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Abstract: (1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid
turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to deter-
mine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the
liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model.
(2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA
expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown
adipocyte markers mRNA and immunodetection) in Ptn−/− mice either fed with standard-chow
diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn−/− mice are
protected against the development of HFD-induced insulin resistance, had lower liver lipid content
and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in
liver. HFD-Ptn−/− mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion
increased the expression of specific markers of brown/beige adipocytes and was associated with
the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions:
Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis,
by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.

Keywords: pleiotrophin; high-fat diet; periovarian AT; steatosis; liver metabolism; browning

1. Introduction

Obesity is a chronic disease associated with the regulation of both lipidic and glycemic
metabolism and is defined by a body mass index (BMI) > 30 kg/m2 [1]. In addition, obesity
is associated with the development of metabolic syndrome, type 2 diabetes mellitus, non-
alcoholic fatty liver disease (NAFLD), hypertension, hyperlipidemia, and cardiovascular
disease [2].

A high-fat diet, usually observed in obesity, increases the risk of developing pri-
mary hepatic steatosis, as overnutrition and lack of exercise cause the liver and other
tissues to store the excess of energy as a short-term protective mechanism [2,3]. However,
this protective mechanism in the liver is long-term associated with the development of
NAFLD [4].
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Recent studies have indicated that the increased metabolic activity of brown adipose
tissue (BAT) may represent a novel therapeutical approach to prevent the development of
NAFLD [5,6] and to reduce circulating lipids [7] due to the metabolic crosstalk between
liver and BAT [8]. Moreover, in the last decade, several studies have highlighted the
emergence of brown adipocytes in the white adipose depots in response to exercise [9],
cold exposure [10], dietary factors [11] and cytokines or pharmaceuticals [12,13]; these
brown cells within white adipose tissue can also contribute to increase energy expenditure
and improve metabolic health.

Pleiotrophin (PTN) is a heparin-binding growth factor discovered for the first time
to play a fundamental role in the early stages of development. PTN expression is strictly
restricted in adulthood, apart from those processes that involve tissue regeneration, cell
growth and angiogenesis [14–17]. Moreover, the gene encoding pleiotrophin (Ptn) is a proto-
oncogene, and subsequently the levels of this protein are increased in tumour and neoplastic
processes [15]. Furthermore, PTN has an inhibitory role in the in vitro differentiation of
pre-adipocytes, suggesting a role for PTN as a regulator of adipogenesis [18,19], a process
required to sequester lipids avoiding liver lipotoxicity [20]. In a previous study from our
group, we reported that Ptn deletion modulates adiposity and fat distribution in rodents
and is associated with an increased cold-induced thermogenesis contribution to energy
expenditure. Furthermore, body temperature and the activity and expression of deiodinase,
T3 and mitochondrial thermogenic activity in the brown adipose tissue of Ptn−/− mice
were higher than in wild-type controls [21]. BAT differentiation has also been shown to
be regulated by changes in Ptn expression. In fact, in vitro treatment of mouse brown
adipocytes (mBAs) with recombinant PTN diminished the expression of brown fat markers
(Cidea, Prdm16 and Pgc1-α), suggesting an inhibitory role of this cytokine in brown fat
differentiation and thermogenesis [21].

PTN presents a mitogenic role in the liver, both in the development and in the regen-
eration of the hepatic tissue [22,23]. Although, in a recent study of our group, we have
observed that pleiotrophin is an important player in maintaining hepatic metabolic home-
ostasis during late gestation [24], the role of PTN in hepatic metabolism in non-pregnant
animals is unknown.

To fill this gap, the aim of this study was, using a Ptn knock-out mice model, to
determine the role of pleiotrophin in hepatic lipid metabolism and the metabolic crosstalk
between the liver and BAT in high-fat diet-induced (HFD) obesity. In the present study,
we provide evidence that Ptn deletion protects against the development of HFD-induced
insulin resistance and liver steatosis, by increasing UCP-1 expression in BAT and inducing
periovarian adipose tissue browning.

2. Results
2.1. Effects of Ptn Deletion and High-Fat Diet Feeding on Body Weight and White and Brown
Adipose Tissue Weights

Before the administration of the diet, Ptn−/− mice exhibited lower body weight than
Ptn+/+ mice. After 80 days on a high-fat diet (HFD), the body weight of HFD-Ptn−/− mice
and HFD-Ptn+/+ mice were markedly increased compared with the body weight of the
animals fed with standard chow diet (STD) (Figure 1a). However, the increase in body
weight during the experiment was smaller in the Ptn−/− than in Ptn+/+ animals, regardless
of the diet they received (Figure 1a, insert).
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or in the HFD-fed mice (2.57 ± 0.08 and 2.34 ± 0.16 for Ptn+/+ and Ptn−/− mice, respectively, 

p = 0.16). 

Figure 1. Effects of Ptn deletion and HFD feeding on body weight and periovarian and brown adi-

pose tissue weights. (a) Body weight and increase in body weight (insert), (b) periovarian white 

adipose tissue weight and (c) brown adipose tissue weight of Ptn+/+ and Ptn−/− mice fed with a stand-

ard chow diet (STD) or with a high-fat diet (HFD). Data are expressed as mean ± SEM of n = 12 

mice/group. * p < 0.05; ** p < 0.01 for differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− 

mice. # p < 0.05; ### p < 0.001 for differences between Ptn+/+ and Ptn−/−. 

2.2. Ptn−/− Mice Show Reduced Liver Weight and Altered Lipid Profile when Fed with a High-Fat 

Diet 

Ptn+/+ mice had higher liver weight than Ptn−/− mice and, whereas the administration 

of a HFD induced a marked increase in liver weight in Ptn+/+ mice, no significant change 

was observed in the liver weight of Ptn−/− mice (Figure 2a). Due to the differences in liver 

weight, we analyzed the hepatic lipid content and the different lipid fractions. Ptn−/− mice 

had lower lipid content in liver than Ptn+/+ animals, and this difference was maintained 

even when mice were fed a HFD (Figure 2b). 

This result was confirmed by haematoxylin-eosin staining of liver sections (Figure 

2c). Liver sections of HFD-Ptn+/+ mice showed an accumulation of lipid droplets, whereas 

no accumulation was evident either in the HFD-Ptn−/− mice, or in Ptn+/+ or Ptn−/− mice fed a 

STD. 

In the same line of evidence, feeding a HFD increased the content in liver of triacyl-

glycerides, phospholipids, cholesteryl esters and cholesterol in HFD-Ptn+/+ mice when 

compared to the STD-Ptn+/+ mice. Although HFD also increased these lipid fractions in the 

Ptn−/− mice, the values were significantly lower than in wild-type animals fed with a HFD 

(Figure 2d–g). 

Figure 1. Effects of Ptn deletion and HFD feeding on body weight and periovarian and brown
adipose tissue weights. (a) Body weight and increase in body weight (insert), (b) periovarian white
adipose tissue weight and (c) brown adipose tissue weight of Ptn+/+ and Ptn−/− mice fed with
a standard chow diet (STD) or with a high-fat diet (HFD). Data are expressed as mean ± SEM
of n = 12 mice/group. * p < 0.05; ** p < 0.01 for differences in the effect of HFD feeding within
Ptn+/+ or Ptn−/− mice. # p < 0.05; ### p < 0.001 for differences between Ptn+/+ and Ptn−/−.

We next analyzed the periovarian adipose tissue weight. As shown in Figure 1b, the
weight of this white adipose tissue (WAT) increases in both genotypes by the effect of the
HFD, but no changes were observed between Ptn−/− and Ptn+/+ mice (Figure 1b). Feeding
with HFD significantly increased the weight of brown adipose tissue (BAT) in Ptn+/+ mice
(Figure 1c). However, although the weight of BAT did not increase in the HFD-Ptn−/− mice,
BAT weight was significantly higher in the Ptn−/− mice than in the Ptn+/+ mice, no matter
which diet they were receiving. No differences were observed in the daily food intake
either in the STD (3.27 ± 0.22 and 2,83 ± 0.12 for Ptn+/+ and Ptn−/− mice, respectively,
p = 0.20) or in the HFD-fed mice (2.57 ± 0.08 and 2.34 ± 0.16 for Ptn+/+ and Ptn−/− mice,
respectively, p = 0.16).

2.2. Ptn−/− Mice Show Reduced Liver Weight and Altered Lipid Profile when Fed with a High-Fat Diet

Ptn+/+ mice had higher liver weight than Ptn−/− mice and, whereas the administration
of a HFD induced a marked increase in liver weight in Ptn+/+ mice, no significant change
was observed in the liver weight of Ptn−/− mice (Figure 2a). Due to the differences in liver
weight, we analyzed the hepatic lipid content and the different lipid fractions. Ptn−/− mice
had lower lipid content in liver than Ptn+/+ animals, and this difference was maintained
even when mice were fed a HFD (Figure 2b).

This result was confirmed by haematoxylin-eosin staining of liver sections (Figure 2c).
Liver sections of HFD-Ptn+/+ mice showed an accumulation of lipid droplets, whereas
no accumulation was evident either in the HFD-Ptn−/− mice, or in Ptn+/+ or Ptn−/− mice
fed a STD.

In the same line of evidence, feeding a HFD increased the content in liver of triacyl-
glycerides, phospholipids, cholesteryl esters and cholesterol in HFD-Ptn+/+ mice when
compared to the STD-Ptn+/+ mice. Although HFD also increased these lipid fractions in the
Ptn−/− mice, the values were significantly lower than in wild-type animals fed with a HFD
(Figure 2d–g).
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hepatic triacylglycerides, (e) hepatic phospholipids, (f) hepatic cholesteryl esters, and (g) hepatic cholesterol of Ptn+/+ and 

Ptn−/− mice fed with a standard chow diet (STD) or with a high-fat diet (HFD). Data are mean ± SEM of n = 6–12 mice/group. 

* p < 0.05; ** p < 0.01; *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− mice. # p < 0.05, ## p < 0.01, 
### p < 0.001 for differences between Ptn+/+ versus Ptn−/−. 
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As shown in Figure 3, after 6 h fasting, triacylglycerides were lower in Ptn−/− versus 

Ptn+/+ mice (Figure 3a). Feeding with the HFD in wild-type animals increased circulating 

cholesterol (Figure 3c), whereas the other fractions remain unchanged. On the contrary, 

HFD-Ptn−/− mice exhibited an increase in plasma triacylglycerides, NEFA, cholesterol and 

glycerol (Figure 3a–d). 

No differences in fasting glucose were observed by the effect of the diet in any of the 

genotypes of mice. However, glycemia was significantly lower in HFD-Ptn−/− than in HFD-

Ptn+/+ mice (Figure 3e). As shown in Figure 3f, fasting insulin was significantly increased 

in HFD-Ptn+/+ in comparison to STD-Ptn+/+ mice. STD-Ptn−/− mice had significantly higher 

fasting insulin levels than STD-Ptn+/+, and no differences in the insulin levels in Ptn−/− were 

observed after 80 days on a HFD (Figure 3f).  

As illustrated in Figure 3g, HFD feeding significantly increased the insulin resistance 

of Ptn+/+ mice (as evidenced by the HOMA-IR). Ptn deletion was associated with an insulin 

resistant state in STD-Ptn−/− animals to the same extent as that of Ptn+/+ mice after 80 days 

Figure 2. Ptn−/− mice show reduced liver weight and altered lipid profile when fed with a high-fat diet. (a) Liver
weight, (b) total hepatic lipid content, (c) hematoxylin-eosin staining of formalin-fixed paraffin embedded liver tissue
sections, (d) hepatic triacylglycerides, (e) hepatic phospholipids, (f) hepatic cholesteryl esters, and (g) hepatic cholesterol
of Ptn+/+ and Ptn−/− mice fed with a standard chow diet (STD) or with a high-fat diet (HFD). Data are mean ± SEM
of n = 6–12 mice/group. * p < 0.05; ** p < 0.01; *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or
Ptn−/− mice. # p < 0.05, ## p < 0.01, ### p < 0.001 for differences between Ptn+/+ versus Ptn−/−.

2.3. High-Fat Diet Feeding along with Ptn Deletion Impairs Circulating Lipid Profile

As shown in Figure 3, after 6 h fasting, triacylglycerides were lower in Ptn−/− versus
Ptn+/+ mice (Figure 3a). Feeding with the HFD in wild-type animals increased circulating
cholesterol (Figure 3c), whereas the other fractions remain unchanged. On the contrary,
HFD-Ptn−/− mice exhibited an increase in plasma triacylglycerides, NEFA, cholesterol and
glycerol (Figure 3a–d).

No differences in fasting glucose were observed by the effect of the diet in any of
the genotypes of mice. However, glycemia was significantly lower in HFD-Ptn−/− than
in HFD-Ptn+/+ mice (Figure 3e). As shown in Figure 3f, fasting insulin was significantly
increased in HFD-Ptn+/+ in comparison to STD-Ptn+/+ mice. STD-Ptn−/− mice had signifi-
cantly higher fasting insulin levels than STD-Ptn+/+, and no differences in the insulin levels
in Ptn−/− were observed after 80 days on a HFD (Figure 3f).
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*p < 0.05; ** p < 0.01; *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− mice. # p < 0.05; ## p < 0.01 

for differences between Ptn+/+ and Ptn−/−. 

2.4. Effects of High-Fat Diet and Ptn Deletion on Lipid Metabolism in Liver 

We next analyzed the gene expression of key enzymes involved in lipogenesis and 

triacylglyceride synthesis. As evidenced in Figure 4a,b, the mRNA of Aqp9 (aquaporin 9) 

and Acly (ATP citrate lyase) were lower in the HFD-Ptn+/+ when compared to the STD-

Ptn+/+ mice, whereas no changes were observed in Acc (acetyl-CoA carboxylase), Fas (fatty 

acid synthase) and Gpat (glycerol 3-phosphate acyltransferase) mRNA (Figure 4c–e). On 

the other hand, the expression of the genes involved in triacylglyceride synthesis, Lpin2 

(lipin 2), Dgat1 (diacylglycerol O-acyltransferase 1) and Dgat2 (diacylglycerol O-acyltrans-

ferase 2), were increased in the Ptn+/+ on HFD (Figure 3f–h). 

On the contrary, qPCR analysis only revealed a lower expression of Acly and Fas 

mRNA in HFD-Ptn−/− mice when compared to the STD-Ptn−/− mice. Furthermore, the com-

parison between genotypes after HFD revealed that the expression of Fas, Gpat, Dgat1 and 

Figure 3. Circulating lipid profile and insulin sensitivity is impaired with high-fat diet and Ptn deletion after 6 h fast-
ing. (a) Triacylglycerides, (b), cholesterol, (c) NEFA (d) glycerol, (e) glucose, (f) insulin and (g) HOMA-IR index of
Ptn+/+ and Ptn−/− mice fed with a standard chow diet (STD) or with a high-fat diet (HFD). Data are mean ± SEM of
n = 8–12 mice/group. *p < 0.05; ** p < 0.01; *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or
Ptn−/− mice. # p < 0.05; ## p < 0.01 for differences between Ptn+/+ and Ptn−/−.

As illustrated in Figure 3g, HFD feeding significantly increased the insulin resistance
of Ptn+/+ mice (as evidenced by the HOMA-IR). Ptn deletion was associated with an insulin
resistant state in STD-Ptn−/− animals to the same extent as that of Ptn+/+ mice after 80 days
of a HFD, as evidenced by both the HOMA-IR (Figure 3g) and QUICKI index (an insulin
sensitivity index, data not shown), but no significant changes were observed in Ptn−/−

animals by feeding with a HFD.

2.4. Effects of High-Fat Diet and Ptn Deletion on Lipid Metabolism in Liver

We next analyzed the gene expression of key enzymes involved in lipogenesis and tri-
acylglyceride synthesis. As evidenced in Figure 4a,b, the mRNA of Aqp9 (aquaporin 9) and
Acly (ATP citrate lyase) were lower in the HFD-Ptn+/+ when compared to the STD-Ptn+/+

mice, whereas no changes were observed in Acc (acetyl-CoA carboxylase), Fas (fatty acid
synthase) and Gpat (glycerol 3-phosphate acyltransferase) mRNA (Figure 4c–e). On the
other hand, the expression of the genes involved in triacylglyceride synthesis, Lpin2 (lipin 2),
Dgat1 (diacylglycerol O-acyltransferase 1) and Dgat2 (diacylglycerol O-acyltransferase 2),
were increased in the Ptn+/+ on HFD (Figure 3f–h).
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(glycerol 3-phosphate acyltransferase) mRNA, (f) Lpin2 (lipin 2) mRNA, (g) Dgat1 (diacylglycerol O-acyltransferase 1) 

mRNA, (h) Dgat2 (diacylglycerol O-acyltransferase 2) mRNA, and (i) Cpt1α (carnitine palmitoyl transferase 1α) mRNA in 

the liver of Ptn+/+ and Ptn−/− mice fed with a standard chow diet (STD) or with a high-fat diet (HFD). Data are mean ± SEM 

of n = 5–6 mice/group. *p < 0.05, ** p < 0.01, *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− 

mice. # p < 0.05, ## p < 0.01, ### p < 0.001 for differences between Ptn+/+ and Ptn−/−. 

2.5. Fffects of High-Fat Diet and Ptn Deletion on Brown Adipose Tissue UCP-1 Expression 

We next analyzed the effect of Ptn deletion and HFD on the expression of UCP-1, the 

mitochondrial protein responsible for facultative thermogenesis in the brown adipose tis-
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protein levels in the mice fed with HFD, that was highest in the BAT of HFD-Ptn−/− mice. 

Figure 4. High-fat diet feeding and Ptn deletion effects on lipid metabolism in liver. (a) Aqp9 (aquaporin 9) mRNA, (b)
Acly (ATP citrate lyase) mRNA, (c) Acc (acetyl-CoA carboxylase) mRNA, (d) Fas (fatty acid synthase) mRNA, (e) Gpat
(glycerol 3-phosphate acyltransferase) mRNA, (f) Lpin2 (lipin 2) mRNA, (g) Dgat1 (diacylglycerol O-acyltransferase 1)
mRNA, (h) Dgat2 (diacylglycerol O-acyltransferase 2) mRNA, and (i) Cpt1α (carnitine palmitoyl transferase 1α) mRNA in
the liver of Ptn+/+ and Ptn−/− mice fed with a standard chow diet (STD) or with a high-fat diet (HFD). Data are mean ± SEM
of n = 5–6 mice/group. *p < 0.05, ** p < 0.01, *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or
Ptn−/− mice. # p < 0.05, ## p < 0.01, ### p < 0.001 for differences between Ptn+/+ and Ptn−/−.

On the contrary, qPCR analysis only revealed a lower expression of Acly and Fas
mRNA in HFD-Ptn−/− mice when compared to the STD-Ptn−/− mice. Furthermore, the
comparison between genotypes after HFD revealed that the expression of Fas, Gpat, Dgat1
and Dgat2 were significantly lower in the Ptn−/− when compared to the Ptn+/+ mice.
Moreover, the statistical analysis showed interaction in the effects of diet and genotype in
both isoforms of Dgat1 and Dgat2 (F (1, 18) = 8406, and F (1, 18) = 6197, respectively). These
results may suggest that although HFD feeding is associated in wild-type animals with an
increase in hepatic triacylglyceride synthesis, this effect is not observed in Ptn−/− animals.

We next investigated if the administration of a high-fat diet has any effect in the
mRNA of Cpt1α (Carnitine palmitoyl transferase 1α), a key enzyme of fatty acid oxidation
(Figure 4i). Ptn deletion was associated with a decrease in mRNA of Cpt1α in the mice fed
with STD, whereas Cpt1α mRNA was increased by the administration of a HFD in both
wild-type and knockout mice.

2.5. Fffects of High-Fat Diet and Ptn Deletion on Brown Adipose Tissue UCP-1 Expression

We next analyzed the effect of Ptn deletion and HFD on the expression of UCP-1,
the mitochondrial protein responsible for facultative thermogenesis in the brown adipose
tissue (Figure 5). Ucp1 mRNA expression was not modified either by the diet, or the
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genotype. However, the analysis of the UCP-1 protein levels revealed an increase in UCP-1
protein levels in the mice fed with HFD, that was highest in the BAT of HFD-Ptn−/− mice.
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Figure 5. High-fat diet and Ptn deletion effects on brown adipose tissue UCP-1. Ucp1 (uncoupling
protein-1) (a) mRNA and(b) protein in brown adipose tissue of Ptn+/+ and Ptn−/− mice fed with a
standard chow diet (STD) or with a high-fat diet (HFD). Data are mean± SEM of n = 5–6 mice/group.
* p < 0.05; ** p < 0.01 for differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− mice.
# p < 0.05 for differences between Ptn+/+ and Ptn−/−.

2.6. Effects of High-Fat Diet and Ptn Deletion on Periovarian AT Browning

As we did not observe changes in periovarian adipose tissue weight between both
genotypes, the size-frequency distribution of cells was calculated to account for changes
in adipocyte size. Comparison by the Mann–Whitney U test (Figure 6a) revealed that a
HFD induced in Ptn+/+ a significant alteration in the cell area distribution (median 856
and 1127 for STD and HFD, respectively, p < 0.0001), with a clear increase in the number of
big adipocytes (>2000 µm2) from 4% in the STD-Ptn+/+ to 29% in the HFD-Ptn+/+ mice.
Although a HFD also induced a change in adipocyte size distribution in Ptn−/− mice, the
magnitude of the effect was not so pronounced (median was 873 and 1057 for STD and
HFD, respectively, p <0.001), and the number of big adipocytes increased from 14% in the
mice on the STD to 18% in the animals fed with the HFD (Figure 6a). Furthermore, the size
distribution between HFD-Ptn−/− mice and HFD-Ptn+/+ mice was significantly different
(p < 0.01), indicating that Ptn deletion may protect against adipocyte hipertrophy induced
by HFD.

Notably, histologic examinations of periovarian adipose tissue sections from STD-Ptn−/−

mice revealed morphological changes associated with browning, including the appear-
ance of UCP-1 enriched multilocular adipocytes. Similar results were observed in the
HFD-Ptn−/− mice but with a lower number of clusters of multilocular UCP-1-expressing
adipocytes (Figure 6b). To confirm these results, we analyzed by qPCR the mRNA of
different markers of adipocytes. As shown in Figure 6c we found that Ptn deletion is
associated with an increased expression of Pparg1, independent of the diet. Moreover,
Ptn deletion was associated with an increase in the expression of Pgc1α, Cidea and Ucp1,
specific markers of brown/beige adipocytes, in the periovarian AT of STD-Ptn−/− mice
(Figure 6d–f). Although the expression of Pgc1α and Cidea decreased in the Ptn+/+ when
feeding with HFD, the values remained unchanged in the mice lacking Ptn. Furthermore,
UCP-1 mRNA was more than 100 times higher in Ptn−/− mice than in controls, and even if
this mRNA decreased after HFD feeding, the values were approximately 60 times higher in
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HFD-Ptn−/− when compared to the HFD-Ptn+/+ mice. Therefore, despite the HFD-induced
downregulation of the expression of these brown fat-specific genes, the mRNA levels in
HFD-Ptn−/− mice were still higher than in the Ptn+/+ mice.
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Figure 6. Deletion of pleiotrophin is associated with white adipose tissue browning. (a) Adipocyte cell size distribution
from the periovarian AT of Ptn+/+ (upper histogram) and Ptn−/− mice, (bottom histogram). (b) Representative immunohis-
tochemistry for UCP-1 in periovarian adipose tissue sections. (c) Pparγ1 (peroxisome proliferator-activated receptor-γ1)
mRNA, (d) Pgc1α (peroxisome proliferator-activated receptor-γ coactivator 1-α) mRNA, (e) Cidea (cell death-inducing
DNA fragmentation factor, alpha subunit-like effector A) mRNA, (f) Ucp1 (Uncoupling protein-1) mRNA in periovarian
AT of Ptn+/+ and Ptn−/− mice fed with a standard chow diet (STD) or with a high-fat diet (HFD). Data are mean ± SEM
of n = 4–6 mice/group. * p < 0.05, *** p < 0.001 for differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− mice.
# p < 0.05; ### p < 0.001 for differences between Ptn+/+ and Ptn−/−. The arrow in panel (b) indicates immunoreactivity with
UCP-1 antibody.

3. Discussion

Obesity is a risk factor that increases the prevalence of hypertension, cardiovascular
diseases, NAFLD, insulin resistance and type 2 diabetes [2]. Accordingly, there is an
increasing interest in the identification of target molecules involved in the regulation
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of whole-body energy expenditure, BAT activation and in the modulation of browning
of WAT.

Previous studies of our group have shown that pleiotrophin is a key player in the
regulation of energy homeostasis and insulin sensitivity [21]. In the present study, we
show that Ptn deletion increases browning of periovarian white adipose tissue and UCP-1
expression in BAT and ameliorates HFD-induced insulin resistance and liver steatosis.

Ptn−/− mice have been reported to have smaller body weight and a lower age-related
increase in body weight compared with wild-type animals [21]. Here, we show that a
HFD increases body weight both in both Ptn−/− and Ptn+/+ mice, but the increment of
body weight was smaller in the Ptn-deficient mice [21]. Moreover, although Ptn deletion
was associated with an increase in the weight of periovarian adipose tissue depots in both
genotypes, the HFD-induced increase in adiposity was associated with differences in the
adipocyte size distribution and WAT browning.

Adipocyte size and number are indicators of the volume of the lipid content. Obesity
is associated with an augmented mass of adipose tissue and an increase in both the number
(hyperplasia) and the size of adipocytes (hypertrophy) [25]. Furthermore, changes in the
size and distribution of adipocytes have also been linked to diabetes, hepatic steatosis
and inflammatory processes [26]. In this study we showed that although HFD is clearly
associated in control mice with an altered size distribution of white adipocytes, including a
higher proportion of big adipocytes, this hypertrophy of the tissue is partially prevented
by deletion of Ptn.

Browning of WAT has been shown to significantly increase whole-body energy expen-
diture and can counteract metabolic diseases, including obesity and type 2 diabetes [27].
Previous studies have identified a population of precursor cells in visceral adipose tissue
that can proliferate and differentiate into either UCP-1-expressing adipocytes with adrener-
gic stimulation, or into white adipocytes with high-fat feeding [28]. In our study, clusters of
UCP-1-expressing adipocytes with thermogenic capacity were detected in the periovarian
adipose tissue of Ptn knock-out mice, but these clusters were almost undetectable in the
Ptn+/+ mice. The high expression of a set of brown fat-specific genes (Ucp1, Cidea and Pgc1a)
further confirmed the browning of white adipocytes in the periovarian adipose tissue
depot of Ptn knock-out mice. Ucp1 and Cidea mRNA levels in WAT of HFD-Ptn−/− mice
are downregulated, which may indicate a decline in the number of interspersed brown
adipocytes of mice fed a HFD, as has been reported previously [29]. However, despite
downregulation with the HFD, the levels of these brown adipocyte markers, particularly
UCP-1, are still significantly higher than in STD Ptn+/+ mice.

In vitro experiments with mBAs from our group revealed that BAT differentiation
is regulated by changes in Ptn expression and suggest an inhibitory role of this cytokine
in brown fat differentiation and thermogenesis. Moreover, we have also described that
BAT thermogenesis is increased in Ptn−/− mice along with an increase in DIO2 activity
and expression, higher concentrations of T3 in BAT and subsequently lower levels of
plasma-free T4 [21]. In fact, expression and activation of UCP-1 is stimulated by T3, and
DIO2 is required for the conversion of T4 to T3 [30].

Here, an increased brown adipose tissue UCP-1 protein content was observed in both
genotypes after feeding a HFD, but the increment in UCP-1 protein was higher in the
HFD-Ptn−/− mice. The increase in UCP-1 levels was associated with a decrease in the levels
of plasma-free T4 (data not shown), indicative of the increased conversion to T3 in BAT,
as we have observed before in this mouse model [21]. The increase in UCP-1-mediated
thermogenesis in BAT has been commonly reported as a compensatory mechanism to
increase energy expenditure and prevent diet-induced obesity, although the increases in
the expression have been reported to be very variable in magnitude [29].

The increase in UCP-1 protein expression in BAT and the browning of WAT in the
Ptn−/− mice, even when fed with a HFD, may be associated with an elevated thermogenesis
and may also account for the reduced ectopic lipid deposition. In fact, HFD-induced
accumulation of lipids in the muscle (data not shown) is reduced in the Ptn−/− mice when
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compared to the control animals. Moreover, our data show that Ptn−/− mice are resistant
to HFD-induced steatosis, as evidenced by the reduced hepatic lipid accumulation as
a consequence of the decrease in the content of triacylglycerides, cholesteryl esters and
cholesterol in the liver. This connection between periovarian adipose tissue and liver
is not surprising since this WAT depot, similar to other visceral fat, is characterized by
its direct communication to the liver via the portal vein [31]. Additionally, the lower
lipid accumulation in the liver data can be explained by the reduced expression of the
enzymes involved in hepatic lipid synthesis. Although glycerol and fatty acid esterification
is favored in Ptn+/+ mice on a HFD, as evidenced by the increase in Lpin2, Dgat1 and Dgat2
expression, this effect is not observed in Ptn−/− mice. In fact, Ptn deletion is associated
in the liver with decreased mRNA of the enzymes involved in both the triacylglyceride
synthesis (Gpat, Lpin2, Dgat1 and Dgat2) and fatty acid synthesis (Acc and Fas).

Additionally, as the plasma levels of triacylglycerides are increased in HFD-Ptn−/−

mice when compared to STD-Ptn−/−, we cannot discard the possibility that an increased
hepatic secretion of triacylglycerides as very-low-density lipoproteins (VLDL) may con-
tribute to reduce the hepatic lipid content in the HFD-Ptn−/− mice and provide substrates
for oxidation in both white and brown adipose tissue. Furthermore, plasma levels of glyc-
erol and NEFA are also increased in HFD-Ptn−/− mice, indicating an increased lipoprotein
catabolism or increased lipolysis of triacylglycerides in adipose tissue.

In agreement with our previous study, at 6 months of age STD-Ptn−/− mice exhibited
an altered plasma biochemical profile, with lower plasma glucose levels, higher insulin
concentration and higher HOMA-IR than control mice, which suggests an amelioration
of insulin sensitivity in these animals [21]. Moreover, although the administration of a
HFD induced hyperinsulinemia and insulin resistance in the HFD-Ptn+/+ mice, neither
insulinemia nor the insulin resistance index increased in HFD-Ptn−/− mice, suggesting a
protective role of pleiotrophin deletion in the HFD-induced insulin resistance.

Altogether, these data suggest that Ptn deletion may protect against the development
of HFD-induced steatosis and whole-body insulin resistance, by promoting browning of
WAT and an enhanced thermogenesis in white and brown fat.

4. Materials and Methods
4.1. Animals

PTN genetically deficient mice (Ptn−/−) were generated as previously described [32].
C57BL/6J female wild-type (Ptn+/+) and Ptn−/− mice were divided randomly and housed at
22–24 ◦C with 12h light/dark cycles, and free access to water and chow (STD, 18 kcal% fat,
58 kcal% carbohydrates and 24% kcal protein; 3.1 kcal·g−1) or a high-fat diet (HFD, D12451,
45 kcal% fat, 35 kcal% carbohydrates and 20% kcal protein; 4.73 kcal·g−1) as corresponding.
Diet administration was maintained for 80 days, and animals were fed ad libitum. After
6 h of fasting, 6-month-old mice from each experimental group (n = 11–13) were killed by
decapitation under CO2 exposure. Plasma and tissues were collected and stored at −80 ◦C.
All the animals were maintained under European Union Laboratory Animal Care Rules
(2010/63/EU directive) and protocols were approved by the Animal Research Committee
of CEU San Pablo University and by Comunidad de Madrid (PROEX 137/18).

4.2. Plasma Analysis

Glucose ((GOD-PAP); Roche Diagnostics, Barcelona, Spain), triacylglycerides ((LPL- GPO);
Roche Diagnostics), cholesterol ((CHOD-POD); Spinreact, Girona, Spain), glycerol
(GPO-Trinder, Sigma Diagnostic, Madrid, Spain) and NEFA ((ACS-ACOD); Wako Chemicals,
Neuss, Germany) levels were determined by enzymatic colorimetric tests. Plasma insulin
measurement (Mercodia, Uppsala, Sweden) was determined using immunoassay kits. The
HOMA-IR insulin resistance index and QUICKI insulin sensitivity index were calculated
as previously described [33].
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4.3. Histology

Fixed liver sections (4 µm) were dehydrated and then embedded in paraffin. The
sections were deparaffinized, rehydrated and stained with haematoxylin and eosin (H&E)
to examine the morphology of the tissue. Sections were analysed by optical microscopy
(Leica Biosystems, Barcelona, Spain).

4.4. Hepatic Lipid Analysis

Total lipids were extracted and purified by the Folch method [34]. Different lipid
fractions were separated by thin-layer chromatography in Silicagel for quantification.

4.5. Immunohistochemistry Analyses

Fixed adipose tissue sections (4 µm) were dehydrated and then embedded in paraf-
fin. The sections were deparaffinized, rehydrated and incubated with primary anti-
body UCP-1 (Abcam, Cambridge, UK). Sections were incubated with a biotinylated
anti-IgG (Vector Laboratories, Burlingame, CA, USA) and incubated with the avidin–
biotin–peroxidase complex (Vector Laboratories). 3,3′-diaminobenzidine (DAB) substrate
(Merck, Darmstadt, Germany) was used as the chromogen. Some samples were incubated
without primary antibody as negative controls. The stained adipose tissue sections were
imaged with a Zeiss Standard 25 light microscope.

To measure the area of adipocytes, four slides per animal were quantified (n = 4
animals/group), and non-consecutive slides were taken. Image J 1.45 software (National
Institutes of Health, Bethesda, MD, USA) and Adiposoft program (http://fiji.sc/Adiposoft)
were used.

4.6. Quantitative Real-Time PCR

Total RNA was isolated using the Total RNA Isolation Kit (Nzytech, Lisbon, Portugal)
and the first-strand cDNA was synthesized using the first-strand cDNA Synthesis Kit
(Nzytech). Quantitative real-time PCR analysis was performed using the SYBR green
method (Quantimix Easy kit, Biotools, Madrid, Spain) in a CFX96 Real Time System
(Bio-Rad, Hercules, CA, USA). The relative expression of each gene was normalized using
Hprt and Rpl13 as reference genes. The primer sequences are shown in Table 1.

Table 1. Primer sets used for qPCR analysis.

Gene Primer Forward Primer Reverse

Acc 5′-GTCCCCAGGGATGAACCAATA-3′ 5′-GCCATGCTCAACCAAAGTAGC-3′

Acly 5′-AAGCCTTTGACAGCGGCATCATTC-3′ 5′-TTGAGGATCTGCACTCGCATGTCT-3′

Aqp9 5′-CTATGACGGACTCATGGCCTTT-3′ 5′-ATGAACGCCGTTCCATTTTCT-3′

Cidea 5′-GCCTGCAGGAACTTATCAGC-3′ 5′-AGAACTCCTCTGTGTCCACCA-3′

Cpt1α 5′-ACCCTGAGGCATCTATTGACAG-3′ 5′-ATGACATACTCCCACAGATGGC-3′

Dgat 1 5′-GCCCCATGCGTGATTATTGC-3′ 5′-CACTGGAGTGATAGACTCAACCA-3′

Dgat 2 5′-AACCGAGACACCATAGACTACTT-3′ 5′-CTTCAGGGTGACTGCGTTCTT-3′

Fas 5′-AGAGATCCCGAGACGCTTCT-3′ 5′-GCCTGGTAGGCATTCTGTAGT-3′

Gpat 5′-ACGCACACAAGGCACAGAG-3′ 5′-TGCTGCTCAGTACATTCTCAGTA-3′

Hprt 5′-TGCTCGAGATGTCATGAAGG-3′ 5′-TATGTCCCCCGTTGACTGAT-3′

Lpin2 5′-AGTTGACCCCATCACCGTAG-3′ 5′-CCCAAAGCATCAGACTTGGT-3′

Pgc1α 5′-CCCTTCTTTGCCATTGAATC-3′ 5′-AATGTTAGGAAAGTTTAGCATCTGG-3′

Rpl13 5′-GGTGCCCTACAGTTAGATACCAC-3′ 5′-TTTGTTTCGCCTCCTTGGGTC-3′

Ucp1 5′-GGATTGGCCTCTACGACTCA-3′ 5′-TAAGCCGGCTGAGATCTTGT-3′

http://fiji.sc/Adiposoft
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4.7. Protein Extraction and Immunoblotting

Brown adipose tissue was homogenized in a pH 7.4 buffer containing 30 mM HEPES,
5 mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, 8 mM Na3VO4, 1 mM NaF, and
2 mM of the protease inhibitor mixture Pefabloc (Roche Diagnostics, Barcelona, Spain). Pro-
tein concentration was measured using the Pierce BCA protein method (Thermo-Scientific,
Waltham, MA, USA).

An equal amount of protein was subjected to SDS-PAGE electrophoresis, transferred
to PVDF membranes (Amersham-GE Healthcare, Amersham, UK), and incubated with
anti-UCP-1 primary antibody (Merck, Kenilworth, NJ, USA). HSP90 (Merck) was used as
the loading control. After the incubation with the corresponding horseradish peroxidase-
conjugated secondary antibody (Sigma-Aldrich, St. Louis, MO, USA), proteins were
visualized by the enhanced chemiluminescence (ECL) system (GE Healthcare, Chalfont
Saint Giles, UK) using the ChemiDoc XRs Imaging system (Bio-Rad, Hercules, CA, USA)
and quantified by densitometry.

4.8. Statistical Analysis

Results are expressed as mean ± SEM. Normality was assessed by the Shapiro–Wilk
test, and a Grubbs’ test was run to detect outliers. Comparisons between two groups were
made by Student’s t-test for equal or unequal variances. When data were not normally
distributed a log transformation was performed before analysis. Statistical analysis was
conducted using GraphPad Prism v8 (USA). Size-frequency distribution of adipose cells
was compared by the non-parametric Mann–Whitney U test using IBM-SPSS v27. The
differences in the effect of HFD feeding within Ptn+/+ or Ptn−/− mice are indicated with
asterisks. The differences between Ptn+/+ and Ptn−/− are indicated with hashtags.
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