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Abstract: Phosphorus (P) deficiency is an important challenge the world faces while having to
increase crop yields. It is therefore necessary to select maize (Zea may L.) genotypes with high
phosphorus use efficiency (PUE). Here, we extensively analyzed the biomass, grain yield, and
PUE-related traits of 359 maize inbred lines grown under both low-P and normal-P conditions. A
significant decrease in grain yield per plant and biomass, an increase in PUE under low-P condition,
as well as significant correlations between the two treatments were observed. In a genome-wide
association study, 49, 53, and 48 candidate genes were identified for eleven traits under low-P,
normal-P conditions, and in low-P tolerance index (phenotype under low-P divided by phenotype
under normal-P condition) datasets, respectively. Several gene ontology pathways were enriched
for the genes identified under low-P condition. In addition, seven key genes related to phosphate
transporter or stress response were molecularly characterized. Further analyses uncovered the
favorable haplotype for several core genes, which is less prevalent in modern lines but often enriched
in a specific subpopulation. Collectively, our research provides progress in the genetic dissection and
molecular characterization of PUE in maize.

Keywords: maize; P stress; phosphorus use efficiency; genome-wide association study; gene ontology
analysis; phylogenetic characterization

1. Introduction

Maize is a multi-purpose crop, being an important staple food, feed, and industrial raw
material. It is very important to ensure stable maize production. Phosphorus (P) is a major
element necessary for plant growth and development. P deficiency is an important abiotic
stress that limits crop yield [1,2]. Around the world, cropland in many regions is in a state
of P deficiency, especially in developing countries [3]. Generally, farmers solve the problem
of soil P deficiency by applying chemical fertilizers. However, excessive application and
P deposition into rivers has led to the low use efficiency of P fertilizers, which causes
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many ecological and environmental problems [4,5]. At the same time, phosphate rock, a
non-renewable resource, is expected to be depleted in the next 100–400 years [6]. Therefore,
it is critical to identify genotypes that have high P use efficiency (PUE, defined as the yield
produced per unit of P available in the soil) and thus obtain a higher yield under P deficient
conditions, by applying molecular breeding methods based on genetic analysis of PUE [7].

Under P stress, plants show a series of P starvation responses to ensure normal growth.
For example, plants change root structure, membrane structure, release more organic acids
and enzymes like phosphatases and phytases, and regulate the expression of P starvation
response genes [2,8], involving the transcriptome, proteome, metabolome, and other levels.
This eventually leads to changes in the physiological and morphological characteristics of
plants, such as the accumulation of anthocyanins [9,10], root characteristics [11,12], plant
height [13,14], biomass, and yield [13,15]. Therefore, the absorption and utilization of P in
plants is regulated by a complex genetic network. These changes at the phenotypic and
molecular level are the basis for analyzing the genetic mechanism of PUE. At the same
time, plant height, biomass, and yield are suitable for screening potential low-P tolerant
genotypes, and for genetic analyses.

In Arabidopsis, rice, and other crops, great progress has been made in understanding
the mechanism of P regulation. For example, phosphate transporters are responsible
for phosphate uptake and allocation [16]; ARF7 and ARF19 positively regulate the P
starvation response [17]; PHR1 regulates lipid remodeling during P starvation [18]; ZAT6
synchronizes P homeostasis and root development [19]; PSTOL1 is an enhancer of early
root growth [20]; BHLH32 has a negative effect on anthocyanin accumulation, root hair
formation, and cellular P concentration [21,22]; the miR399–PHO2 pathway [23] regulates
the distribution of P in plants. In maize, some microRNA, such as Zma-miR3 [24] and
miR399 [25], were identified in seedling roots under low-P condition; PILNCR1–miR399
interaction and the miR399–PHO2 regulatory pathway have different modes of action
in maize inbred lines with different PUE [26]; transcription factor NIGT1.2 increases the
absorption of P but decreases the absorption of NO−3 during P starvation, similar to the
regulatory pathway in Arabidopsis [27]; transcription factor ZmPHR1 can improve PUE
under P-deficient conditions [28]. However, most genes were identified or confirmed
through reverse genetics. Hence, there is an urgent need to identify the genes underlying
natural variation through forward genetics.

Many quantitative trait loci (QTL) related to PUE have been detected in a wide range
of genetic populations [29] using root-related traits [30–32], biomass-related traits [33],
and yield-related traits [34,35]. Among them, the research and utilization of the locus
Pup1, named phosphorus-starvation tolerance 1 (PSTOL1), was the most successful, and
its overexpression was shown to increase the biomass and yield of rice under low-P
condition [20]. The homologous regions of rice PSTOL1 in sorghum increase biomass and
have an important role in the root system under low-P condition [36], and also play a similar
part in maize [33]. In maize, Zhang et al. [34] mapped a major QTL qKN controlling kernel
number per row under different P conditions; Qiu et al. [37] identified QTL AP9, which is
related to acid phosphatase activity under P deficiency; and Mendes et al. [38] explored the
genetic architecture of PUE in tropical maize using recombinant inbred lines (RILs).

In recent years, genome-wide association study (GWAS) has become a powerful tool
for analyzing the genetic basis of complex traits in maize [39]. Xu et al. [35] conducted a
GWAS of 18 traits under two P levels combined with RNA-seq data of extreme genotypes
under P stress and identified 259 candidate genes, mainly involved in four pathways:
transcriptional regulation, reactive oxygen scavenging, hormone regulation, and remodel-
ing of the cell wall. Luo et al. [40] conducted their GWAS on 22 root-related phenotypes
under two P levels at the seedling stage and combined them with the metabolomic data
of extreme inbred lines; through this, three potential candidate genes GRMZM2G039588,
GRMZM5G841893, and GRMZM2G051806 were found, and several were confirmed in
RILs. Similarly, Wang et al. [31] used 13 root-related phenotypes at different P levels at
the seedling stage to perform GWAS combined with transcriptome data and identified
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the candidate gene GRMZM2G009544, which is closely associated with several root traits,
namely total root length, root forks (a measure of root branching), and the total number of
root tips. These previous studies have shown that GWAS has great potential to be used in
excavating candidate genes for maize P-related traits. The above studies mainly focused
on root architecture or some visible traits at the seedling stage; however, for the internal P
utilization in shoot, kernel, and grain yield at maturity stage in the association panel, to
our knowledge, there is no report in maize until now.

In our study, the GWAS was conducted for an association panel containing 359 inbred
lines for PUE, biomass, and yield-related traits under normal-P and low-P treatments in the
field. The main objectives were as follows: (1) to explore the variation and relationship of
traits under normal-P and low-P environments, (2) to identify candidate genes related to P
stress response and PUE, (3) to identify conserved protein motifs and cis-elements of major
candidate genes, and (4) to identify favorable haplotypes of genes related to PUE. Our
research showed abundant and stable genetic variation in traits under P deficiency. Dozens
of genes were identified by GWAS. Furthermore, several key candidates were mined
and haplotype frequencies were explored to provide a strategy for molecular breeding of
P-efficient lines.

2. Results
2.1. Phenotypic Variation under Low-P and Normal-P Conditions

Traits of an association panel consisting of 359 inbred lines were recorded under
low-P and normal-P treatments in the field with the available P concentration in the soil
around 2.1 mg/kg and 4.5 mg/kg, respectively. Wide variations of eleven traits were
observed under the two P treatments (Table 1). Significant differences under low-P and
normal-P conditions were detected for all traits. (Figure 1 and Figure S1). P utilization
efficiency (PUtE) had an increase, especially shoot P utilization efficiency (ShPUtE) which
increased by 55.0%; however, the remaining traits showed a significant decrease when
comparing low-P to normal-P conditions. The various impact of P on plant growth was
well shown in two traits. Yield per plant (YPP) was reduced by 68.3%, whereas seed P
concentration (SePCc) showed only a slight reduction in low-P versus normal-P condition.
The correlations of all traits were positively significant between the two P conditions.
The highest correlation was observed for shoot dry weight per plant (SDWPP) (r = 0.69,
p < 0.01), and the lowest for seed P utilization efficiency (SePUtE) (r = 0.36, p < 0.01). For
YPP, this correlation was 0.67 (p < 0.01).

Under the low-P condition, the genetic variances of yield-related and biomass-related
traits were generally increased (Table 1) compared to the normal-P condition regarding the
genetic coefficient of variation (GCV). The variance of genotype-by-P treatment interaction
(σ2

G×T) was only significant (p < 0.01) for SePCc, shoot P concentration (ShPCc), SePUtE,
and ShPUtE. For all traits, the genetic variance component σ2

G was larger than the σ2
G×T .

The repeatability was slightly higher under normal-P compared to the low-P condition for
most traits, ranging from 0.34 for SePUtE under low-P to 0.72 for ShPCc under normal-P
(Table 1). For YPP, the repeatability was 0.67 and 0.57 under low-P and normal-P conditions,
respectively. The genetic variance across both P conditions was significant (p < 0.01) for all
traits, and broad-sense heritability ranged between 0.47 for SePUtE to 0.77 for SDWPP. The
heritability of YPP was high, reaching 0.69.

The correlations among eleven traits in low-P, normal-P, and the derived low-P tol-
erance index (LPTI) (estimated as phenotype under low-P divided by phenotype under
normal-P) datasets were used to perform correlation analysis (Figures 2 and S2). In the low-
P dataset (Figure 2A), ShPUtE was significantly correlated with biomass (r = 0.2 for SDWPP
and r = 0.24 for all dry weight per plant (ADWPP)) and with YPP (r = 0.34), which was also
significantly correlated with SePUtE (r = 0.3) and seed P content per plant (SePCPP) (r =
0.3). For YPP under the low-P condition, SePUtE showed a significantly positive correlation
(r = 0.31), but ShPCc and SePCc both showed significantly negative correlations, −0.3 and
−0.3, respectively. In the normal-P dataset, ShPUtE also significantly correlated with YPP,
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SDWPP, and ADWPP, with coefficients 0.38, 0.19, and 0.35, respectively (Figure 2B). In
the LPTI datasets, ShPUtE showed a slightly positive correlation (r = 0.2) with YPP and
SDWPP (r = 0.11), but was not significantly positively correlated with ADWPP (Figure S2).
In addition, we also observed a significant correlation between ShPUtE and SePUtE under
the low-P condition (Figure 2A), but this could not be seen in the normal-P (Figure 2B)
and LPTI dataset (Figure S2). A high correlation between different traits meant they had
similar change patterns under each condition. In addition, significant correlations between
ShPUtE with yield and biomass highlighted its important role.

Table 1. Summary statistics of all traits under the two P conditions.

Traits P-Level Mean SD r Rd (%) σ2
G Rep2 σ2

G−acr σ2
G×T GCV H2

YPP LP 2.47 3.55 0.67 ** 68.3 46.7 ** 0.67 11.0 ** 0.00 2.764 0.69
YPP NP 7.80 7.91 68.1 ** 0.57 1.058

SDWPP LP 46.7 21.5 0.69 ** 34.0 501.1 ** 0.64 338.9 ** 9.38 0.479 0.77
SDWPP NP 70.8 26.9 701.9 ** 0.64 0.374
ADWPP LP 54.3 27.9 0.62 ** 36.3 1022.2 ** 0.68 523.4 ** 14.27 0.589 0.72
ADWPP NP 85.2 33.6 1280.7 ** 0.64 0.420
SePCc LP 3.46 0.45 0.42 ** 3.49 0.085 ** 0.41 0.061 ** 0.016 ** 0.084 0.50
SePCc NP 3.58 0.40 0.076 ** 0.45 0.077
ShPCc LP 1.13 0.22 0.56 ** 35.7 0.029 ** 0.61 0.031 ** 0.011 ** 0.149 0.65
ShPCc NP 1.76 0.37 0.10 ** 0.72 0.182

SePCPP LP 12.0 14.0 0.66 ** 60.0 395.9 ** 0.53 153.1 ** 0.80 1.658 0.53
SePCPP NP 30.0 29.3 918.8 ** 0.60 1.010
ShPCPP LP 51.5 24.5 0.55 ** 58.2 463.9 ** 0.50 353.4 ** 0.00 0.419 0.63
ShPCPP NP 123.2 52.8 1704.5 ** 0.48 0.335
APCPP LP 73.2 37.0 0.52 ** 53.3 1238.5 ** 0.53 1001.9 ** 127.9 0.481 0.54
APCPP NP 156.7 67.9 4276.4 ** 0.57 0.417
SePUtE LP 0.29 0.04 0.36 ** −3.31 0.00063 ** 0.34 0.00038 ** 0.00014 ** 0.086 0.47
SePUtE NP 0.28 0.03 0.00062 ** 0.50 0.088
ShPUtE LP 0.92 0.19 0.56 ** −55.0 0.024 ** 0.43 0.0099 ** 0.0028 ** 0.166 0.70
ShPUtE NP 0.60 0.13 0.011 ** 0.60 0.178
APUtE LP 0.86 0.17 0.46 ** −49.4 0.013 0.50 0.0057 ** 0.00038 0.130 0.62
APUtE NP 0.57 0.10 0.0065 * 0.65 0.135

SD: Standard deviation; r: Correlation coefficient between low-P (LP) and normal-P treatment (NP); Rd (%): Relative reduction under
low-P stress calculated by (mean (NP)-mean (LP))/mean (NP); Rep2: Repeatability in each treatment; σ2

G−acr : Genetic variance across both
P conditions; GCV: Genetic coefficient of variation calculated as sqrt(σ2

G)/mean; H2: Broad-sense heritability. *: Significant at 0.05 level,
**: Significant at 0.01 level. YPP (g): Yield per plant; SDWPP (g): Shoot dry weight per plant; ADWPP (g): All dry weight per plant; SePCc
(mg/g): Seed P concentration; ShPCc (mg/g): Shoot P concentration; SePCPP (mg): Seed P content per plant; ShPCPP (mg): Shoot P
content per plant; APCPP (mg): All P content per plant; SePUtE (g/mg): Seed P utilization efficiency, calculated by the inverse of SePCc;
ShPUtE (g/mg): Shoot P utilization efficiency, calculated by the inverse of ShPCc; APUtE (g/mg): All P utilization efficiency, calculated by
ADWPP divided by APCPP.

2.2. Traits Distribution of Different Subpopulations under Low-P Condition

Based on a previous study [41], our 359 maize inbred lines were clustered into four
subpopulations, namely non-stiff stalk (NSS), stiff stalk (SS), tropical and subtropical (TST),
and mixed. To explore the phenotypic differences of these four groups under the low-P
treatment, multiple comparisons were conducted. For SePUtE, there was not a significant
difference among the four subpopulations. For ShPUtE and all P utilization efficiency
(APUtE), the SS subpopulation showed significantly higher trait values than NSS, and
slightly but not significantly higher values than TST and mixed subpopulations, which
means that those lines within SS generally use the absorbed P in a more efficient way than
other subpopulations under P deficient conditions (Figure 3). The TST subpopulation
showed higher values for ADWPP (Figure S3C) and SDWPP (Figure S3E), which indicates
that this group generally produced more biomass under low-P conditions, pointing to a
higher P uptake efficiency. For the remaining traits, there was no significant difference
(Figure S3A,B,D). Therefore, these two subpopulations have the potential to breed lines
with high P uptake efficiency and P utilization efficiency.
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Figure 1. Distribution and interaction of traits under low-P and normal-P treatments. (A) SePCPP. (B) SePUtE. (C) ShPCPP.
(D) ShPUtE. (E) APCPP. (F) APUtE. SePCPP: Seed P content per plant; SePUtE: Seed P utilization efficiency; ShPCPP: Shoot
P content per plant; ShPUtE: Shoot P utilization efficiency; APCPP: P content per plant; APUtE: All P utilization efficiency.
The significant difference was calculated by t-tests between the phenotypes under low-P and normal-P conditions for
all traits.

2.3. Genome-Wide Association Study to Identify P-Stress Responsive Genes

Genome-wide association study (GWAS) was performed on the traits with the low-P,
normal-P, and LPTI datasets (Figures S4–S6). We identified 92, 72, and 63 significant SNPs
for eleven traits in the three datasets, respectively, and 49, 53, and 48 candidate genes were
identified in total (Tables 2 and S1). Gene annotations were obtained from MaizeGDB
(https://www.maizegdb.org/, accessed on 9 June 2021). Besides, their homologous genes
in Arabidopsis were obtained through BLASTP, and annotations were downloaded from
TAIR (https://www.arabidopsis.org/, accessed on 9 June 2021). Seven key genes related
to phosphate transporter proteins, abiotic stress response, root architecture, or members of
the BHLH and F-BOX gene family are listed in Table 2 and the rest are listed in Table S1.

https://www.maizegdb.org/
https://www.arabidopsis.org/
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Figure 2. Correlations among eleven traits under low-P (A) and normal-P (B) conditions. YPP: Yield per plant; SDWPP:
Shoot dry weight per plant; ADWPP: All dry weight per plant; SePCc: Seed P concentration; ShPCc: Shoot P concentration;
SePCPP: Seed P content per plant; ShPCPP: Shoot P content per plant; APCPP: P content per plant; SePUtE: Seed P utilization
efficiency; ShPUtE: Shoot P utilization efficiency; APUtE: All P utilization efficiency. *: p < 0.05; **: p < 0.01; ***: p < 0.001.

A significant SNP, namely chr5.S_31881708 (−log10(P) = 5.0), was found for ShPUtE un-
der the low-P condition (Figure 4A,B). This SNP is at the exon of the gene GRMZM2G326707
(Figure 4C), and there was a significant difference (p < 0.01) between the two genotypes
(Figure 4D). GRMZM2G326707 (ZmPHT1;1) encodes the phosphate transporter protein1
(PHT1) in maize [42]. The PHT1 gene family was widely studied in many crops and
observed to play an important role in the phosphorus starvation response and PUE reg-
ulation [25,43–45]. Furthermore, four significant SNPs were found for ShPUtE under
low-P condition, which were all located in the exon of the GRMZM5G848945 gene region
(Figure S7). GRMZM5G848945 encodes protein F-BOX3, which is important in root de-
velopment and stress responses [46,47]. Interestingly, there were two significant SNPs
identified for LPTI of SePCc, and another gene, GRMZM2G155849, encoding the F-BOX3
protein was found (Table S1). In addition, the significant SNP chr8.S_162559636 found
for SePCPP under low-P condition was located in the gene GRMZM2G030762 (Figure S8),
which encodes the transcription factor bHLH55, a member of BHLH family. In maize, tran-
scription factor bHLH55 can enhance plant salt stress through regulation of the biosynthesis
of ascorbic acid, which is an antioxidant and enzyme vital to abiotic stress tolerance [48].

Besides, several genes were identified across different datasets. For example, common
genes GRMZM2G171254 and GRMZM2G171277 were identified for several traits, particu-
larly ShPUtE and ShPCc under the low-P condition, and APUtE, ShPCc, ShPUtE and YPP
under the normal-P condition. In addition, GRMZM2G084296 was identified for SDWPP
under low-P condition and SePUtE for LPTI.

2.4. Gene Ontology Analysis

The gene ontology (GO) enrichment analysis is an important method to understand
gene functions. With a significant threshold of 4, a total of 397 genes were identified in the
low-P dataset. These genes were found to be involved in two significant GO terms (p < 0.05)
in the biological process, namely “response to abiotic stimulus” and “stomatal movement”,
which showed that genes identified under the low-P condition are related to stress response
(Figure 5A). Additionally, the other four significant terms in the cellular component, namely
“organelle”, “intracellular organelle”, “membrane-bounded organelle”, and “intracellular
membrane-bounded organelle”, are closely related to organelle (Figure 5B). The above re-
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sults show that stress response and organelle functional genes play an important role in the
plant P starvation response, which provided more information to confirm candidate genes.

Figure 3. Boxplots for the performance of the four subgroups for six traits under low-P conditions. (A) SePCPP. (B) SePUtE.
(C) ShPCPP. (D) ShPUtE. (E) APCPP. (F) APUtE. These four subpopulations are mixed (n = 101), non-stiff stalk (NSS,
n = 118), stiff stalk (SS, n = 29), tropical/subtropical (TST, n = 111). Multiple comparisons were conducted by the LSD test
method at a 0.05 significance level. Different letters represent significant differences. The rhombus in the boxplot is the
mean value. SePCPP: Seed P content per plant; SePUtE: Seed P utilization efficiency; ShPCPP: Shoot P content per plant;
ShPUtE: Shoot P utilization efficiency; APCPP: P content per plant; APUtE: All P utilization efficiency.

2.5. Phylogenetic Characterization and Cis-Elements Prediction of PHT1 Gene Family

GRMZM2G326707 (ZmPHT1;1) encoding a phosphate transporter protein and a mem-
ber of the PHT1 gene family was identified in ShPUtE under the low-P condition. Phosphate
transporters are responsible for phosphate uptake and allocation in the plant [16], and
play an important role under low-P stress [49]. We collected 46 possible members of
the PHT1 gene family, 13 genes in maize (Zea mays L.), 13 genes in rice (Oryza sativa L.),
11 genes in sorghum (Sorghum bicolor L.), and 9 genes in Arabidopsis (Arabidopsis thaliana
L.). A neighbor-joining tree was constructed using protein sequences (Figure 6). In total,
10 conservative motifs were identified. The PHT1 proteins shared high similarity and
common motifs. Clear subfamilies could not be observed in spite of the species. In the
dicot Arabidopsis, several genes were grouped into a subgroup, clearly showing the differ-
ence in differentiation between dicot and monocot species. In addition, the cis-elements
analysis taking the DNA sequences upstream 1 kb of the transcriptional start site as a target
identified some cis-elements related to hormones and stress. For example, ARE is involved
in abscisic acid responsiveness, LTR is involved in low-temperature responsiveness, and
TC-rich repeats are involved in defense and stress responsiveness.
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Table 2. Key candidate genes identified in the low-P, normal-P, and LPTI datasets, and homologous genes annotations in Arabidopsis thaliana.

Condition Traits Candidate
Genes

Description
in Maize

Homologous
Genes in Arabidopsis

Other Names in
Arabidopsis

Descriptions
in Arabidopsis in TAIR Website

low-P

ShPUtE GRMZM2G326707 Phosphate transporter protein1 AT2G38940 PHT1;4

The expression is upregulated in the shoot of
cax1/cax3 mutant and is responsive to

phosphate (Pi) and not phosphite (Phi) in roots
and shoots.

ShPUtE
GRMZM5G848945 Protein AUXIN SIGNALING F-BOX 3

AT3G26810 AFB2 The dominant auxin receptor in roots.

AT1G12820 AFB3

Auxin receptor involved in primary and lateral
root growth inhibition in response to nitrate.
The target of miR393. Induced by nitrate in

primary roots.

SePCPP GRMZM2G030762 Transcription factor bHLH55 AT3G07340 CRY2-INTERACTING
BHLH 3 A bHLH DNA-binding superfamily protein.

normal-P

ADWPP GRMZM2G109967 CDP-diacylglycerol–glycerol-3-phosphate
3-phosphatidyltransferase AT2G39290

PHOSPHATID
YLGLYCEROLPHOSPHATE

SYNTHASE 1

Encodes a phosphatidylglycerol phosphate
synthase 2C which is dual-targeted into

chloroplasts and mitochondria. Mutant plants
have mutant chloroplasts but normal

mitochondria.

SePCPP GRMZM2G418916 Phosphoinositide phosphatase SAC6 AT3G51460 ROOT HAIR DEFECTIVE4
A phosphatidylinositol-

4-phosphate phosphatase required for root
hair development.

LPTI

ShPCc,
ShPUtE GRMZM2G076630 Probable transcriptional regulator SLK2 AT5G62090 SLK2 Encodes a protein that functions with LUH to

promote Al binding to the root cell wall.

YPP
GRMZM2G104125

Calcium-
dependent protein

kinase 2

AT5G19450 CDPK19 Calcium-dependent protein kinase (CDPK19)
mRNA, complete.

AT5G12480 CPK7 Calmodulin-domain protein kinase CDPK
isoform 7.
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Figure 4. Manhattan (A) and quantile–quantile (B) plot for ShPUtE under low-P condition; gene structure of GR-
MZM2G326707 and pairwise linkage disequilibrium (LD) analysis (C); and the distribution of two genotypes for ShPUtE
under the low-P condition in our population (t-test, p < 0.01) (D). The dotted line is the significance threshold of 4.94.
ShPUtE: Shoot P utilization efficiency. **: Significant at 0.01 level.

2.6. Identification of Favorable Haplotype for Molecular Breeding among Different Subpopulations

In order to establish a guide for screening P-efficient materials and illustrate the fre-
quency distribution of favorable haplotypes in different subpopulations, we selected five
important P starvation-related genes. Among these genes, GRMZM2G326707 and GR-
MZM5G848945 were candidate genes found for ShPUtE under low-P condition by GWAS
performed in our study, while the others were homologs of P starvation-related genes or
root architecture-related genes in Arabidopsis found in previous studies; GRMZM2G381709
is a homolog of PHO2 [50] related with Pi uptake and allocation remobilization, GR-
MZM2G088487 is a homolog of ARP6 [51] as an epigenetic modulator of some P-starvation
response genes, and GRMZM2G054050 is a homolog of LPR1 [52] associated with root
architecture [53]. Considering the important role of the ShPUtE part of PUE and significant
correlations between yield and biomass (Figure 2), ShPUtE variations under the low-P
condition of different haplotypes of five important genes were investigated (Figure 7A).
Except for GRMZM2G381709, significant differences between favorable and the remaining
haplotypes (p < 0.05) were observed. The proportions of favorable haplotypes varied
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between subpopulations and genes (Figure 7B). Generally, the proportions of favorable
haplotypes were small, which indicated that there is still much space for improvement
in modern inbred lines. For gene GRMZM2G054050, the SS subpopulation showed a
large proportion of favorable haplotype, while the proportion of favorable haplotype in
other subpopulations was relatively small. The distribution of the favorable haplotype
of GRMZM2G381709 was also interesting, as it had a medium-to-high proportion in TST,
mixed, and SS, but a small proportion in the NSS subpopulation (Figure 7A,B). Population
differentiation resulted in the frequency of favorable genes among the different groups,
and some germplasm resources harboring favorable haplotypes could be used to improve
the other inbred lines.

Figure 5. The significantly (p < 0.05) enriched GO terms for genes identified in GWAS under low-P condition with a
significance threshold of 4. (A) Significant GO terms in the biological process. (B) Significant GO terms in the cellular
component. The yellow rectangles represent significant GO terms (p < 0.05), and the green lines represent negative regulation.
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Figure 6. Polygenetic tree of PHT1 gene family and distribution of conserved motifs and potential cis-elements. The gene
GRMZM2G326707 (ZmPHT1;1) in red was identified in our GWAS result.
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Figure 7. ShPUtE variation under low-P condition and frequencies of the favorable haplotypes of five important low-P
responsive genes. (A) Box plots for ShPUtE under low-P condition of favorable and remaining haplotypes. The numbers
in the box plot represent the individual number. The significance test was done by t-test. *: Significant at 0.05 level;
**: Significant at 0.01 level; ns: No significant difference. (B) The proportion of two types of haplotypes in four subgroups.
Red represents the favorable haplotype and blue represents the remaining haplotype. ShPUtE: Shoot P utilization efficiency.

3. Discussion

PUE is an important and complex trait, which can be defined by grain yield per avail-
able P in soil and hence is affected by many genetic factors. PUE consists of two molecular
processes, Pi uptake from soil to root and shoot called P uptake efficiency (PUpE), and in-
ternal Pi utilization named P utilization efficiency (PUtE). PUE (yield/Psoil available) = PUpE
(Pt/Psoil available) × PUtE (yield/Pt), where Pt is the total P in plant, and Psoil available is the
available P in soil [15]. If using hydroponics, where precise P is applied, the PUE can be
calculated accurately for each genotype. Different from that, in this study we recorded
traits in the field, where the PUE cannot be calculated accurately due to the heterogeneity
of soil and other uncontrollable factors. However, PUtE can be calculated precisely by
using a chemical method. Therefore, we mainly focused on PUtE, a component of PUE.
Dissecting the genetic architecture of PUE and mapping potential genomic loci associated
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with PUE is the first step for a molecular breeding program. As far as we know, our study
is the first large-scale evaluation and genetic dissection of PUE-related traits in a diverse
set of maize.

3.1. Phenotypic Variation for PUtE-Related, Yield and Biomass Traits under Two-P Levels

Low-P stress has a great impact on plant growth and development (Figure 1). To
explore the effects of low-P on maize, we mainly focused on: (1) biomass and yield-related
traits, including ADWPP, SDWPP, and YPP; and (2) PUE-related traits, including SePUtE,
ShPUtE, and APUtE. Total biomass (ADWPP) and grain yield (YPP) decreased under
low-P condition by 36% and 68%, respectively (Table 1). Such strong yield decreases
show that there was a heavy P stress in our field. Thus, the genetic findings of this
study may reflect actual PUE under severe P deficiencies and may offer guidance to
further understand PUE under severely depleted soils. Similar strong P effects have
been shown by several authors. Cai et al. [54] observed a significant decrease in maize
grain yield under low phosphorus conditions, with the yield of RILs reduced by about
37% compared to the control. Chen et al. [55] found a significant decrease in maize
shoot dry weight and shoot total P accumulation. Similar to Yao et al. [56], we also
observed an increased PUtE under low-P versus normal-P condition. This showed that
the available P was more efficiently used under low-P condition versus well fertilized
conditions. However, there was also a significant genetic variation for PUtE under the
normal-P condition, pointing to the potential of selecting material, which utilizes the
supplied P much better and hence could increase PUtE under well fertilized conditions
as well, without sacrificing much yield (Figure 1). The correlation analysis showed the
positive correlation coefficients between ShPUtE and biomass, as well as yield-related
traits, which made it possible to select lines with high yield and high PUE simultaneously.
In practice, lines with high PUE under different P levels should be selected by plant
breeders. We chose 20 lines with the highest APUtE under the low-P condition as P-efficient
lines, namely “CIMBL91”, “CIMBL106”, “DAN599”, “GEMS56”, “CIMBL15”, “CML415”,
“07KS4”, “CIMBL95”, “CIMBL38”, “GEMS14”, “GEMS24”, “GY220”, “WH413”, “975-12”,
“GEMS23”, “CIMBL93”, “GEMS9”, “R08”, “YU374”, and “177”. Among these 20 lines,
“CML415”, “CIMBL91”, and “07KS4” also stood in the top 20 for APUtE under the normal-
P condition. Among these lines, there were six from NSS, three from SS, seven from TST,
and four from the mixed subpopulation. In conclusion, PUE could be further improved in
modern inbred lines. However, one needs to keep in mind that in order to translate it to
actual PUE under farmers’ conditions in which hybrid varieties normally grow, further
evaluations of test-cross performances and the inheritance patterns of the determined traits
are necessary.

3.2. Key Candidate Genes for Low-P, Normal-P, and LPTI Datasets

With the rapid development of sequencing technology, GWAS is becoming increas-
ingly important for dissecting the genetic architecture of complex traits. As an allogamous
crop, maize has a comparably rapid linkage disequilibrium (LD) decay and abundant
diversity, so the mapping resolution can reach down to the gene level underlying QTL
with millions of SNPs [57]. In our study, several key genes were identified that were also
reported in former studies. The F-BOX3 protein encoded by the GRMZM5G848945 gene is
an auxin receptor. Its homologous gene in rice is OsAFB2. The downregulation of OsAFB2
reduces the tolerance to salt stress and the sensitivity to auxin [58]. The homologous
genes AFB2 and AFB3 in Arabidopsis are also closely related to plant abiotic stress [59].
GRMZM2G030762 encodes the transcription factor bHLH55. The bHLH family participates
in multiple biological processes in plants [60], especially playing an important role in
dealing with drought stress [61,62].

The homologous gene of the candidate gene GRMZM2G109967 identified under
normal-P in Arabidopsis is AT2G39290, which encodes phosphatidylglycerolphosphate syn-
thase 1, being essential for the biosynthesis of phosphatidylglycerol in chloroplasts [63,64].
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There is no doubt that AT2G39290 is important in maintaining the normal function of
chloroplasts, and GRMZM2G109967 may have a similar function in maize with the relation-
ship of phospholipids biosynthesis. For this, it is easy to understand that GRMZM2G109967
is associated with ADWPP. The homologous gene of GRMZM2G418916 in Arabidopsis is
ROOT HAIR DEFECTIVE4, which relates to the normal development of plant root hairs [65].
The root hairs of plants play an important role in the absorption and utilization of nutri-
ents [66], and GRMZM2G418916 corresponds with SePCPP. Both genes are important for
the normal growth and development of plants.

We also identified some key candidate genes in the LPTI dataset. Among them, the
homologous gene of GRMZM2G076630 in Arabidopsis is SLK2, related to the process of
embryogenesis [67] and the response to abiotic stress [68]. GRMZM2G104125 encodes
calcium-dependent protein kinase 2 (CDPK2), while the homologous gene in Arabidopsis
encodes CDPK19. CDPKs play an important role in plant growth and development, stress
response, and signal transduction [69]. Interestingly, phospholipids can regulate the activity
of CDPK [70], so the environment of different phosphorus levels may affect the effect of
CDPK. LPTI showed the phosphorus stress tolerance of plants, so genes corresponding
with stress response would be concerned. These key candidate genes were reported to
be functional under other stress conditions, and we think they are also associated with P
stress based on our results. Besides the above key genes, some genes in Table S1 might be
valuable in the future when progress has been made in functional genomics in maize, rice,
and Arabidopsis.

3.3. The Motif Compositions and Cis-Elements of the PHT1 Gene Family

GRMZM2G326707 (ZmPHT1;1) encodes a PHT1 protein, which was associated with
ShPUtE under the low-P condition. Previous studies have shown that the function of PHT1
is to transport phosphate into the maize shoot [16]. ZmPHT1;1 plays an important role in
Pi uptake and redistribution in maize, and is induced during Pi starvation [49]. Besides,
AtPHT1;4 promoter stimulates reporter gene expression in the monocot root system under
low-P condition [71]. Most PHT1 genes are mainly expressed in roots and are upregulated
under phosphorus starvation conditions [72]. Overexpression of OsPHT1;4 in rice increased
phosphorus accumulation in plant roots and shoots [73]. The above result shows that the
PHT1 family play an important role in the transport of Pi and the P starvation response in
the plant. Therefore, it is necessary to explore the homologous genes and the conservative
domain of the PHT1 protein family across the different crops.

With BLASTP using the protein sequence of GRMZM2G326707 (ZmPHT1;1) in maize
as a query sequence, 13 genes were found in maize (Zea mays L.), 9 genes in Arabidopsis
(Arabidopsis thaliana L.), 13 genes in rice (Oryza sativa L.), and 12 genes in sorghum (Sorghum
bicolor L.). Based on a former study [74], a sorghum gene that did not contain the PHT1 spe-
cific signature (GGDYPLSATIxSE) was eliminated; in the end, 46 genes were left (Table S2).
Generally, ten conservative motifs were identified in most proteins, and the distribution of
motifs was also similar. The phylogenetic tree revealed that many shared motifs existed
in the PTH1 sequence and a highly conservative protein sequence, especially in the dicot
crop Arabidopsis. Previous studies have also mentioned that the protein sequences of the
PHT1 genes were similar, and the expression patterns overlapped [75]. It also showed that
the function of the PHT1 family was probably realized by these motifs, which lays the
foundation for searching for the functional site of GRMZM2G326707.

Cis-elements play an important role in gene regulation [76] and gene action. The
promoter sequences of these genes identified some wound and abiotic stress-responsive cis-
elements, such as ABRE, LTR, TC-rich repeats, and other hormone-responsive cis-elements.
It illustrated that these genes were induced by abiotic stresses such as drought and hy-
poxia, and plant hormones such as abscisic acid and methyl jasmonate. Previous studies
confirmed that some members in Arabidopsis were induced under the low-P condition [75],
which pointed out the direction toward functional research on the members of the PHT1
gene family.
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3.4. Imbalanced Distribution of Favorable Haplotypes among Different Subpopulations

Maize originates from Mexico and has formed different groups under the domestica-
tion of humans, which shaped the wide phenotypic variation. During domestication, the
frequency of favorable genetic fragments or genes changed due to genetic drift, mutation,
and selection.

Many genes related to P uptake, utilization and translocation have been verified in
many plants [49,77,78]. Therefore, it is very attractive to figure out the relationship between
haplotype variation and PUE in the modern inbred lines. To explain this answer, in this
study, two key genes identified in our GWAS and three published genes were taken as an
example to define favorable haplotypes. One of five genes (GRMZM2G381709) was not
significantly different between the favorable and the remaining haplotypes. Population
structure may be one reason for this, which may explain why the gene was not identified in
our GWAS. Some favorable genes were present at low frequency in all subpopulations but
showed a high frequency in one subpopulation (Figure 7). This imbalanced distribution
of favorable haplotypes illustrated that the proportion of some alleles could be further
improved, and some alleles may be fixed in some subpopulations. Excellent lines with
favorable haplotypes could be selected to improve other resources by introgression.

3.5. Breeding P-Efficient Maize Lines

For most traits, a moderate to high heritability can be observed (Table 1) under two P
treatments, which provides potential to improve germplasm resources by the molecular
breeding method. Through forward genetics, natural variation can be mined, and superior
alleles could be aggregated, which can boost breeding efficiency. In rice [20], sorghum [36],
and maize [33], protein kinase PSTOL1 confers higher plant biomass and yield under P
stress. Considering several key candidates related to abiotic stress and calcium-dependent
protein kinase 2 identified in our GWAS results (Table 2), we believe these genes are of im-
portance in PUE breeding. Additionally, it should be noted that one specific subpopulation
harboring a relatively high percentage of a superior allele for target genes can be chosen as
a donor parent to improve efficiency (Figure 7). Furthermore, whole genomic selection as a
powerful tool for molecular breeding has been widely used in animal and plant breeding.
The prediction abilities were illustrated for all traits in three datasets. In the low-P dataset,
the prediction ability ranged from 0.15 for APUtE to 0.54 for SDWPP. For grain yield, it can
still yield a prediction ability of around 0.4. In the normal-P dataset, the prediction ability
ranged from 0.10 for SePCc to 0.47 for SDWPP, while in the LPTI data the prediction ability
ranged from −0.08 for ShPUtE to 0.23 for SDWPP (Figure S9). The result of the genomic
selection study showed its feasibility and prospect in plant breeding, especially under P
deficient conditions.

4. Materials and Methods
4.1. Plant Materials

A diverse GWAS population [41] was chosen and 359 lines were randomly selected for
the study. It was further divided into 4 subgroups, including 28 stiff stalk lines, 113 non-stiff
stalk, 111 tropical/subtropical, and 87 mixed lines [41].

4.2. Field Design

In May 2018, the panel was planted under the low-P and normal-P conditions in
Shangzhuang Station of China Agricultural University, Beijing. P fertilizers had not been
applied to the low-P field since 1985, but 45 kg/ha P2O5 was applied before sowing for
the normal-P field every year. Additionally, 240 kg/ha N fertilizer was applied in both
trials before planting [79]. Based on a former study [79], for the low-P trial, the N and K
concentration were 0.63–0.83 mg/kg and 109.2–147.9 mg/kg, respectively; for the normal-P
trial the N and K concentration were 0.69–0.77 mg/kg and 135.6–140.3 mg/kg, respectively.
Before sowing, the Olsen P in the low-P and normal-P trial were measured using a NaHCO3
method [80] by taking nine samples uniformly from the 0–20 cm soil; the average value
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was 2.1 mg/kg and 4.5 mg/kg, respectively. The concentration of P was the main limiting
factor. All other management measures remained the same. Each treatment was laid out as
an augmented α-design, including three replicates. Each replicate included 16 blocks, and
each block contained 25 plots with the check line ‘Ye478′. Each genotype was planted in
a single row with a length of 1.2 m, a plant spacing of 0.2 m, and a row spacing of 0.5 m.
Four plants in the middle of each plot were used for phenotypic measurements.

4.3. Acquisition of Traits

The traits in this study mainly include two aspects: (1) the yield-related and biomass-
related traits: yield per plant (YPP), shoot dry weight per plant (SDWPP), all dry weight
per plant (ADWPP); (2) PUE-related traits in seed and shoot, seed P concentration (SePCc),
shoot P concentration (ShPCc), seed P content per plant (SePCPP), shoot P content per
plant (ShPCPP), all P content per plant (APCPP), seed P utilization efficiency (SePUtE),
shoot P utilization efficiency (ShPUtE), and all P utilization efficiency (APUtE).

Seed and shoot were harvested separately in the field. The harvested seed and shoot
were dried in an oven at 65◦C to a constant weight, and weighed to calculate the dry weight
per plant and the yield per plant. Then, a high-speed pulverizer was used to pulverize
the seed and shoot into powder, and about 0.2 g of seed and about 0.4 g of the shoot were
weighed and digested with H2SO4 and H2O2 until the liquid was transparent. Then, the P
concentration was measured following the spectrophotometric method.

P content is equal to the product of P concentration and dry weight, calculated in
shoot and seed respectively; all P content per plant was calculated as APCPP = SePCPP +
ShPCPP [38]. PUtE is equal to the inverse of P concentration [81], meaning the yield or dry
matter mass produced by absorbing 1 mg of P, which represents the utilization efficiency
of the phosphorus absorbed by the plant. The LPTI was calculated by the performance
under low-P divided by the trait performance under normal-P, and was used as an index
for GWAS. The descriptions of all traits used in this study are listed in Table S3.

4.4. Phenotypic Data Analysis

First of all, the method of Studentized Residual Razor was used to remove outliers
in the original data, with a threshold of 2.8 [82]. The best linear unbiased estimator
(BLUE) value of each trait under low-P and normal-P conditions were calculated with the
following formula:

y = µ + G + Rep + Block(Rep) + ε, (1)

where y represented the phenotype observation value; µ was the overall mean; G was the
genotypic effect; Rep was the effect of replication; Block(Rep) was the block effect nested
within the replication; ε was the error, and ε was subject to follow a normal distribution in
each replication; G was a fixed effect; and the rest were random effects.

For the analysis of genetic variance and interaction variance across the two P condi-
tions, the model was:

y = µ + G + T + G*T + Rep(T) + Block(Rep) + ε, (2)

where y, µ, G, Block(Rep) was the same as the above model; T was the effect of treatment
with two P conditions; G*T was the interaction of the genotype-by-P treatment; and Rep(T)
was the replication effect in each treatment, assuming that ε followed a normal distribution
within each P treatment. Except for the T effect, the others were treated as random effects.
The method of Cullis was used to calculate the repeatability under each P treatment and
the heritability across treatments with the following formula [83]:

H2 = 1− υBLUP

2σ2
G

, (3)

where υBLUP was the mean variance of a difference of two BLUP, and σ2
G was the genetic

variance estimated by REML in the R package ‘sommer’ (version 4.1.3) [84].
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4.5. Genome-Wide Association Study

By integrating RNA-Seq data of 368 inbred lines and Illumina SNP50 Bead Chip
genotype data of 513 inbred lines, 556,809 high-quality SNP data were obtained [85],
publicly available at http://www.maizego.org/Resources.html (accessed on 9 June 2021).
The reference genome in this study was B73 RefGen_v3. Based on the original 513 lines,
the genotypes of 359 individuals were extracted and filtered according to the missing
rate lower than 0.2 and the minor allele frequency greater than 0.05, and finally, 534,772
SNP markers remained. The Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway model, in which pseudo QTNs were used to control false positives and
reduce false negatives [86], was used to implement a GWAS in GAPIT (version 3) [87]. Since
redundant markers are in strong linkage disequilibrium, it was too strict to calculate the
Bonferroni-corrected threshold using all markers. Therefore, we used the indep-pairwise
module of PLINK (http://pngu.mgh.harvard.edu/purcell/plink/, version 1.9) [88] to
calculate the independent marker numbers, with the parameters window size equal to 50,
step size equal to 50, and r2 greater than or equal to 0.2 [89]; finally, 87,096 independent
markers were obtained. The suggestive threshold to control the type I error rate was
global α = 0.10, thus the significant threshold was −log10(0.10/(87,096/10)) = 4.94 with
chromosome-wide Bonferroni correction.

Candidate genes were identified when the significant SNPs were in genes or genes
were within a 5 kb distance from the significant SNPs. Gene annotations were downloaded
from maizeGDB (https://www.maizegdb.org/, accessed on 9 June 2021). For the key
genes without annotations, BLASTP was conducted in Tbtools (version 1.075) [90] to
get the best hit genes in Arabidopsis. One or two genes with the smallest e-value were
taken as the homologous genes, and annotations were downloaded from TAIR (https:
//www.arabidopsis.org/, accessed on 9 June 2021).

4.6. Gene Ontology Analysis

To further understand the metabolic pathways of candidate genes, we conducted GO
analysis for genes identified in GWAS in the low-P condition with a threshold of 4.0, which
was slightly lower than the threshold of independent GWAS. The moderate threshold
was used to balance the false positives and false negatives for the entries of GO analysis,
which included another significance test to promise low false positives. This process was
implemented using agriGO v2.0 (http://systemsbiology.cau.edu.cn/, version 2.0, accessed
on 9 June 2021) [91].

4.7. Phylogenetic Characterization and Conserved Motif Analysis

To find out the conserved motifs of the PHT1 family among different plant species,
the protein sequence of PHT1 in maize was used as a query sequence for BLAST. We
identified PHT1 homologous genes in four species, namely maize (Zea mays L.), Ara-
bidopsis (Arabidopsis thaliana L.), rice (Oryza sativa L.), and sorghum (Sorghum bicolor
L.). Corresponding gene annotations were obtained from the maizeGDB, TAIR, China
Rice Data Center (http://www.ricedata.cn/gene/, accessed on 9 June 2021), and NCBI
(https://www.ncbi.nlm.nih.gov/, accessed on 9 June 2021), respectively. One sorghum
gene did not contain the PHT1 specific signature (GGDYPLSATIxSE) [74]. Then, protein
sequences were downloaded from EnsemblPlants (http://plants.ensembl.org/, accessed
on 9 June 2021). A phylogenetic tree was generated by mega7.0 [92] software, and motif
analysis was completed with MEME by setting the maximum number of motifs to 10 (https:
//meme-suite.org/meme/, accessed on 9 June 2021). The DNA sequences 1 kb upstream
of the transcriptional start site of the first transcript were extracted in TBtools and were
submitted to PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 9 June 2021) for prediction of cis-elements. Finally, the TBtools were used to
repaint the results with default parameters.

http://www.maizego.org/Resources.html
http://pngu.mgh.harvard.edu/purcell/plink/
https://www.maizegdb.org/
https://www.arabidopsis.org/
https://www.arabidopsis.org/
http://systemsbiology.cau.edu.cn/
http://www.ricedata.cn/gene/
https://www.ncbi.nlm.nih.gov/
http://plants.ensembl.org/
https://meme-suite.org/meme/
https://meme-suite.org/meme/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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4.8. Haplotype Identification

To further understand the differences between the haplotypes of target genes, and
illustrate the percentage of favorable haplotypes among different subpopulations (SS,
NSS, TST, and mixed), five genes, namely GRMZM2G326707, GRMZM5G848945, GR-
MZM2G381709, GRMZM2G088487, and GRMZM2G054050, closely related to P stress from
both the results of GWAS in this study and previous studies [53], were taken as examples.
Firstly, the SNPs located in the gene were chosen, then Tag SNPs were identified by setting
r2 equal to 0.8 and the others as default in HaploView (version 4.2.) [93] Afterward, Tag
SNPs were used to make up haplotypes among the population. To ensure the accuracy
of statistics, we removed individuals and genotypes with missing phenotypes, and only
major haplotypes (frequency > 0.05) were kept. Among these haplotypes, the one with
the highest average effect was regarded as the favorable haplotype, and the others were
classified as remaining haplotypes.

4.9. Genomic Selection

The genomic best linear unbiased prediction model [94] was implemented in R (ver-
sion 4.0.3) package rrBLUP (version 4.6.1) [95] for genomic selection. The prediction ability
was evaluated by the correlation between the actual values and predicted values. Five-fold
cross-validation with 1000 repetitions was used to yield the final accuracy.
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