of cancers, in addition to the afore-
mentioned diseases.

Cannabinoids such as AEA, Met-F-AEA, 2-AG, ∆9-THC, CBD, CBDA, HU120, WIN-
552122, JWH-133, AME121, and R-(+)-MET have all demonstrated anti-cancer properties in
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various cancer models such as breast-, lung-, prostate-, testicular-, gastric-, skin-, colon-,
bone cancers, and glioblastomas, lymphomas, leukaemias, and neuroblastomas. Mecha-
nisms of action of these cannabinoids in these cancers range from induction of apoptosis
and cell cycle arrest, inhibition of DNA synthesis, inhibition of various signalling path-
ways such as the PI3K/AKT/mTOR/AMPK or the EGF/EGFR, inhibition of angiogenesis,
inhibition of tumour growth, tumour regression, and inhibition of metastasis.

3. Neurological/Neurodegenerative Diseases

Neurodegenerative diseases are characterized by inflammation and dysregulation of
the function of neurons, and in some cases death, resulting from an ongoing/progressive
degeneration of neurons [127]. This category of diseases includes amyotrophic lateral scle-
rosis (ALS), Alzheimer’s disease, Parkinson’s disease, Huntington’s, Batten disease, fatal
familial insomnia, and, by some hypotheses, schizophrenia. These diseases are incurable,
but cannabinoids have been shown to provide relief to some symptoms associated with
said diseases. Cannabinoids are known to play a role in the modulation of inflammation
(neuroinflammation), along with providing and enhancing neuroprotection [95,127,128].
In addition, cannabinoids such as CBD have shown analgesic, anxiolytic, and immunosup-
pressive properties that may help to combat certain neurological disorders [129].

Cannabinoids have been implicated in the modulation of adult neurogenesis in the hip-
pocampus and the lateral ventricles [130,131]. Chronic treatment of the synthetic cannabi-
noid HU-210 has been shown to enhance the survival and proliferation of cells in murine
models of hippocampal neurogenesis while exerting anxiolytic and anti-depressant prop-
erties [132]. Other synthetic cannabinoids, such as JWH-133, AM1241, JWH-056, AM251,
WIN55,212-2, and URB597, have also demonstrated pro-neurogenic properties [130]. Neu-
rogenesis is the process by which neural stem cells (NSCs) produce neurons (nerve cells).
Neurogenesis in the hippocampus influences our capacity to learn and retain memory.
Neuroplasticity is the brains capacity for synaptogenesis, which is the structural change/re-
wiring of said connections between neurons. Studies show that schizophrenia and other
psychiatric disorders physically alter the brain, as characterized by a reduction in the
volume of the hippocampus, along with other areas [40]. This is typically as a result of an
inhibition of neurogenesis in the hippocampus.

In one study, prolonged CBD administration demonstrated a neuroprotective role
against neuroanatomical alterations in the hippocampus, hippocampal volume loss, and
even ameliorated brain damage [133]. In murine models, CBD promoted hippocampal neu-
rogenesis, synaptic- and dendritic-remodelling, and prevented autophagy, neurogenic dis-
ruption, stress-induced anxiogenesis, THC-induced neurotoxicity, oxidative damage/ROS
production, and neuronal damage [40].

Cannabinoids may also have potential in the treatment of mood instability associated
with neurological disorders, as the ECS has been implicated in pathophysiology of neuro-
logical disorders [134]. Although some studies suggest that cannabinoids in general may
be promising in the treatment of neurological disorders, others suggest a link between
high consumption of recreational cannabis and an increased risk of mental health disorders
such as substance dependence—though this is controversial [120,135]. This is, however,
likely due to the presence of THC. Further studies are required to clearly elucidate the
pro-neurogenic effects of CBD and other cannabinoids in humans.

Scientific evidence suggests that cannabinoids such as ∆9-THC, CBD, WIN55212-2,
and CP-55940 may be used to treat various forms of substance abuse such as heroin-,
cocaine-, nicotine- and alcohol-abuse and their symptomologies thereof [136].

3.1. Schizophrenia

While some studies suggest that C. sativa L. use may increase the risk of developing
psychotic disorders and even worsen prognosis and disease burden, likely due to psychoac-
tive compounds [134,137], others suggest non-psychoactive compounds in the plant may
have therapeutic efficacy.
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The anti-psychotic, anti-inflammatory, and neuroprotective properties of CBD make it
a safer, more tolerable, and promising alternative treatment for psychotic disorders such as
schizophrenia [134,138,139]. ∆9-tetrahydrocannabivarin (∆9-THCV) is another cannabinoid
that has gained interest due to its anti-convulsant and non-psychoactive properties [134].
On this same tangent, whole-cannabis extract, or pure ∆9-THC, on the other hand, may be
less effective due to the psychoactive properties of ∆9-THC and possibly other psychoactive
cannabinoids present in the whole-cannabis extract mixture, and may even increase the
risk of psychosis [140,141]. In some studies, CBD has demonstrated the ability to attenuate
∆9-THC-induced psychotic symptoms in healthy patients and symptoms of schizophrenia
in schizophrenics [139].

Both SR141716A and CBD have demonstrated antipsychotic properties in dopamine-
and glutamate-based models of schizophrenia [142–144].

3.2. Epilepsy

Epilepsy is a neurological/central nervous system disorder that is characterized by
frequency seizures. Multiple anecdotal and scientific evidence confirm the success of
medical cannabis in reducing the frequency of seizure episodes with the use of CBD—this
being after the end-of-the-road, i.e., failing therapy with traditional AEDs [145].

In recent years, there has been scientific interest in cannabinoid-based drugs for the
treatment of epilepsy, particularly treatment-resistant epilepsy (TRE) and paediatric-onset
drug-resistant epilepsy. Phytocannabinoids such as CBD, cannabigerol (CBG), cannabi-
davarin (CBDV), and ∆9-THCV have demonstrated anti-convulsant properties and may be
promising opportunities to develop safer alternatives (and even adjuncts) to traditional
antiepileptic drugs (AEDs) [146–148]. Of these cannabinoids, ∆9-THC and CBD have been
given the most attention for their anti-convulsant properties [149]. CBD, in particular, is
of particular interest as it has it circumvents the psychotropic effects resulting from the
activation of CB1R [150]. CBD has demonstrated efficacy as an adjunct treatment option in
the clinical management of Lennox–Gastaut syndrome (LGS) and Dravet syndrome (DS)
as, in multiple studies, it has reduced the frequency of epileptic seizures [149,151–155].

Charlotte Figi, a SCNIA-confirmed Dravet syndrome patient, is the most famous
cases of medical cannabis being used to treat epilepsy—likely as, at one point, she was the
youngest medical marijuana patient, and this caused of a lot of controversy [156]. Charlotte
Figi began having seizures at the age of 3 months [156]. By the age of 5 years, she was
having up to 300 generalized chronic-tonic seizures (GCTs) seizures per week (50/day),
and facing a failing therapy of a cocktail of antiepileptic drugs and a ketogenic diet [156].
She had to be fed through a tube, had motor impairment and cognitive delay and, as a
result, had to be assisted with every activity.

Charlotte began receiving sublingual doses of C. sativa L. plant extract—starting with
low doses (2 mg CBD/lb per day) and increasing up to 4 mg CBD/lb per day [156]. This ex-
tract, made from the Charlotte’s Web strain, had 0.3% ∆9-THC, sufficient to avoid psychosis,
and high content of CBD. Twenty months later, Charlotte’s seizures were reduced by 90% to
2–3 per month, and she could now walk, talk, and do activities unassisted [156]. Upon the
success of her treatment with CBD, Charlotte no longer had to take the antiepileptic drug
Clobazam®. The preparation also began to improve her autistic behaviour. A reduction
in dosages of this preparation resulted in a return of seizures, clearly indicating that the
preparation had therapeutic effects.

In 2018, Epidiolex® became the first and currently the only US Food and Drug Admin-
istration (FDA)-approved plant-derived CBD-based pharmaceutical preparation developed
for the treatment of Lennox–Gastaut syndrome (LGS) and Dravet syndrome (DS).

4. Autoimmune Diseases

Immune system disorders are the result of dysregulation (hypo- or hyper-activity) of
the immune system. In particular, autoimmune disorders are characterized by hyperactivity
(overactivity) of the immune system, resulting in the production of antibodies that attack
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the body’s own tissues instead of invading pathogens. Autoimmune disorders include
autoimmune encephalitis, chronic inflammatory demyelinating polyneuropathy (CIDP),
Guillain–Barré syndrome, Grave’s disease, Hashimoto’s thyroiditis, multiple sclerosis,
inflammatory bowel disease (IBD) (e.g., Chron’s disease and ulcerative colitis), systemic
lupus erythematosus (SLE), rheumatoid arthritis, myasthenia gravis, vasculitis, type-1
diabetes mellitus, psoriasis, and scleroderma.

The ECS has been implicated in immunoregulation as endocannabinoids, synthetic
cannabinoids (such as Ajulemic acid and JWH-015, SR144528, and WIN55,212-12), and
phytocannabinoids (such as ∆9-THC and CBD) have demonstrated immunosuppressive
properties, primarily by way of apoptosis [88]. The ECS is suggested to have therapeutic
implications in a number of autoimmune (and neurological) diseases as components
(CB1R and CB2R) of the ECS have been expressed in microglial cells [157] and distributed
throughout the central nervous system (brain and spinal cord) [158].

To reiterate, the CB1R is densely populated in areas of the brain responsible for learn-
ing and memory, coordination, movement, regulation of hormones, sensory perception,
reward and emotions, and body temperature [159]. On the other hand, CB2R are primarily
expressed in the cells of the immune system [159]. This is further confirmed by the im-
munosuppressive properties of some cannabinoids [160], and the inhibition of production
of proinflammatory cytokines [160,161], likely acting through the CB2R [162]. Both types of
receptors are implicated in the modulation of neurotransmitter and cytokine release [160].
Through interaction with CB1R and CB2R, cannabinoids demonstrate the ability to induce
apoptosis of T cells and macrophages [160].

CB1R and CB2R are expressed in microglial cells at low and high levels, respectively,
with the distribution and expression of CB2R is suggested to modulate microglial activ-
ity [159]. Microglial cells are morphologically, phenotypically, and functionally related to
macrophages [159].

In “resting” macrophages, CB2R is not detected [159]. Elevated levels of expression of
CB2R directly correlating to the conversion of microglial cells into a either a “primed” state,
where the cells function in chemotaxis, or a “responsive” state, in which these cells carry
out antigen processing [159]. In a fully activated state, CB2 is expressed at very low levels
in macrophages [159]. In addition to primed and activated macrophages, inflammatory
macrophages also express the highest levels of CB2R [159]. This means that cannabinoids
may only have a window during which to carry out their therapeutic function [159]. CB1R
is only expressed in very low levels in microglia [159].

2-arachidonylglycerol, an endocannabinoid, interacts with CB2R to stimulate a chemo-
tactic response, whereas in vivo and in vitro, the exogenous cannabinoids ∆9-THC and
CP55940 interact with CB2R to inhibited microglia from a chemotactic response to Acan-
thamoeba culbertsoni, an opportunistic pathogen responsible for Granulomatous Amoebic
Encephalitis [159].

The pro-inflammatory properties of cannabinoids have implicated them as possible
treatments for inflammation associated with autoimmune diseases such as type 1 diabetes
mellitus, multiple sclerosis, and neuropathic pain [160].

4.1. Blood–Brain Barrier (BBB) (Also Referred to as the “Blood–Spinal Cord Barrier” (BSCB))

The blood–brain barrier (BBB) is where peripheral blood circulation (and compo-
nents/chemicals in the blood, thereof), meet the anatomical structures of the brain (central
nervous system) [163]. It is essentially a border or defensive barrier between the CNS
and circulating blood [163]. Blood vessels play a critical role in delivering oxygen and
nutrients to the tissues and organs of the body, maintaining hormone signalling among
tissues, removing metabolic waste and carbon dioxide from said tissues, and general
neuroprotection [164,165]. Blood vessels of the central nervous system (CNS) make up
the blood–brain barrier and regulate CNS homeostasis, the movement of cells, ions, and
molecules between the blood and the brain [164]. In maintaining CNS homeostasis, the
BBB confers neuroprotection from pathogens and toxic chemicals circulating in the blood.
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Dysregulation of the BBB has been implicated in the pathogenesis of neurological autoim-
mune diseases such as antiphospholipid syndrome with neurological involvement [166–168],
chronic inflammatory demyelinating polyneuropathy (CIDP) [169], Guillain–Barré syndrome
(GBS) [170–172], Alzheimer’s disease [173], multiple sclerosis (MS) [174], and neuromyelitis
optica [175–177].

The endocannainoid system has been implicated in the modulation of the blood–brain
barrier [178], and may likely be a potential target for the treatment and/or clinical man-
agement of neurological or psychiatric diseases such as schizophrenia and epilepsy [179].
Both AEA and 2-AG have been shown to regulate (decrease) the permeability in in vivo
and in vitro models of ischaemia/reperfusion, chronic head injury, and multiple sclero-
sis [178,180,181]. In another study, CBD was shown to enhance brain-targeting capacity,
that is, the passage of lipid nanocapsules across the BBB in both in vivo and in vitro models
of BBB, and thus may be an opportunity for novel CNS drugs [182].

CB1R and CB2R may provide neuroprotection via protection from processes that
damage the BBB such as inflammation (CB2R-mediated), excitotoxicity (CB1R-mediated),
and cell death (CB1R-mediated) and oxidative stress [165]. In addition to these neuropro-
tective effects, CB1R and CB2R have both demonstrated the ability to restore the BBB and
even improve BBB integrity, thus further conferring protection against neurological or
psychiatric diseases [165]. One mechanism of action by which endocannabinoid receptors
confer protection of the BBB is via Aβ-efflux across the BBB [165]. The medical significance
of this is that deposition of Aβ, and an inability to clear such depositions, is implicated in
Alzheimer’s disease [183]. This is due to a dysregulation of the BBB and the inability of
Aβ to be transported across the BBB [183]. This 2013 study by Bachmeier and colleagues
also investigated and demonstrated the role of the ECS in transporting Aβ across the BBB,
clearing of Aβ across the BBB, reducing deposition of Aβ in the AD brain, and improving
cognitive behaviour in animal models of Alzheimer’s disease [183].

4.2. Multiple Sclerosis

Growing scientific and anecdotal evidence suggests that cannabinoids such as ∆9-THC
demonstrate therapeutic effects against symptoms of multiple sclerosis such as neuropathic
pain and spasticity [184,185]. Sativex®, an FDA approved synthetic cannabinoid (a com-
bination of ∆9-THC and CBD) is an oromucosal spray made from whole-plant cannabis
extract that has demonstrated efficacy in the treatment of moderate to severe symptoms of
multiple sclerosis (MS) without adverse side-effects, potential of drug tolerance, or poten-
tial for abuse or misuse [186–189]. It is proposed that Sativex improves MS symptomology
by significantly reducing spinal excitability and increasing intracortical inhibition [190].
Another study proposes that Sativex is even more effective at improving MS spasticity than
first line antispasticity treatment alone [191].

In animal models of experimental autoimmune encephalomyelitis (EAE) and multiple
sclerosis (MS), cannabinoids were shown to mediate EAE suppression via CB1R expressed
by neurons [192]. Inflammation associated with EAE was also shown to be controlled by
CB2R expressed by encephalitogenic T cells [192]. T-cells deficient in CB2R exacerbated
the clinical course of EAE by increasing the production and proliferation of inflammatory
cytokines [192]. In addition, these T-cell were resistant to apoptosis [192]. This CB2R
activity was confirmed in a study by Stipe and colleagues who investigated the effect of a
dinucleotide polymorphism in a human gene on endocannabinoid-induced inhibition of
T lymphocyte proliferation [162]. The CB2R cDNA 188–189 AA→ GG polymorphism is
the result of arginine replacing glutamate at amino acid position 63 [162], and the rate of
polymorphism is reported to be increased in autoimmune diseases [162]. In conclusion,
variation in the gene that encoded CB2R is suggested to put an individual at increased risk
for autoimmunity [162].
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4.3. Rheumatoid Arthritis

Immunomodulatory, immunosuppressive, and analgesic properties make cannabi-
noids promising therapeutic agents in the management of rheumatoid arthritis [193–195].
The CB2R is reported to be a target for RA therapy, as suggested by increased expres-
sion in synovial tissues from the rheumatoid joints [196]. JWH133, a selective CB2R
agonist inhibited the production of the inflammatory mediators interleukin (IL)-6, ma-
trix metalloproteinase-3 (MMP-3), and chemokine (C-C motif) ligand 2 (CCL2) by tu-
mour necrosis factor-α-stimulated fibroblast-like synoviocytes (FLS) derived from the
rheumatoid joints [196]. JWH133 also inhibited the osteoclastogenesis of peripheral blood
monocytes, which also occurs in RA [196,197]. In a murine model of RA, another cannabi-
noid receptor 2 agonist JWH-015 demonstrated inhibition of pro-inflammatory cytokine
interleukin-1β-induced inflammation in rheumatoid arthritis synovial fibroblasts partly
via a glucocorticoid receptor [198].

4.4. Disturbances of the Bowel and Inflammatory Bowel Disease (IDB)

Inflammatory Bowel Disease (IDB) describes two conditions, Chron’s disease and
ulcerative colitis, which are characterized by chronic inflammation of the gastrointestinal
(GI) tract. Whereas ulcerative colitis is characterized by ulcers and inflammation and the
colon and rectum, Chron’s disease may affect any area of the GI tract from mouth to anus,
though most often the small intestines, which become inflamed [199–201].

In traditional Indian, Chinese, and African medicine, C. sativa L. was used regularly
for disorders of the GI tract and of the bowel, and is still of interest in the treatment of such
diseases. CBD, in particular, has shown therapeutic potential in the management of IDB.

Components of the ECS are distributed, though differentially, in colonic tissue (epithe-
lium, lamina propria, smooth muscle, and enteric plexi) [202], as revealed by Western blot
and immunocytochemistry. CB1R are distributed throughout the enteric nervous system
(ENS) [203] and the gut-brain axis (GBA), a communication network between the brain
and the gut [204,205]. This suggests that disorders of the gastrointestinal (GI) tract may be
treated with drugs that target said CB1R and cannabinoid signalling in the ENS [203,206].

The ECS has been implicated in gastrointestinal physiology and homeostasis, and in
the pathogenesis of Inflammatory Bowel Disease as confirmed by anecdotal data, studies in
humans, epidemiologic data, murine models of colitis [206,207], and other pathophysiolog-
ical conditions [208–211]. Refer to Table 3 for a list of uses and properties of cannabinoids
for bowel disorders.

Table 3. Uses and properties of cannabinoids for bowel disorders.

Disorder/Property Reference

1. Inflammatory bowel diseases such as Chron’s disease, ulcerative
colitis and irritable bowel syndrome [212–222]

2. Secretion and motility-related disorders [223]
3. Ant-secretory [224]
4. Digestive [225]
5. Appetite-stimulant [225]
6. Anti-flatulent [225]
7. Anti-spasmodic (for diarrhoea and colic) [225]
8. Antiparasitic (for internal and external worms) [225]
9. Gastric ulcers [225]

10. Gastric neuroses [225]
11. Gastralgia (indigestion) [225]
12. Dispepsia [225]
13. Diarrhoea [212,226]
14. Abdominal cramping [226]
15. Abdominal pain [226]
16. Loss of appetite [227]
17. Anorexia [219]
18. Anti-inflammatory [212]
19. Anti-emetic [212]
20. Analgesic [212]
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Multiple anecdotal evidence confirms the therapeutic properties of medical cannabis
against abdominal cramps, diarrhoea [228,229], and anorexia [219]. Other disturbances
and inflammatory disorders of the bowel [219,230–232], such emesis, anorexia, diabetic
gastroparesis [233], colitis [234], and colon cancer [235].

There is increasing interest in the use of medical cannabis (and its cannabinoids,
particularly ∆9-THC, CBD, and CBG) as an alternative to opioids in the treatment of IBD,
due to its safer side-effect profile and lower chance of dependency and mortality [212].

In addition to Chron’s disease, the ECS may also be a promising therapeutic target for
the treatment of functional bowel diseases such as irritable bowel syndrome and secretion-
and motility-related disorders of the GI tract [209]. The ECS may also play a protective
role against colonic inflammation [208]. It is, however, unclear whether the mechanisms of
cannabinoids against IBD is through inhibition of an inflammation pathway or via masking
of IBD symptoms [207]. In a murine model, the ECS provides GI tract protection from
inflammation and excessive enteric and gastric secretions [209]. On the tangent of murine
models of colitis, two novel ligands, CB13 and AM841, may be used by the cannabinoid
system in the pathogenesis of inflammatory bowel diseases [206].

To reiterate, CB2R are primarily expressed in the cells of the immune system [159]
and may play a role in mucosal immunity [210]. This is further confirmed by the im-
munosuppressive properties of some cannabinoids [160], and the inhibition of production
of proinflammatory cytokines [160,161], likely acting through the CB2R [162]. This sug-
gests a possible role of the CB2R in regulation of inflammation of the GI tract, including
colitis-associated inflammation [202].

The ECS is proposed to play an immunomodulatory role in gastrointestinal inflam-
matory disorders [210]. The distribution of CB2R in the GI tract suggests that it may also
play a role in limiting visceral sensitivity and pain and in the regulation of gastrointestinal
propulsion [211]. Methanandamide (MAEA), a non-hydrolysable AEA analog is reported
to have effects on the mucosal proinflammatory response, by downregulating the pro-
inflammatory cytokines interferon-γ and tumour necrosis factor-α [236]. Inflamed IBD
mucosa expressed significantly lower levels of the endocannabinoid AEA [236].

In a study by Storr and colleagues, it is reported that drugs that targeted blocked
degradation of the ECS, including the expression fatty acid amide hydrolase (FAAH), may
be promising candidates for drugs used to treat IBD [24,25].

In a separate study by Storr and colleagues, CB2R-deficient murine models of trini-
trobenzene sulfonic acid (TNBS)-induced colitis were administered intraperitoneal injec-
tions of the CB2R agonists JWH133, AM1241, or the CB2R antagonist AM630 [234]. After a
3-day treatment, AM630 demonstrated complete exacerbation of colitis, while JWH133 or
AM1241 significantly reduced colitis [234]. In a separate study, Storr and colleagues also
reported that drugs that targeted blocked degradation of the ECS, including the expression
fatty acid amide hydrolase (FAAH), may be promising candidates for drugs used to treat
IBD [24,25].

On the other hand, CB1R are widely distributed within the GI tract, particularly
in sensory terminals of vagal and spinal neurons and neurons of the enteric nervous
system [209]. It has been reported that CB1R plays a role in the modulation of multiple
GI tract functions such as gastric secretion and emptying, and intestinal motility [209]. It
should also be noted that an increased expression of CB1R directly correlated with Croton
oil-induced intestinal inflammation in a murine model of inflammation [235]. Wright and
colleagues also report that cannabinoids demonstrated the ability to enhance epithelial
wound closure via interaction with the CB1R [210]. The CB2R, though less present and
not yet well characterized, is also found in the GI tract. CB2R may also be a promising
therapeutic target due to its non-psychoactive nature, and its immunomodulatory function
in inflammatory pathways [213].

In a study investigating the effects of the cannabinoid agonists CP 55,940 and cannabinol
on intestinal motility, both cannabinoid agonists demonstrated a delay in intestinal motil-
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ity [235]. ∆9-THC, ∆11-THC, cannabinol, and nabilone (but not CBD) were also reported to
have the same effect on intestinal motility (gastrointestinal propulsion/emptying) [237].

Anecdotal evidence and a prospective placebo-controlled study report that medical
cannabis has significant therapeutic effects against Chron’s disease [230,238]. Patients with
Crohn’s disease who did not respond to treatments with anti–tumour necrosis factor-α
agents, immunomodulators or steroids, responded to treatment with 115 mg of ∆9-THC,
which significantly mitigated the symptoms of Crohn’s disease, despite its inability to
induce remission [220].

CBD, which possesses many of the anti-IBD properties as other cannabinoids, may be
more favourable as an anti-IBD drug than ∆9-THC due to its antipsychotic properties [239].

5. Medical Cannabis in Dermatology

The skin is our largest organ, and its primary role is as a first line defence against
external agents. All components of the ECS are found in the skin [240], further establish-
ing the role of the ECS in healthy and diseased skin and general homeostasis [241,242].
Dysregulation of these components is implicated in the pathogenesis of several cutaneous
disorders [241].

The use of C. sativa L. for skin pathologies has its roots in traditional Chinese medicine
where the plant preparations were used as topicals to treat hair loss, skin rashes, ulcers, and
wounds [227,243–245]. Modern clinical studies also report that cannabinoids demonstrate
significant therapeutic effects against skin lesions [246], skin burns [247], and pruritus
in several dermatologic diseases such as allergic contact dermatitis, atopic dermatitis,
asteatotic eczema, and prurigo nodularis [248]. The Japanese also used C. sativa L. (asashijin-
gan) to treat skin pathologies caused by poisonous bites and intestinal parasites [249,250].

C. sativa L. preparations (powdered leaves) were also used in traditional Arab medicine
to treat diseases of the skin such as pityriasis and lichen planus [243,251]. C. sativa L. plant
preparations including hemp seed oil have also been traditionally used to treat varicose
eczema, acne rosea, and scabies [252].

Inflammatory skin disorders such as acne vulgaris, allergic contact dermatitis, der-
matomyositis, psoriasis, and scleroderma are a great disease burden globally, and may
greatly impact an individual’s self-esteem, social interactions with others, and general
quality of life, particularly if accompanied by pain, pruritus, and permanent scarring [253].
Cannabinoids may also have therapeutic application against asteatotic dermatitis, atopic
dermatitis, cutaneous manifestations of systemic sclerosis hidradenitis suppurativa, Ka-
posi sarcoma, and skin cancer [254]. In a murine model, peripheral administration of
0.01 ng AEA inhibited the induction of, and attenuated, carrageenan-induced hyperal-
gesia, inhibited capsaicin-induced plasma extravasation, and inhibited inflammation via
inhibition of neurosecretion from capsaicin-sensitive primary afferent fibres, all via in-
teraction with CB1R [255]. Cannabinoid receptors are also found in the skin, and play a
role in regulating skin growth and maintaining homeostasis of skin cells (melanocytes,
keratinocytes, and sebocytes) [256]. Phytocannabinods such as CBD and Cannabigerol
(CBG) have been shown to regulate the expression of epidermal differentiation genes (i.e.,
involucrin, tranglutaminase, and keratins) [257].

The anti-inflammatory properties of some cannabinoids, particularly CBD, suggest
that it may have therapeutic application against dermatological inflammatory diseases [258].
Remember that inflammation plays a role in the pathogenesis of many cancers. This, in
addition to other anticancer/anti-neoplastic properties of cannabinoids suggest that they
may also play a role in regulating, or at least inhibiting skin carcinogenesis [258]. In addi-
tion to anti-inflammatory effects, cannabinoids interact with the ECS components of the
skin to produce antipruritic, anti-ageing, anti-cancer [259], and antinociceptive effects [260].
Additionally of note is that solar UV radiation is also shown to induce skin inflammation
and carcinogenesis via activation of CB1R and CB2R [261]. This was confirmed in a murine
model with CB1R and CB2R deficiency which demonstrated significant resistance to UVB-
induced inflammation and reduction in UVB-induced skin carcinogenesis [261]. CB1R
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activated by cannabinoids may also play a role in maintenance of epidermal integrity and
permeability [262].

Cannabinoids have also been implicated in the treatment of cutaneous autoimmune
diseases such as scleroderma, psoriasis, eczema, and atopic dermatitis. These are discussed
in the following sections.

5.1. Acne

Acne is a chronic inflammatory cutaneous disorder and is the most prevalent skin
disorder, globally. It is characterized by the clogging of oil glands in the skin by oil and dead
skin cells, resulting in the formation of pimples. According to immunologist Dr. Tamas Biro,
CBD inhibits lipid synthesis and induces cell death in human sebaceous gland-derived
sebocytes and ultimately may be a safer treatment for acne than Accutane, a traditional
drug used to treat severe acne [263].

A study by Dobrosi et al. reported that CB2R are expressed in human SZ95 sebocytes,
and that the endocannabinoids AEA, and 2-arachidonylglycerol induced upregulation
of lipid synthesis, leading to acne. Dobrosi and colleagues also found that inhibiting the
said CB2R decreased lipid production in said skin cell line [264]. Thus, drugs that inhibit
eCB uptake will increase endocannabinoid levels, resulting in a homeostatic production
of sebaceous lipids and an anti-inflammatory response that may be beneficial in treating
cutaneous inflammatory conditions and dry skin [265]. In 2014, Oláh and colleagues
explored the effects of CBD on human sebaceous gland function and discovered that
CBD exerts sebostatic and anti-inflammatory effects on human sebocytes. That is, CBD
was shown to have lipostatic action and even decreased sebocyte proliferation. In this
same study, CBD was able to inhibit pro-acne agents, such as arachidonic acid (AA), a
combination of linoleic acid and testosterone (LA-T), AEA, 2-arachidonylglycerol, that
induced excessive lipid synthesis in human sebocytes, leading to acne [266].

Although current scientific is limited, existing evidence suggests that CBD has a
positive safety profile in dermatology. Anecdotal evidence also suggests that CBD may also
help with anti-aging/wrinkles. This may be attributed to its antioxidant activity. CBD may
also help with the natural healing process for open sores caused by dried and cracked skin.

5.2. Psoriasis

Psoriasis is a chronic hyperproliferative, inflammatory skin disease characterized by
up-regulation of the keratins K6 and K16 [267]. Psoriasis is also accompanied by increased
keratinocyte proliferation and differentiation [268], that is the result of dysregulation of Th1
and Th17 immune cells in the skin, T-cell infiltration, neutrophil infiltration, and activation
of dendritic cells and macrophages [243,269]. This suggests that, as cannabinoids regulate
Th1 and Th17 immune cells in the skin, the ECS might be a promising therapeutic target
for psoriasis [270].

The endocannabinoid AEA, and the CB1R-specific agonist, arachidonoyl-chloro-
ethanolamide (ACEA) are also shown to inhibit epidermal differentiation and the prolif-
eration of epidermal keratinocytes (immature skin cells) [267,271] via downregulation of
the expression of keratins K6 and K16 in vitro and in vivo [271]. In immortalized human
keratinocytes (HaCaT) and normal human epidermal keratinocytes (NHEK), AEA demon-
strated inhibition of cornified envelopes, characteristic of keratinocyte differentiation [267].
The anti-inflammatory properties of AEA may also be due to its ability to inhibit cytokines
produced by keratinocytes [272].

These immature skin cells are characteristic of psoriasis [267,273]. This mechanism of
action is via the activation of the CB1R, which inhibits human hair growth and decreases
proliferation of epidermal keratinocytes [267].

5.3. Eczema

Eczema is a skin condition characterized by patches of itchy, cracked, rough, and
inflamed skin, typically caused by allergens, microbes, extreme temperatures, hormones,
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stress, dietary intake, or irritants [274]. The anti-inflammatory, anti-pruritic, anti-itching,
pro-neoplastic, moisturizing, and anti-oxidant properties of C. sativa L., particularly CBD,
has made medical cannabis a promising and safe alternative to traditional dermatological
drugs [259,275–277].

In a study by Maghfour and colleagues, researchers investigated the efficacy of topic-
sal CBD in the treatment of inflammatory skin disorders such as eczema [278]. Using the
Patient Oriented Eczema Measure (POEM) and the Quality-of-Life Hand Eczema Ques-
tionnaire (QOLHEQ), subjects self-reported a significant reduction in eczema severity,
reduction in the psychosocial burden of eczema, reduction in the emotional burden of
eczema, decreased itching, and overall improvement of eczema [278].

5.4. Fibrotic Skin Diseases

Systemic scleroderma (simply “sclerosis”/“sclero” = hard; “derma” = skin) is a rare,
chronic, autoimmune rheumatic disease characterized by a connective tissue disorder
that causes the skin and connective tissues to harden and tighten, and may also affect
surrounding muscles, blood vessels, heart, lungs, kidneys, and the digestive tract [279].
A number of factors may cause sclerosis, including an attack of one’s connective tissues
by one’s own immune system (“an autoimmune attack”), drugs and certain medications,
microbes, and genetics [279]. The endocannabinoid has been implicated in the pathogenesis
of dermal fibrosis (scleroderma) [280] via the cannabinoid receptor CB2R. In a CB2R-
deficient murine model of bleomycin-induced fibrosis, selective agonists and antagonists of
CB2R were administered and evaluated for their effect on the dermal thickness and number
of infiltrating leukocytes in lesional skin [280]. In comparison to wildtype mice with
CB2R (CB2R(+/+)), mice deficient in CB2R (CB2R(−/−) were more sensitive to bleomycin-
induced dermal fibrosis, and demonstrated increased dermal thickness [280]. The CB2R
antagonist AM-630 increased dermal thickness and leukocyte infiltration in lesional skin,
whereas CB2R agonist JWH-133 reduced leukocyte infiltration and dermal thickening [280].

∆9-THC is also suggested to have anti-fibrotic events in a murine model via interaction
with the CB1R, possibly by medication of leukocyte infiltration [281]. This was confirmed
with CB1R-deficient (CB1R(−/−)) mice that demonstrated resistance to/protection from
bleomycin-induced dermal fibrosis, with reduced dermal thickening, myofibroblast counts,
and hydroxyproline content [281]. On the other hand, ACEA-induced CB1R activation
resulted in increased fibrotic thickening to bleomycin and increased leukocyte infiltra-
tion [281]. It should be noted that in a TSK-1 mouse model, CB1R knockout (via FAAH
inhibition) did not prevent fibrosis [281], and increased levels of cannabinoids were able to
induce fibrosis via CB1R [243].

As CBD interacts primarily with the CB2R, CBD may be a good candidate for treat-
ment of sclerosis, while as ∆9-THC interacts with mesenchymal cells and immune cells via
CB1R and CB2R, ∆9-THC may be a good candidate for the treatment of systemic sclero-
sis [281]. The PPARγ receptor may also be a potential target for treating bleomycin-induced
scleroderma [242]. VCE-004.8, a non-thiophilic and chemically stable derivative of the CBD
quinol and a dual agonist of PPARγ and CB2R, showed promising anti-fibrotic efficacy in a
murine model of bleomycin-induced scleroderma, and demonstrated reduction in dermal
thickness, reduction in blood vessels collagen accumulation, inhibition of mast cell degranu-
lation, inhibition of macrophage infiltration in the skin, inhibition of TGFβ-induced Col1A2
gene transcription and collagen synthesis, and inhibition of TGFβ–mediated myofibroblast
differentiation and wound-healing activity [242]. The expression of many genes linked to
fibrosis was also shown to be downregulated by VCE-004.8 [242].

A synthetic cannabinoid, WIN55,212-2, administered 1 mg/kg/day, demonstrated
complete prevention of bleomycin-induced scleroderma in a murine model, while also
downregulating markers of fibroblast activation such as including α smooth muscle actin
and the profibrotic cytokines transforming growth factor (TGF)β, connective tissue growth
factor (CTGF) and platelet-derived growth factor (PDGF)-BB [282].
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6. Eating Disorders

The ECS has also been implicated in normal appetite control, determination of appet-
itive value, weight regulation and obesity [283], as confirmed by cannabimimetic drugs
that interfere with the ECS and thus influence obesity [284]. Anecdotal evidence has long
confirmed that C. sativa L. will likely cause “munchies” after smoking. On the same tangent,
∆9-THC, AEA, and 2-AG have been implicated in appetitive processing [283,285–288]. It
is on this basis that synthetic THC drugs such as Dronabinol® and Nabilone® have been
designed to treat chemotherapy-associated nausea and vomiting, and anorexia in cancer
(and HIV/AIDS patients) patients.

In rodent models, ∆9-THCV, has been implicated in the clinical management of
obesity and it has demonstrated the ability to decrease appetite, up-regulate energy
metabolism and increase satiety [101]. SR141716A ((N-(piperidin-1-yl)-5-(4-chlorophenyl)-
1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride)), a potent
and selective antagonist of the brain cannabinoid receptor CB1R, widely expressed in
the brain [289], has demonstrated the ability to influence ingestive behaviours [290], and
suppress the food intake of a very highly palatable cane-sugar mixture in marmosets [291].
SR141716A has also demonstrated the ability to modulate, by dose, motivation, and loco-
motor activity (“work”) to consume alcoholic beverages [292]. This implicates SR141716A
as a potential to treat alcoholism [292]. Cannabinoid CB1R agonist CP 55,940 ((-)-cis-3-[2-
hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl)cyclohexanol) has also
been shown to stimulate an appetite for palatable beverages [293].

Implication of the ECS in appetite provides some explanation for the crave (“munchies”)
ravenous eating that often accompanies the smoking of the C. sativa L. plant. On the same
tangent, ∆9-THC has been reported to have hyperphagic properties; however, this is
inhibited by CBD [294].

Anorexia Nervosa

Anorexia is a potentially life-threatening psychological and eating disorder charac-
terized by a distorted perception of body type, body shape/proportion, and body weight
that often leads to depression, intense fear of weight gain, self-starvation, and extreme
weight loss. A significant number of morbidity cases in cancer patients is often caused
by anorexia. Eating disorders may be due to an impairment in endocannabinoid sig-
nalling [295] as evidenced by an upregulation of CB1R mRNA in the blood of patients
with anorexia nervosa and bulimia nervosa [295], and significant reduction in body weight
loss and running wheel activity in an activity-based anorexia (ABA) rodent model after
administration of CB1R/CB2R agonist ∆9-THC [296,297] and the synthetic CB1R/CB2R
agonist, CP-55,940 [296].

∆9-THC is a known orexigenic (appetite stimulant), as confirmed by thousands of
years of anecdotal evidence and modern-day clinical studies. Increased eating leads to
increased rate of weight gain, which ultimately combats cachexia. CBD is also a known
orexigenic agent. A 2008 study by Costiniuk and colleagues evaluated and reported the
efficacy of oral cannabinoid-containing medications (OCs) for the management of interferon
and ribavirin-induced anorexia, nausea, and weight loss in patients with chronic hepatitis
C virus [298]. The mechanism of action of antiemetic and antinauseant activity of both
∆9-THC and CBD is unclear, but may be due to a direct effect on gastrointestinal function,
central antiemetic properties, and/or psychological changes [237].

7. HIV/AIDS-Related Disorders

CBD is used to alleviate the wasting syndrome associated with HIV and AIDS [299].
It is used as an antiemetic and orexigenic agent (appetite stimulant) and may generally
improve the overall quality of life of an HIV/AIDS patient. Both anecdotal and clinical
evidence suggest that CBD in HIV/AIDS patients may improve appetite, reduce nausea
and vomiting, increase caloric intake, promote weight gain, improve memory and dexterity,
improve mood, and mitigate the negative side effects of current anti-retroviral [299] and
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therapeutic agents. In terms of disease progression (morbidity) and delaying the likelihood
death from HIV/AIDS, current studies show that CBD is not effective [299].

∆9-THC may also be used as an antiemetic and orexigenic agent (appetite stimulant)
and may generally improve the overall quality of life of an HIV/AIDS patient, and ulti-
mately alleviate the wasting syndrome associated with HIV and AIDS. Dronabinol®, a
synthetic, ∆9-THC product approved by the FDA in 1985, is used to treat anorexia and
weight-loss in HIV/AIDS patients.

8. Cannabinoids for the Treatment of Hepatitis B Virus

Liver disease, in general, is a major global health burden. Viral hepatitis is a disease
of the liver characterized by liver inflammation and damage as a result of viral infection.
Viral hepatitis is commonly caused by one of five hepatotropic viruses (hepatitis A, B, C, D,
and E), but may be caused by other viruses such as the herpes simplex virus (HSV), yellow
fever virus (YFV), cytomegalovirus (CMV), and Epstein–Barr virus (EBV). Hep A, Hep B,
and Hep C are the most common causes of viral hepatitis. Hep A and Hep E are spread
by the faecal–oral route, that is, via contaminated food or water. Hep B, Hep C, and Hep
D are spread through blood transfusion. There is evidence that these may also be spread
sexually.

Hepatitis may also be caused by other types of micro-organisms, including bacteria,
fungi, and even parasites, non-infectious agents such as drugs and alcohol, and other
metabolic and autoimmune diseases [300]. Hepatitis infections may either be acute (short-
term), where the body will be able to resolve the infection, or chronic (long-term), where
the body is unable to resolve the infection, resulting in liver failure, liver cirrhosis, and
liver cancer.

In a 2017 in vitro study by Lowe and colleagues, CBD was shown to have inhibitory
effects against Viral Hepatitis C (HBC) but not Viral Hepatitis B (HBV). In a dose–response
assay, at a single concentration of 10 µm, CBD was able to dose-dependently inhibit
HCV replication by 86.4% [301]. CBD also seems to have therapeutic efficacy against
autoimmune/non-viral hepatitis [301]. CBD shows in vivo activity through its interaction
with the CB2R. This interaction inhibits the pathogenesis of autoimmune hepatitis by
inducing the apoptosis of thymocytes and splenocytes. This, in turn, inhibits T-cells
and macrophages attacking the liver, thereby inhibiting the release of pro-inflammatory
cytokines [301].

Myeloid-derived suppressor cells (MDSCs) are responsible for regulating the immune
system by suppressing T-cell function and inhibiting liver inflammation. Through interac-
tion TRPV1 receptor, CBD is shown to activate MDSCs, thereby inhibiting inflammation
and hepatitis in a murine model [302]. In a concanavalin A model of acute hepatitis in mice,
Hegde and colleagues report that CBD was able to reduce ConA-induced inflammation by
inhibiting the production and release of various pro-inflammatory cytokines, protecting
the mice from acute liver injury [302]. CBD was also shown to mitigate liver fibrosis, a
characteristic scarring of healthy liver tissue, that is a result of untreated viral hepatitis. In
said study, Lowe and colleagues discovered that CBD inhibited activated hepatic stellate
cells (HSCs) that play a role in the development and progression of liver fibrosis.

9. Cannabinoids Used to Modulate the ECS in Cannabinoid-Research

The role of the ECS in the development of various diseases, multiple ECS targets and
multiple types of cannabinergic, cannabimimetic, and cannabinoid-based lead-compounds
have been established and studied extensively. Refer to Tables 4–13 for some types of
compounds that may modulate the ECS in the treatment of various disorders and diseases.
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Table 4. Commonly used cannabinoid receptor ligands in cannabinoid research [303].

CB1R-Selective Ligands CB1 R/CB2R Ligands CB2R-Selective Ligands

Agonist Antagonist/
Inverse Agonists Agonists Antagonist/

Inverse Agonists Agonist

- Methanandamide
- Arachidonyl-2-

chloroethylamide
(ACEA)

- Arachidonylcyclo-
- propylamide (ACPA)

- SR141716A
- AM251
- AM288

- ∆9-THC
- HU-210
- CP55940
- R-(+)-WIN552112
- AEA
- 2-AG

- SR144528
- AM630

- JWH-015
- JWH-133
- HU-308
- AM1241
- GW405833
- GW842166X
- O-1966

Of note is that CB1R inverse agonists may have adverse effects [304].

Regarding the use of central CB1R agonists [136], examples of CB1R agonists are listed
in Table 5 below.

Table 5. Examples of CB1R agonists and their therapeutic windows.

Central CB1R Agonists Biological Effect(s) and/or
Mechanism of Action Reference

i. ∆9-THC (partial agonist)

- Anticancer
- Anti-microbial
- Anti-inflammatory
- Analgesic

[88,305–321]

ii. WIN55,212-2 (also a CB2R agonist)

- Decreases the severity of
seizures in rodents

- Prevents anhedonia in rodents
- Anti-cancer properties

[322–324]
[325–328]

iii. ACPA
(Arachidonylcyclopropylamide)

- Anti-depressive
- Anxiolytic
- Anti-nociceptive in mice

[329–331]

The use of allosteric modulators of CB1R. Examples of CB1R allosteric modulators are
listed in Table 6 below.

Table 6. Examples of CB1R allosteric modulators and their therapeutic windows.

CB1R Allosteric Modulators Biological Effect(s) and/or Mechanism of Action Reference

i. GAT211 (positive allosteric
modulators (PAM)(racemic))

- Anti-psychotic
- Anti-nociceptive/analgesic in models of

neuropathic and/or inflammatory pain
[332–336]

ii. GAT228 (R-enantiomer)
- May improve Huntington’s disease (HD)

symptomology
- Reduces corneal inflammation and ocular pain.

[336–338]

iii. GAT229 (S-enantiomer) - May improve Huntington’s disease (HD)
symptomology

[336,337]

iv. ORG27569 (negative
allosteric modulator (NAM))

- Reduces cocaine and methamphetamine
seeking behaviour in rat model

- Hypophagic, and thus may have use in the
treatment of obesity

[339–344]
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Peripheral CB1R agonists do not cross the blood–brain barrier (BBB), and are suggested
to circumvent the psychotropic effects and other adverse side-effects such as cardiovascular
and immune perturbations produced by CB1R activation. Examples of peripheral CB1R
agonists (aka peripherally restricted cannabinoid 1 receptor (PRCB)) are listed in Table 7.

Table 7. Examples of peripheral CB1R agonists (aka peripherally restricted cannabinoid 1 receptor (PRCB)) and their
therapeutic window.

Peripheral CB1R Agonists
(Aka Peripherally Restricted

Cannabinoid 1 Receptor (PRCB))

Biological Effect(s) and/or Mechanism of
Action Reference

i.

4-{2-[-(1E)-1[(4-propylnaphthalen-1-
yl)methylidene]-1H-inden-3-
yl]ethyl}morpholine (“PrNMI” aka
2-“5u”

- Anti-allodynic properties (suppresses
CIPN* mechanical and cold allodynia
in a dose-dependent way).
*Chemotherapy-induced peripheral
neuropathy (CIPN)

- Alleviation of cancer-induced bone
pain (CIBP)

- Neuropathic pain

[87,345,346]

ii.

4-{2-[(1E)-1-[(4-Methoxynaphthalen-1-
yl)methylidene]-1H-inden-3-
yl]ethyl}morpholine
(2-5j)

- Anti-allodynic properties (suppresses
mechanical allodynia symptoms

[346]

iii. 2-5j (2-5j) - Anti-allodynic properties (suppresses
mechanical allodynia symptoms

[346]

Peripheral CB2R agonist is used to circumvent the psychotropic effects and other
adverse side-effects such as cardiovascular and immune perturbations produced by CB1R
activation [136]. Examples of peripheral CB2R agonists are listed in Table 8 below.

Table 8. Examples of peripheral CB2R agonists and their therapeutic windows.

CB2R Agonists Biological Effect(s) and/or Mechanism of Action Reference

i. AM1241 (University of
Connecticut)

- Analgesic
- Anti-inflammatory
- Reduction in bone resorption (loss) in

NCTC-2472 bone sarcoma cell line
- Attenuation of spontaneous and evoked pain

in tumour-bearing limb
- Reduction in cancer-induced pain
- Neuropathic pain

[136,347–351]

ii. A-76260 - Analgesic in murine model [352]

iii. HU-308 (Hebrew University)

- Neuropathic pain
- Anti-inflammatory
- Analgesic
- Osteoprotective
- Prohomeostatic

[353–355]

iv. GSK554418A Acute/chronic pain [356]
v. GW842166X Inflammatory pain [357]

vi. GW405833 - Anti-inflammatory
- Suppresses neuropathic pain

[358]
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Table 8. Cont.

CB2R Agonists Biological Effect(s) and/or Mechanism of Action Reference

vii. GP1a

- Anti-depressant
- Decreased severity in experimental cystitis
- Antiallodynic effects in animals on retrovirus

infection-induced neuropathic pain
- Modulation of HIV-1-associated

neurocognitive disorders (HAND)

[359–361]

viii. JWH015

- Antiallodynic effects in animals on retrovirus
infection-induced neuropathic pain

- Attenuates bone cancer pain
- Anti-inflammatory
- Immunosuppressive
- Anti-obesity

[198,360–365]

ix. JWH133

- Antiallodynic effects in animals on retrovirus
infection-induced neuropathic pain

- Alleviates fibrosis in murine model
- Anti-inflammatory
- Anti-proliferative and anti-angiogenic in

non-small lung cancer cells (A549) and human
umbilical vein endothelial cells.

- Cardioprotective against
ischemia/reperfusion-induced apoptosis

- Reduces neurodegeneration,
neuroinflammation, and spatial memory
impairment in Alzheimer’s disease model

- Anti-nociceptive

[360]
[366–370]

Regarding the use of CB1R antagonists [136], of note is that side effects of CB1R
antagonism may include neuropsychiatric sequalae (e.g., anhedonia and anxiety), pain,
hyperalgesia, hypertension, and pro-convulsive effects [136,371]. Examples of CB1R antag-
onists are listed in Table 9 below.

Table 9. Examples of peripheral CB1R antagonists and their therapeutic windows.

CB1R Antagonists Biological Effect(s) and/or Mechanism of
Action Reference

i.

SR141716A
(Rimonabant)—the first
developed CB1R antagonist.
Now discontinued due to
unwanted side effects such as
depression, anxiety, and
suicidal thoughts.

- Obesity possibly via inducing loss of
appetite or increase in metabolic rate (loss
of fat mass) via interaction with
corticotropin-releasing hormone (CRH), a
known anorexigenic

- Rimonabant inhibits CB1R activation
which is responsible for lipogenesis

- Tobacco addiction
- Inhibition of cannabinoid-induced

heroin-seeking behaviour in rats

[6,136,372,373]

ii. AM251

- Attenuates mechanical allodynia
- Attenuates thermal hyperalgesia
- Anti-nociceptive
- Anti-depressive effects
- Improves recognition memory in murine

model
- Anti-cancer/modulation of tumour growth

in mice

[374–376]
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Table 9. Cont.

CB1R Antagonists Biological Effect(s) and/or Mechanism of
Action Reference

iii. SLV-326 (Solvay) - May have anti-obesity, anti-addiction,
anti-depressant, and anxiolytic effects

[136]

iv. LY320135 (Lilly) - May have anti-obesity, anti-addiction,
anti-depressant, and anxiolytic effects

[136,372,377]

Neutral Antagonists

v. AM4113

- Prevents opioid addiction
(self-administration) in rodent model

- Anti-depressant
- Anxiolytic
- Prevents relapse to nicotine-seeking

behaviour in rats
- Anti-obesity via suppression of appetite
- Regulate body weight in rats
- Anti-nauseant

[136,378–382]

vi. O-2654 (Organix) - May have anti-obesity, anti-addiction,
anti-depressant, and anxiolytic effects

[136]

vii. AM5171 (University of
Connecticut)

- May have anti-obesity, anti-addiction,
anti-depressant, and anxiolytic effects

[6,136,272,338,373]

Examples of endocannabinoid-like compounds (fatty-acid ethanolamides) that interact
with receptors outside of CB1R and CB2R [136,383] are listed in Table 10.

Synthetic cannabinergic agonists include CP-55940 (Pfizer), HU-210 (Hebrew Uni-
versity), WIN55212-2 (Winthrop), a cannabinoid agonist by Novartis for neuropathic and
inflammatory pain treatment, BAY-387271 (Bayer) for stroke, and AM356 [136]. Refer to
Table 11 for examples of synthetic cannabinergic agonists.

Table 10. Endocannabinoid-like compounds (fatty-acid ethanolamides) that interact with receptors outside of CB1R
and CB2R.

Endocannabinoid-Like
Compounds (Fatty-Acid

Ethanolamides)

Biological Effect(s) and/or Mechanism of
Action Reference

i. OEA (an endogenous PPAR-α
agonist)

- Satiety-induction
- Weight reduction
- Anti-inflammation

Via binding to peroxisome proliferators-activate
receptor-α (PPAR- α)

[136]

ii. Palmitoylethanolamide (PEA) - Anti-inflammation [136]

iii. N-oleoyl-ethanolamide May act as an alternative substrate for FAAH,
and in doing so, inhibit the degradation of AEA [383,384]

iv. N-linoleoyl-ethanolamide May act as an alternative substrate for FAAH,
and in doing so, inhibit the degradation of AEA [383,384]

v. N-arachidonoyl-glycine May act as an alternative substrate for FAAH,
and in doing so, inhibit the degradation of AEA [384–386]

vi. N-acyl-taurine May act as an alternative substrate for FAAH,
and in doing so, inhibit the degradation of AEA [383,384,387]

vii. N-palmitoyl-ethanolamide Reduced expression of FAAH [384,388]
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Table 11. Synthetic cannabinergic agonists.

Synthetic Cannabinergic
Agonists Biological Effect(s) and/or Mechanism Of Action Reference

i.

WIN55212-2 (Winthrop)

- A mixed R/CB2R agonist.
- Penetrates the CNS.

- Inhibits heroin-seeking behaviour in rats
- Attenuates neurological damage and reduces

infarct size in artery occlusion in rats
- Reduction in glial damage after

hypoxic-ischemic brain injury in preterm
lambs

- Antinociceptive activity in rat pain models

[6,58,136,389,390]

ii. CP-55940 (Pfizer) - Inhibits heroin-seeking behaviour in rats [136]

iii. URB-597 (aka KDS-4103) (targets
FAAH)

- Anxiety, cannabis-dependence, and
hyperalgesia

- Anti-depression

[391]
[6]

iv. PF-04457845 (Pfizer—targets
FAAH) Pain disorders (including osteoarthritis) [342]

v. V158866 (Pfizer—targets FAAG) Pain disorders (including osteoarthritis) [6]

Drugs that inhibit the cellular uptake and/metabolism of cannabinoids such as fatty
acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) [184,392] may have
benefits against diseases/disorders such as cancer, anxiety, neuropathic path, and in-
flammatory bowel disease [393]. Examples of drugs that inhibit the cellular uptake
and/metabolism of cannabinoids are listed in Table 12.

Table 12. Drugs that inhibit the cellular uptake and/metabolism of cannabinoids such as inhibitors
of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

Drugs That Inhibit the Cellular
Uptake of Cannabinoids

Mechanism of
Action Reference

i. CBD Inhibition of FAAH [394]
ii. LY-2183240 Inhibition of FAAH [395]
iii. V-158866 (Vernalis) Inhibition of FAAH [396]
iv. VER-156084 (Vernalis) Inhibition of FAAH [397,398]

v. URB597 (KDS-4103, Kadmus
Pharmaceuticals), Inhibition of FAAH [399,400]

vi. PF750 and PF-655 Inhibition of FAAH [393]

Examples of drugs that inhibit the deactivation of the ECS [136] or drugs that inhibit
endocannabinoid metabolism [57] are listed in Table 13.

Table 13. Drugs that inhibit endocannabinoid metabolism and the deactivation of the ECS.

Drugs That Inhibit the Deactivation Biological Effect(s) and/or
Mechanism of Action Reference

i. AM404 Blocks endocannabinoid transport [136]
ii. OMDM-8 Blocks endocannabinoid transport [136]

iii. AM1172 (University of
Connecticut/University of California) Blocks endocannabinoid transport [136]

iv. FAAH (fatty acid amide hydrolase) Deactivates/degrades AEA [136]
v. MAGL (monoacylglycerol) Deactivates/degrades 2-AG [136]

10. Conclusions and Future Direction

In recent years, genetic and pharmacological manipulation of the ECS has gained
significant interest in medicine, research, and drug discovery and development. The
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distribution of the components of the ECS system throughout the body, and the physio-
logical/pathophysiological role of the ECS-signalling pathways in many diseases (and
the dysregulation thereof), all offer promising opportunities for the development of novel
cannabinergic, cannabimimetic, and cannabinoid-based drugs that genetically or phar-
macologically modulate the ECS via inhibition of metabolic pathways and/or agonism
or antagonism of the receptors of the ECS. This modulation results in the differential
expression/activity of the components of the ECS—beneficial in the treatment number of
diseases. Further studies are required to investigate the molecular mechanisms of action of
the ECS-signalling pathways involved in the aforementioned diseases.

The ECS is a complex molecular/biological system of multiple components that also
play roles in other systems and physiological processes outside of the ECS. Thus, when
targeting and modulating the expression of the ECS components, scientists and drug
developers should consider the consequences on other physiological systems, and if the
disruption of one component or pathway of the ECS will result in unwanted consequences
in other areas of the ECS, and possibly adverse side effects.

The findings of this review suggest that there are multiple cannabinergic secondary
metabolites of C. sativa L. that may have potential as lead compounds in the development
of cannabinoid-based pharmaceuticals for a variety of diseases. These may include single-
molecule drugs or whole-plant extracts. Such drugs have already demonstrated promise in
palliative care. Now that potential lead compounds from C. sativa L. have been identified,
there are several following steps in the drug development process that involve validation
of this potential, pre-clinical research, synthesis of the lead compound into an optimal
form for delivery into the body, and ultimately clinical research. Other factors, such
as benefits, efficacies of these lead compounds, mechanisms of action, risks, adverse
effects, drug interactions, toxicities, possible synergies between other compounds, and
cellular responses to other cannabinergic, cannabimimetic, and/or cannabinoid-based
therapeutic drugs and traditional, mainstay drugs such as chemotherapeutics, should also
be investigated.

US Food and Drug Administration (FDA)-approval of such cannabinoid-based phar-
maceuticals and substantiated clinical decision-making are strictly dependent upon the
elucidation of the aforementioned factors and the generation of more evidence-based data.
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Abbreviations

2-AG 2-arachidonoylglycerol
AEA N-arachidonoyl ethanolamide
CB1R Cannabinoid receptor type 1
CB2R Cannabinoid receptor type 2
FDA Food & Drug Administration
NSAIDs Nonsteroidal anti-inflammatory drugs
∆9-THC ∆9-Tetrahydrocannabinol
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∆9-THCA ∆9-tetrahydrocannabinolic acid
∆9-THCV ∆9-tetrahydrocannabivarin

AM251
N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-
pyrazole-3-carboxamide

AM281
N-(morpholin-4-yl)-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-1H-
pyrazole-3-carboxamide

AM630
6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-
methoxyphenyl)methanone

AM1241
(2-iodo-5-nitrophenyl)-[1-(1-methylpiperidin-2-ylmethyl)-1H-indol-3-yl]-
methanone

AT Anandamide transporter
ACPA Arachidonylcyclopropylamide
Aβ Beta-amyloid
CB Cannabinoid
CBD Cannabidiol
CBDL Cannabinodiol
CBC Cannabichromene
CBCV Cannabichromevarin
CBL Cannabicyclol
CBE Cannabielson
CBG Cannabigerol
CBGV Cannabigerovarin
CBGM Cannabigerol Monoethyl Ether
CBN Cannabinol
CBT Cannabitriol
CBV Cannabivarin
COX2 cyclooxygenase subtype 2

CP55940
(−)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-
hydroxypropyl)cyclohexanol

ERK Extracellular-regulated kinase
FAAH Fatty acid amide hydrolase
GI Gastrointestinal
GCPR G-Coupled Protein Receptor

HU-210
(6aR)-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-
dimethyl-6H-dibenzo[b,d]pyran-9-methanol

JWH-015 (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone

JWH-133
3-(1,1-dimethylbutyl)-6,6,9-trimethyl-6α,7,10,10α-tetrahydro-6H-
benzo[c]chromene

PPARγ Peroxisome proliferator-activated receptor γ
TRVP1 Transient receptor potential vanilloid type 1
MAP Mitogen-activated protein kinase
R-(+)-
WIN55212

(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-
benzoxazin-6-yl]-1-naphthalenylmethanone

SR141716A
N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-
pyrazole-3-carboxamide
hydrochloride

SR144528
N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-
methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide

DAGL Diacylglycerol lipase
MAGL Monoacylglycerol lipase
NAPE-PLD N-acetyl-phosphatidyl-ethanolamine-hydrolyzing phospholipase D
PEA Palmitoylethanolamide
OEA Oleoylethanolamine
FAAH Fatty acid amide hydrolase
NAAH N-acylethanolamine acid amide hydrolase
ABHD6 Alpha/beta-Hydrolase domain containing 6
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ABHD12 Alpha/beta-Hydrolase domain containing 12
GABA Gamma aminobutyric acid
GPR55 G-protein coupled receptor 55
GPR18 G-protein coupled receptor 18
GPR119 G-protein coupled receptor 119
FABS Fatty Acid Binding Protein
HSP70s 70 kilodalton heat shock proteins
AMT Anandamide membrane transporter
EMT Endocannabinoid membrane transporter
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