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Abstract: Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related
diseases. Although it has been reported that the combination of these habits worsens risks, the un-
derlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications
of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels
have been used as a lipid peroxidation marker linked to lifestyle-related diseases. In this study, at
least 41 types of RCS were identified in the lipophilic fraction of plasma samples from 40 subjects
using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS).
Higher levels of 10 alkanals, 5 trans-2-alkenals, 1 cis-4-alkenal, and 3 alkadienals were detected in the
smoking/drinking group (N = 10) as compared to those with either habit (N = 10 each) or without
both habits (N = 10) in the analysis of covariances adjusted for age and BMI. The levels of 3 alkanals,
1 trans-2-alkenal, 1 alkadienal, and 1 4-hydroxy-2-alkenal in the smoking/drinking group were
significantly higher than those in the no-smoking/drinking and no-smoking/no-drinking groups.
These results strongly indicate that the combination of cigarette smoking and alcohol drinking syner-
gistically increases the level and variety of RCS in the circulating blood, and may further jeopardize
cellular function.

Keywords: reactive carbonyl species; cigarette smoking; alcohol drinking; human plasma

1. Introduction

Smoking and alcohol consumption have been reported as major risk factors for cancers,
cardiovascular diseases (CVD), and other lifestyle-related diseases. According to the World
Health Organization (WHO), tobacco use, including cigarette smoking, causes more than
7 million deaths worldwide each year [1]. WHO also estimates alcohol consumption
contributes to 3 million deaths each year globally as well as to the disabilities and the
poor health of millions of people worldwide [2]. It has been reported that the combination
of smoking and alcohol drinking worsens the development and progression of various
cancers and CVD [3–5]; however, the underlying mechanism remains elusive.

More than 4000 chemicals have been identified in cigarette smoke; about 250 of
them are known to be health hazards, and more than 50 are carcinogens [6]. Cigarette
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smoke also contains highly reactive free radicals which promote reactive oxygen species
(ROS) production [7,8]. ROS cause alterations to nucleic acids and proteins, and generate
reactive carbonyl species (RCS) via lipid peroxidation [9]. Various types of RCS have
been detected in cigarette mainstream smoke, alcoholic beverages, and human biological
samples (Table S1) [10–18].

RCS are mostly produced by the autooxidation of unsaturated fatty acids in plants,
cooking oils, and high-fat foods, but are also produced by oxidation of the essential compo-
nents of cellular membranes (e.g., sugars, amino acids, polyamines, and unsaturated fatty
acids) as well as peroxidation of lipids (e.g., phospholipids, triacylglycerols, cholesterol,
and cholesteryl esters) via enzymatic or non-enzymatic processes (Table S1) [19–24]. RCS
are relatively stable and have longer half-lives than ROS and reactive nitrogen species;
they can cause or exacerbate damaging effects with regard to nucleic acids, proteins, cell
membrane, and mitochondrial functions [25]. Consequently, RCS contribute to the de-
velopment and progression of various diseases such as cancer, CVD, and the long-term
complications of diabetes, chronic obstructive pulmonary disease, and neurodegenerative
diseases [26–30].

The combination of smoking and alcohol drinking is anticipated to have synergetic
effects in inducing RCS production, causing damage to endogenous cellular components
and ultimately resulting in deleterious effects on human health. Although the total RCS
level has been widely used as a biomarker for lipid peroxidation with regard to the devel-
opment of several diseases such as cancer and diabetes mellitus, a detailed identification of
RCS related to cigarette smoking in conjunction with alcohol drinking has not been studied
to date.

We developed a sensitive and specific analytical method for the comprehensive anal-
ysis of RCS in biological samples using liquid chromatography/electrospray ionization
tandem mass spectrometry (LC/ESI-MS/MS) [31]. Using this method, we elucidated the
mechanisms of chemoprevention in tumors and cognitive decline in mice [32–34]. In this
study, we applied our method to identify a variety of RCS in human plasma samples. To
our knowledge, this is the first study characterizing RCS in plasma samples taken from
human subjects with the consideration of their smoking and alcohol consumption habits.

2. Results
2.1. Characteristics of Subjects and Bubble Charts of RCS Detected in Human Plasma Samples

The characteristics of subjects are shown in Table 1. Figure 1 shows bubble charts
of lipophilic RCS detected in plasma samples from the no-smoking/no-drinking group
(a), the no-smoking/drinking group (b), the smoking/no-drinking group (c), and the
smoking/drinking group (d). The free RCS (open circles) were plotted as a function of their
retention times (the horizontal axis) and m/z values (the vertical axis). The area of the circle
represents the intensity of the peak of RCS detected relative to that of the internal standard.
In total, 315, 306, 314, and 320 peaks were detected in the plasma samples taken from
the no-smoking/no-drinking group, no-smoking/drinking group, smoking/no-drinking
group, and smoking/drinking group, respectively (based on an average of 10 subjects). We
eliminated redundant peaks from the spectra and included the spike noise and artifactual
dansyl hydrazine derivatives. Most of the RCS identified were within m/z values between
250 and 650. A series of aldehydes with small molecular weights, including glyoxal (tR:
10.1 min, m/z 306) and propanal (tR: 11.1 min, m/z 306), are shown in the bottom left corner
of Figure 1. Several large circles also appear side by side diagonally in the center of Figure
1. As the retention times increased, the molecular weights of these peaks increased in m/z
increments of 14. By comparing these peaks with those of the authentic RCS samples,
they were identified as fatty acid-derived aldehydes such as hexanal (tR: 15.6 min, m/z
348), decanal (tR: 20.4 min, m/z 404), and hexadecanal (tR: 25.8 min, m/z 488). The most
abundant peak detected at a retention time of 19.3 min with an m/z value of 390 was
identified as nonanal. In addition, 4-hydroxy-2-nonenal (tR: 14.0 min, m/z 404) was also
detected with low abundance.
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Table 1. Characteristics of the subjects.

No-Smoking/No-
Drinking

Group

No-
Smoking/Drinking

Group

Smoking/No-
Drinking

Group

Smoking/Drinking
Group P a P b P c P d P e P f

N 10 10 10 10
Age (years) 73.2 ± 7.6 63.2 ± 8.4 59.5 ± 10.8 59.6 ± 10.2 0.132 0.014 0.015 1.000 1.000 1.000

BMI (kg/m2) 1 22.9 ± 3.0 23.5 ± 3.0 24.4 ± 2.3 23.2 ± 2.7 1.000 1.000 1.000 1.000 1.000 1.000
Triglyceride (mg/dL) 89.2 ± 38.0 107.4 ± 55.0 126.6 ± 60.2 237.3 ± 215.4 1.000 1.000 0.045 1.000 0.106 0.246

HDL-C (mg/dL) 2 57.5 ± 16.0 59.8 ± 16.6 48.3 ± 9.6 55.4 ± 9.6 1.000 0.799 1.000 0.376 1.000 1.000
LDL-C (mg/dL) 3 105.2 ± 28.2 104.5 ± 31.5 137.8 ± 37.7 101.0 ± 25.9 1.000 0.150 1.000 0.133 1.000 0.073
Drinking habits 4 no yes no yes

Number of
cigarettes/day 0 0 26 ± 7.0 24 ± 5.7 0.492

Brinkman index 0 0 1008 ± 355.7 882 ± 335.0 0.425
1 BMI: Body mass index; 2 HDL-C: high-density lipoprotein cholesterol; 3 LDL-C: low-density lipoprotein cholesterol; 4 Yes: daily alcohol consumption ≥ 20 g/day; P: 1-way analysis of variance with
Bonferroni post hoc test; P a: no-smoking/no-drinking group vs. no-smoking/drinking group; P b: no-smoking/no-drinking group vs. smoking/no-drinking group; P c: no-smoking/no-drinking group
vs. smoking/drinking group; P d: no-smoking/drinking group vs. smoking/no-drinking group; P e: no-smoking/drinking group vs. smoking/drinking group; P f: smoking/no-drinking group vs.
smoking/drinking group.
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2-decenal and 2-undecenal), a cis-4-alkenal (cis-4-decenal), and alkadienals (2,4-nonadi-
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Figure 1. Bubble charts of reactive carbonyl species (RCS) in the plasma samples. (a) No-smoking and no-drinking group;
(b) No-smoking and drinking group; (c) Smoking and no-drinking group; and (d) Smoking and drinking group.

2.2. Heatmap of the Levels of RCS Detected in the Plasma Samples

The levels of RCS detected in the plasma samples from each subject are shown as a
heat map in Figure 2, and the chemical structures of the identified RCS are summarized in
Table S1. The highest levels of RCS (in red) were mostly detected in the smoking/drinking
group. Significant trends were observed in most of the RCS, especially for alkanals (e.g.,
propanal, octanal, nonanal, decanal, undecanal, tridecanal, and octadecanal), and an
aromatic alkanal (benzaldehyde), trans-2-alkenals (crotonaldehyde, 2-octenal, 2-nonenal,
2-decenal and 2-undecenal), a cis-4-alkenal (cis-4-decenal), and alkadienals (2,4-nonadienal
and 2,4-decadienal) exhibited the greatest significant trend (p < 0.001).
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Figure 2. Heat map of the levels of reactive carbonyl species (RCS) in the individual subjects in the present study. Green
color cells indicate that RCS was not detected in the plasma samples. The maximum levels of each RCS are colored red.

2.3. The Relative Levels of RCS Detected in the Plasma Samples of Each Group Compared to Those
of the No-Smoking/No-Drinking Group

The relative levels of the RCS detected in the plasma samples of each group were
compared to those of the no-smoking/no-drinking group (Figure 3). Overall, 10 out of
314 peaks were detected at more elevated levels in the no-smoking/drinking group as com-
pared to the in no-smoking/no-drinking group (Figure 3a). Significant differences in 54 out
of 314 peaks (e.g., heptanal, 2,4-nonadienal, nonanal, octanal, decenal, and heptadecanal)
were observed for the smoking/no-drinking group as compared to the no-smoking/no-
drinking group (Figure 3b). Similarly, significant differences in 58 out of 320 peaks (e.g.,
octadecanal, benzaldehyde, crotonaldehyde, 2-octenal, 2-nonenal, 2-decenal, 2-undecenal,
2,4-nonadienal, and 2,4-decadienal) were observed in the smoking/drinking group as
compared to the no-smoking/no-drinking group (Figure 3c). There were some compounds
detected at lower levels in all groups as compared to those in the no-smoking/no-drinking
group; however, we were not able to identify them due to their low abundance. The levels
of identified RCS in each group and the comparisons among groups are shown in Table S2.
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Figure 3. The profiles of reactive carbonyl species (RCS) detected in the plasma samples of each group as compared to the
no-smoking and no-drinking group. (a) No-smoking and drinking group; (b) Smoking and no-drinking group; (c) Smoking
and drinking group. The gray circles indicate the levels of each RCS, and closed diamonds indicate the levels of RCS that
showed significant differences as compared to those of the no-smoking and no-drinking group (p < 0.05) in 1-way analyses
variance with post hoc Bonferroni analysis.

2.4. Body Mass Index, Alcohol Drinking, and Cigarette Smoking Are Associated with RCS Levels

In the multivariate regression analyses, body mass index (BMI) was significantly
associated with ≤ C12 alkanals in addition to heptadecanal, whereas no significant asso-
ciations were seen with trans-alkenals, alkadienals, and 4-hydroxy-2-alkenal, apart from
acrolein, cis-4-decenal, and glyoxal (Table S3). Age was not significantly associated with
the RCS identified in this study except 2-hexanal. Alcohol drinking was significantly
associated with benzaldehyde, 2-octenal, and 2-nonenal (p < 0.001). Alcohol drinking was
also associated with a total of 11 alkanals (propanal, 2-methylbutanal, octanal, nonanal,
decanal, undecanal, dodecanal, tridecanal, tetradecanal, pentadecanal, and octadecanal), a
total of 4 trans-alkenals (acrolein, 2-hexenal, 2-decenal, and 2-undecenal), 1 cis-4-alkenal
(cis-4-decenal), 3 alkadienals (2,4-hexadienal, 2,4-heptadienal, and 2,4-decadienal), and 1 4-
hydroxy-alkenal (4-hydroxy-2-nonenal). Alcohol drinking was significantly associated with
a reduction of 2-hexadecenal. Smoking was significantly associated with 4 alkanals (octanal,
nonanal, decanal, and octadecanal), 1 aromatic alkanal (benzaldehyde), 4 trans-alkenals
(crotonaldehyde, 2-octenal, 2-nonenal, and 2-decenal), and 2 alkadienals (2,4-heptadienal
and 2,4-decadienal) (p < 0.001). Smoking was also significantly associated with a total of
10 alkanals (propanal, butanal, hexanal, heptanal, undecanal, dodecanal, tridecanal, tetrade-
canal, pentadecanal, and heptadecanal), 2 trans-alkenals (2-hexenal and 2-undecenal), 1
cis-4-alkenal (cis-4-decenal), 2 alkadienals (2,4-hexadienal and 2,4-nonadienal), 1 alkatrienal
(8,11,14-heptadecatrienal), and 1 4-hydroxy-alkenal (4-hydroxy-2-nonenal).
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2.5. Smoking and Drinking Synergetically Produce RCS

In the 1-way analysis covariance (ANCOVA) adjusted for age and BMI, a total of
12 alkanals (propanal, butanal, octanal, nonanal, decanal, undecanal, dodecanal, tride-
canal, tetradecanal, pentadecanal, heptadecanal, and octadecanal) and 1 aromatic alkanal
(benzaldehyde) showed significant differences among groups (Figure 4a). The levels of
propanal, octanal, nonanal, decanal, undecanal, dodecanal, tridecanal, tetradecanal, oc-
tadecanal, and benzaldehyde in the smoking/drinking group were at significantly higher
levels compared to the other groups. The levels of butanal, pentadecanal, and heptade-
canal in the smoking/drinking group were significantly higher than those in the no-
smoking/no-drinking and no-smoking/drinking group. A total of 6 trans-2-alkenals and
1 cis-4-alkenal (crotonaldehyde, 2-hexenal, 2-octenal, 2-nonenal, 2-decenal, 2-undecenal,
and cis-4-decenal) showed significant differences among groups (Figure 4b). The lev-
els of 2-hexenal, 2-octenal, 2-nonenal, 2-decenal, 2-undecenal, and cis-4-decenal were at
significantly higher levels in the smoking/drinking group. The level of crotonaldehyde
in the smoking/drinking group was significantly higher than in the no-smoking/no-
drinking and no-smoking/drinking group. A total of four alkadienals (2,4-hexadienal,
2,4-heptadienal, 2,4-nonadienal, and 2,4-decadienal) showed significant differences among
groups (Figure 4c). The levels of 2,4-hexadienal, 2,4-heptadienal, and 2,4-decadienal
were significantly at the highest levels in the smoking/drinking group. The level of
2,4-nonadienal in the smoking/drinking group was significantly higher than in the no-
smoking/no-drinking and no-smoking/drinking group. As for 4-hydroxy-2-alkenal, the
level of 4-hydroxy-2-nonenal in the smoking/drinking group was significantly higher as
compared to the no-smoking/no-drinking and no-smoking/drinking group (Figure 4d).
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bars indicate RCS in the no-smoking and no-drinking group. Light gray bars indicate RCS in the no-smoking and drinking
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The estimated means and errors are shown for each group. *: p < 0.05. **: p < 0.01, ***: p < 0.005, §: p < 0.001.

3. Discussion

In this study, we successfully identified a wide range of lipophilic RCS in chloro-
form/methanol extractable fractions of human plasma samples by dansyl hidrazine-
derivatization followed by LC/ESI-MS/MS analysis in a selected reaction mode that
we developed previously. The combination of smoking and alcohol drinking clearly
showed significant synergistic effects on the plasma level of RCS, especially with regard to
trans-2-alkenals (2-hexenal, 2-octenal, 2-nonenal, 2-decenal, and 2-undecenal), cis-4-alkenal
(cis-4-decenal), alkadienals (2,4-hexadienal, 2,4-heptadienal, and 2,4-decadienal), alkanals
(propanal, octanal, nonanal, decanal, undecanal, dodecanal, tridecanal, tetradecanal, and
octadecanal), and an aromatic alkanal (benzaldehyde).
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Alkanals (≤C10) and alkenals (≤C6) have been detected in cigarette smoke
(Table S1) [10–13], as they are contained in tobacco leaves and are also used as flavor
additives for cigarettes. Thus, there is no surprise that higher levels of RCS were detected
in the smoking/no-drinking group as compared to the no-smoking/no-drinking group
in this study. RCS such as acrolein, nonanal, and 2-nonenal have been detected in alco-
holic beverages [17,18], and were also identified in the no-smoking/drinking group in the
multivariate regression analysis in this study. However, no significant differences were
detected in the no-smoking/drinking group as compared to the no-smoking/no-drinking
group, whereas significant synergistic effects of drinking and smoking were observed in
ANCOVA. Excessive alcohol consumption has been known to increase the level of free iron
in the cell and promote ROS production, leading to RCS production. Since RCS are known
to be downstream products of ROS [9], it is highly likely that ROS induced by alcohol
drinking triggers further RCS production in smokers.

As summarized in Supporting Table S1, in human urine samples some alkanals ≤ C11
as well as alkenals ≤ C10, 2,4-alkadienals, and 4-hydroxy-2-nonenal were detected in other
studies, and 2-methylpropanal and nonanal were seen at statistically higher levels in the
smoking groups as compared to the no-smoking groups [15]. A total of 19 aldehydes
(alkanals: C2–C10, alkenals: C3–C9, and benzaldehyde) have also been detected in sera
from healthy adults, although the analyses did not provide information on the smoking
and drinking habits of the subjects [14]. It should be noted that these previous studies
did not include the extraction step with an organic solvent, limiting the detection of more
lipophilic (≥C12) aldehydes. By including the chloroform/methanol extraction step in
this study we were able to identify more lipophilic aldehydes and observed the more
pronounced synergistic effects of smoking and alcohol drinking for longer carbon chain
(≥C12) alkanals.

Another novel finding in our study was the synergistic interaction of smoking and
alcohol drinking that was seen for trans-2-alkenals (2-pentenal, 2-hexenal, 2-octenal, 2-
nonenal, 2-decenal, and 2-undecenal), 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal),
and 4-hydroxy-2-alkenal (4-hydroxy-2-nonenal). It has been reported that those RCS play
pro-inflammatory roles and promote cellular proliferation.

trans-2-Alkenals have been detected in oxidized low-density lipoprotein (LDL) as
well as in oxidized high-density lipoprotein (HDL), along with 2,4-alkadienals and several
alkanals [35,36]. The oxidized LDL stimulates macrophages to induce atherosclerosis,
and oxidized HDL has also been shown not only to accelerate atherosclerosis but also to
contribute to tumor progression [37,38].

trans-2-Alkenals are known to form Schiff base adducts with lysine residues in pep-
tides and proteins and Michael adducts with lysine, histidine, or cysteine residues in
peptides, proteins, and nucleic acids, whereas alkanal and cis-4-decenal only form Schiff
base adducts (Figure 5) [39,40]. Schiff base adducts are less toxic as they are easily broken
down (subjected to hydrolysis), but Michael adducts are more stable (do not undergo
hydrolysis). 4-Hydroxy-2-nonenal is also known to form both Schiff base and Michael
adducts and that can initiate protein crosslinking [39]. 4-Hydroxy-2-nonenal has been
shown to induce upregulation of proinflammatory factors and stimulate cellular signaling
activity involving p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal
kinase (JNK) [41]. They are also associated with CVD, diabetes, cancer, chronic kidney
disease, and neurodegenerative diseases [42,43]. 2-Octenal, 2-hexenal, and 2,4-decadienal
have shown to induce higher interleukin-1β (IL-1β) release, whereas alkanals such as
hexanal, octanal, and decanal exhibited reduced release activities in human mononuclear
cells [24,44]. IL-1β is known as a key component of proinflammatory cytokines and relates
to the development and progression of many diseases (e.g., atherosclerosis, type II diabetes,
rheumatoid arthritis, and neurogenerative diseases) [45,46].
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Figure 5. Adduct formation with aldehydes. Schiff base formation occurs between alkanal (1) or trans-2-alkenal (2) and
the ε-amino group of the lysine side chain; Michael adducts formation occurs between trans-2-alkenal with nucleophilic
amino acid side chains of peptides and proteins such as lysine, histidine, and cysteine residues, as well as nucleic acids
(here deoxyguanosine is shown as an example) (2). cis-4-Decenal only forms Schiff base adducts. The Schiff base products
are less stable than Michael adducts as they can easily undergo hydrolysis or further nucleophilic addition of nucleophilic
amino acid side chains.

2,4-Hexadienal and 2,4-decadienal have been shown to induce DNA-adduct formation
and promote the proliferation of human cells and carcinogenesis in animals [47,48]. 2-
Hexenal covalently modifies DNA and promotes cell proliferation and carcinogenesis in
animals [49,50], and benzaldehyde induces DNA damage in human cells and is related to
oral cancer [51,52]. Taken together, these previous findings strongly suggest that the trans-
2-alkenals and alkadienals identified in this study could induce chronic inflammation and
further trigger the aforementioned diseases. Further study is necessary to elucidate specific
biological effects of the alkanals (decanal, tridecanal, and octadecanal) that exhibited
significant synergistic effects from smoking and alcohol drinking in this study.

The combination of smoking and alcohol drinking has been shown to induce alter-
ations in lipid profiles such as sphingomyelins and acyl-alkyl- and lyso- phosphatidyl-
cholines [53]. Sphingomyelins and phosphatidylcholines are the essential components
of cellular membranes and are the known targets for ROS in the generation of RCS [54].
The synergistic effects of smoking and alcohol drinking found in this study most likely
correlate with the alteration of the lipid profiles.

There are some limitations in this study, for example the small number of subjects and
a lack of information on inflammation and oxidative stress markers, as well as the dietary
information of the participants. This study was aimed to evaluate the feasibility of our
methodology for applications in future studies on a larger scale for the elucidation of the
molecular mechanisms of RCS in the development of lifestyle-related diseases. In our larger
scale study, we will include women, obtain necessary dietary information regarding the
subjects, and examine markers for inflammation and oxidative stress in plasma samples.
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To our knowledge, this is the first study to demonstrate that cigarette smoking and
daily alcohol consumption synergistically elevate the levels of RCS in human plasma. Our
results strongly indicate that these habits may have detrimental effects relating to the
induction of cellular and organ dysfunction, leading to lifestyle-related diseases.

4. Materials and Methods
4.1. The Study Subjects and Sample Collection

The subjects included in this study were selected from participants of a nation-wide
specific health checkup and health and welfare service for the elderly developed by the
Japanese Ministry of Health, Labor and Welfare that was carried out in the rural area of
Wakayama, Japan, in 2016. In total, 165 people (84 men, 81 women) aged 40–84 years
(61.3 ± 10.5 years) were registered, and they provided informed consent prior to the study.
Subjects completed a standardized self-administered questionnaire including lifestyle fac-
tors such as current smoking and alcohol drinking habits (Table S4). Height and weight
were measured on site to calculate the BMI (weight/height2 (kg/m2)). Information on cur-
rent smoking habits, the number of cigarettes per day, and total length of time of continuous
smoking was provided. Participants who currently smoked daily (≥20 cigarettes/day) for
≥6-months were categorized into the smoking group, and those who had never smoked
were categorized as the no-smoking group. Participants who drank alcohol beverages
(≥20 g/day) every day were categorized into the drinking group, and those who never
drink alcohol beverages were categorized as the no-drinking group. In total, 10 subjects
were randomly selected for each of the 4 groups: the no-smoking/no-drinking group (a)
(N = 10), the no-smoking/drinking group (b) (N = 10), the smoking/no-drinking group
(c) (N = 10), and the smoking/drinking group (d) (N = 10). Among women, only 2 drank
alcoholic beverages regularly (<10 g/day), and there were none who smoked cigarettes
(Table S4). Consequently, women were excluded from the analyses to rule out sex bias
among the 4 groups. Participants were asked to fast for at least 10 hours before the exami-
nation, according to the guidelines. Venous blood was collected in a heparinized vacuum
blood collection tube; plasma was separated by centrifugation at 1500× g at 4 ◦C for 10 min
and was immediately stored at −80 ◦C until the assay. The medication status of the subjects
in this study is shown in Table S5.

4.2. Chemicals

All chemicals purchased were of analytical grade (ACS grade) and were used as
received without any additional purification. Crotonaldehyde, dansyl hydrazine (DH),
2,4-decadienal, glyoxal, heptadecanal, hexadecanal, 2,4-nonadienal, octadecanal, pentade-
canal, and tetradecanal were purchased from Tokyo Chemical Industry (Tokyo, Japan). p-
Toluenesulfonic acid (p-TsOH), butanal, decanal, dodecanal, 2-hexenal, hexanal, 2-heptenal,
heptanal, octanal, 2-nonenal, nonanal, pentanal, propanal, tridecanal, and undecanal were
obtained from Sigma-Aldrich (St. Louis, MO, USA). 4,5-Epoxy-2-decenal, 4-hydroxy-2-
hexenal, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal were purchased from the Cayman
Chemical Company (Ann Arbor, MI, USA). All other chemicals were obtained from Wako
Pure Chemical Industries (Osaka, Japan). 8-Heptadecenal, 8,11-heptadecadienal, and
8,11,14-heptadecatrienal were synthesized following the published method [31].

4.3. Extraction of RCS from Plasma and LC/ESI-MS/MS Analysis

The experimental details of the RCS extraction from plasma samples and LC/ESI-
MS/MS analyses were described previously [31]. Briefly, 20 µL of plasma was mixed with
180 µL of 50 mM sodium phosphate buffer (pH 7.4) containing 0.5 mM EDTA and 20 µM
butylated hydroxytoluene. The mixture was added to 400 µL of chloroform/methanol
(2:1, v/v) solution containing p-benzyloxybenzaldehyde (20 pmol) as the internal standard,
and centrifuged at 20,000× g for 10 min at 4 ◦C. The organic phase was removed and
set aside. The aqueous phase and precipitates were mixed with another 400 µL of the
chloroform/methanol solution, and the resulting mixture was centrifuged to isolate the
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organic phase. Then, 100 µL of acetonitrile containing 50 µg (0.19 µmol) of DH and 10 µg
(0.06 µmol) of p-TsOH was added to the combined organic phase and the mixture was
incubated for 4 hours at room temperature in the dark. The solvent was removed from the
reaction mixture to dryness in vacuo to yield the corresponding DH-derivatized products.
These products were then dissolved in 200 µL of acetonitrile, and 5 µL aliquots were
injected into the LC/ESI-MS/MS system per run.

The RCS-DH derivatives were separated on a TSK-gel Super Octyl column (2.3 µm,
100 mm × 2.0 mm, TOSOH, Tokyo, Japan) connected to a Dionex UltiMate3000 system
(Thermo Fisher Scientific, Waltham, MA, USA) and a TSQ Endura triple-stage quadrupole
tandem mass spectrometer with a heated electrospray ionization source (Thermo Fisher
Scientific). RCS-DH derivatives were eluted from the column with a programmed linear
gradient: mobile phase A consisted of a 0.1% (v/v) solution of formic acid in MilliQ
water, and mobile phase B consisted of a 0.1% (v/v) solution of formic acid in acetonitrile,
changing from 20% B to 100% B in 10 min at a flow rate of 0.2 mL/min. The elution of
RCS-DH was completed within 10 min. The column was then washed with 100% B for
10 min and re-equilibrated to 20% B for 10 min before the next sample was injected. The
instrument parameters for the positive-ion mode were as follows: ionspray voltage, 3500 V;
ion transfer tube temperature, 325 ◦C; vaporizer temperature, 275 ◦C; sheath gas flow at
35 arbitrary units; auxiliary gas flow at 10 arbitrary units; and collision energy at 40 V.
The RCS-DH derivatives were detected using the selected reaction mode. Formaldehyde
and acetaldehyde were excluded from the results because chloroform/methanol was used
for extraction of RCS from plasma samples. Quality assurance/quality control (QA/QC)
procedures were performed followed by same method described previously [31].

4.4. Statistical Analyses

A statistical analysis of detected peaks of RCS-DH derivatives was performed using
GraphPad Prism 8 software (GraphPad Software, San Diego, CA, USA). All other statistical
analyses were performed using STATA version 16 (STATA Corp, College Station, TX, USA).
Differences among groups were analyzed by 1-way analysis of variance (ANOVA) with
the Bonferroni post hoc test. The associations of age, BMI, alcohol drinking, and smoking
habits with RCS levels were analyzed by multivariate regression analyses. Differences
among groups were analyzed by a 1-way analysis of covariates (ANCOVA) adjusted for
age and BMI with Tukey´s post hoc test. P for trends was also evaluated, and the level of
significance was set as p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22169043/s1, Table S1: Chemical characteristics of RCS identified in human plasma
samples in this study, Table S2: Comparison of the levels of RCS in human plasma samples among
each group, Table S3: Association of age, BMI, drinking, and smoking habits on RCS levels in plasma,
Table S4: The basic characteristics of participants, Table S5: Medication status of subjects in this study.
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