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Abstract: Previous evidence links the formation of extranuclear inclusions of transcription factors,
such as ERK, Jun, TDP-43, and REST, with oxidative, endoplasmic-reticulum, proteasomal, and
osmotic stress. To further characterize its extranuclear location, we performed a high-content
screening based on confocal microscopy and automatized image analyses of an epithelial cell culture
treated with hydrogen peroxide, thapsigargin, epoxomicin, or sorbitol at different concentrations
and times to recreate the stresses mentioned above. We also performed a subcellular fractionation
of the brain from transgenic mice overexpressing the Q331K-mutated TARDBP, and we analyzed
the REST-regulated mRNAs. The results show that these nuclear proteins exhibit a mitochondrial
location, together with significant nuclear/extranuclear ratio changes, in a protein and stress-specific
manner. The presence of these proteins in enriched mitochondrial fractions in vivo confirmed the
results of the image analyses. TDP-43 aggregation was associated with alterations in the mRNA levels
of the REST target genes involved in calcium homeostasis, apoptosis, and metabolism. In conclusion,
cell stress increased the mitochondrial translocation of nuclear proteins, increasing the chance of
proteostasis alterations. Furthermore, TDP-43 aggregation impacts REST target genes, disclosing an
exciting interaction between these two transcription factors in neurodegenerative processes.

Keywords: TDP-43; Jun; REST; ERK; mitochondria; cell stress; aggregation; transcription factors;
transgenic mice; subcellular fractionation

1. Introduction

The presence of protein aggregates is a pathological hallmark for several neurodegen-
erative diseases, including Alzheimer’s disease (AD), Parkinson’s disease, and amyotrophic
lateral sclerosis (ALS), to name a few [1]. These protein aggregates show disease specificity.
For instance, beta-amyloid aggregates characterize the AD neurofibrillary tangles and
intracellular aggregates. Similarly, aggregates of highly phosphorylated TDP-43 are present
in the cytosol of the remaining motor neurons in ALS. Whether (and how) these aggregates
are mere bystanders of ongoing pathogenic processes or whether they constitute bona fide
cellular noxa is still under debate.
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In the case of ALS, TDP-43 is a primary component of these aggregates. TDP-43 is
a ubiquitous protein that belongs to the heterogeneous nuclear ribonucleoprotein family
and is encoded by the TARDBP gene. TDP-43 is mainly found in the nucleus of normal
cells and is involved in RNA regulation, including transcriptional regulation, alternative
splicing, and mRNA stabilization [2]. TDP-43 is usually found in the nucleus, but it also
moves between the nucleus and the cytoplasm to perform various cellular tasks. TDP-43’s
level and localization are tightly controlled by a negative feedback mechanism [3]. Under
stress circumstances such as heat shock, oxidative stress, and arsenite exposure, nuclear
TDP-43 is transferred to the cytoplasm, and cytoplasmic TDP-43 accumulates to form stress
granules (SGs), a variety of other proteins and RNAs [4]. When the stress is relieved, the
SGs that carry TDP-43 break down, and TDP-43 released from the SGs translocates into the
nucleus [5]. On the other hand, chronic stress causes extended SG formation, which leads
to cytoplasmic TDP-43 aggregate accumulation.

In addition to TDP-43, other proteins with roles as transcriptional factors also show
their cytoplasmic accumulation as aggregates [6]. We included p-ERK [7] and p-Jun [8].
Protein aggregation has been found in several neurodegenerative conditions, such as
AD. Interestingly, recent data has demonstrated that another protein, REST, could show
decreased values during AD pathogenesis [9]. Similarly, REST is found as aggregates in
the substantia nigra in PD patients [10]. In this context, it is known that cellular stress, such
as ER, proteasome, or oxidative stress, can induce TDP-43 mislocalization [7].

The dysfunction of the nuclear pore complex is linked to cytoplasmic mislocalization
and TDP-43 aggregation, in addition to the dysregulation of stress granule formation [11].
Indeed, one of the most common causes of ALS, associated with G4C2 repeats within the
C9ORF72 gene, impairs the cytoplasm–nucleus gradient of Ran, the primary regulator of
TDP-43 nuclear localization, according to several studies [12]. The structure of the nuclear
membrane is similarly disrupted by (G4C2) RNA. TDP-43 is also linked to the cytoplasmic
accumulation of other nuclear membrane proteins, like Nup62 and Kpnb1 [13]. Of note,
we have recently demonstrated that ALS is associated with an alteration in the nuclear
envelope lipids [14].

Additionally, p-TDP-43, p-ERK [7], and REST [10] also show aggregates in neurode-
generative diseases. Several authors have reported that TDP-43 protein aggregates may
be found in organellar fractions, in addition to the cytosolic location, such as mitochon-
dria [15,16]. How cell stress is linked to this mislocalization is currently unknown, but it
may include impairments in proteostasis and imbalances in autophagy flux [17]. To shed
light on this question, we have explored if oxidative, ER, and proteasome stress can in-
duce changes in the cellular distribution of these transcription factors. Specifically, we
focused on the potential interaction with mitochondria due to the relevance of mitochon-
drial (dys)function in neurodegenerative conditions (particularly in ALS). We validated
the in vitro data by exploring the presence of these proteins in enriched mitochondrial
fractions. Our results demonstrate that the interactions of TDP-43, REST, Jun, and ERK
with the extranuclear components, such as mitochondria, are dependent on cell stress.
Further, we demonstrate an unreported association between TDP-43 pathology and the
changes in REST-dependent mRNAs. All in all, the enhanced mitochondrial interaction of
these proteins could contribute to the reported loss of mitochondrial functions in several
neurodegenerative processes.

2. Results

Oxidative stress induced by H2O2 in HMEC cells led to changes in the nuclear and
non-nuclear distribution of p-TDP-43, while the nuclear intensity of p-TDP-43 was de-
creased in the milder oxidative conditions tested (Figure 1A and Supplemental Figure S1).
In these milder conditions, the cell viability was preserved (Supplemental Figure S2).
In contrast with p-TDP-43, despite an initial increase in a p-ERK cytosolic area in the same
conditions, this protein was rapidly cleared (Figure 1A), being mainly non-nuclear. The
cytoplasmic staining of p-Jun and REST showed the same tendencies, i.e., after an initial
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decrease, there was a tendency for increasing their values (highly significant in the case
of REST), as indicated in Figure 1A. The nonhomogeneous distribution of cytoplasmic
locations after oxidative stress (evident in p-TDP-43, p-Jun, and REST) suggested their
colocalization with an organelle fraction. We performed coimmunostaining with several
mitochondrial epitopes to test if this non-nuclear localization involved a mitochondrial
residence (as previously indicated in reference [18]). Complex V coimmunostaining with
these factors (Figure 1B) indicated that the degree of colocalization increased significantly
in all the cases after oxidative stress, exceeding z’-values of 0.5 (roughly meaning that at
least 50% of both epitopes could coincide at the resolution of the confocal microscopy),
except for p-ERK. Although the colocalization of this protein increased significantly after
oxidative stress (Figure 1B), and in line with the p-ERK decreased values in the cytoplasm,
the z’-values did not reach 0.3 in this case. The mitochondrial networks were significantly
affected by oxidative stress. Thus, while low concentrations of hydrogen peroxide did not
impinge changes in the mitochondrial number or in its networking, higher concentrations,
associated with the changes in TDP-43 and other transcription factors, were associated with
the increased mitochondrial numbers and networks (Supplemental Figure S3). The corre-
lation analyses of nuclear vs. cytoplasmic intensity showed linear relationships between
these parameters, though their responses to oxidative stress were strongly dependent on
the factor (Supplemental Figure S4).

These immunostaining results suggested a partial colocalization of the mitochondrial
epitopes and ALS-related protein factors in a cell line. To validate these results in an
independent setup, we evaluated this phenomenon in a murine model of ALS-related
neurodegeneration. We employed TDP-43 Q331K mice overexpressing the human mutated
TDP-43 gene. The results of the subcellular fraction in the brain agree with the in vitro
findings. Thus, both TDP-43 and ERK are present in crude mitochondria, a subcellular
fraction enriched in mitochondria but also containing other membranes (Figure 2 and
Supplemental Figure S5). Indeed, as expected, h-TDP-43 was highly enriched in the cytosol,
nuclei, and crude mitochondria fraction. Demonstrating that TDP-43 location in the crude
mitochondria was not an artifact of the overexpression of this gene, endogenous (murine)
Tdp-43 was also present, as evidenced by Western blotting (Figure 2). The analyses of
variance demonstrated that the TDP-43 amount was significantly affected by transgenesis
(22% of the total variation, p < 0.001, after a three-way ANOVA, Supplemental Table S1).
In contrast, the subcellular location strongly influenced the p-TDP-43 levels (47% of the
variation, p < 0.0001), followed by sex (13.6% of the variation, p < 0.0035), but not the
transgenesis (Figure 2 and Supplemental Table S1). In general, the values of p-TDP-43 were
higher in female mice (Figure 2 and Supplemental Figure S6 for males), and in both genders,
the levels of p-TDP-43 were higher in the crude mitochondria than in cytosol (Figure 2).

Concerning ERK, the findings in the spinal cord of that murine model reinforce the
in vitro data. Thus, in line with the colocalization of p-ERK with complex V, the crude
mitochondria showed a relevant concentration of p-ERK. However, the nuclear fractions
showed a high concentration of p-ERK, while the total ERK levels were significantly lower
in the nuclei than cytosol (Figure 2). Densitometry analyses indicated that the total ERK
levels were not significantly influenced by the sex, transgene expression, or subcellular
fraction (Supplemental Table S2). However, when evaluating p-ERK, the subcellular
location influenced, to the greatest extent, its levels (52% of the variation, p < 0.0001), with
sex interacting with the subcellular location also being a relevant factor (13.8%, p < 0.008).

Regarding p-Jun, we detected its presence mainly in nuclear fractions, with almost no
detection in the crude mitochondrial fraction or cytosol. After densitometry, most of the
variance was explained by the subcellular location (63% of the variance, p < 0.0001), with
sex also influencing the values (9.6%, p < 0.006). TDP-43 overexpression only explained 4%
of the total variance in the sex and subcellular location (p < 0.04, Supplemental Table S1).
Nonetheless, we evidenced the presence of Jun in the three fractions examined. Thus,
densitometry showed that the subcellular location explained more than 16% of the total
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variance (p < 0.03, Figure 2 and Supplemental Table S2), with no significant influence of the
sex or TDP-43 overexpression.
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Figure 1. Oxidative stress induces changes in the levels of proteins implicated in neurodegeneration and its colocaliza-
tion with mitochondrial epitopes. (A) Representative confocal microscopy images of HMEC cells immunostained with
antibodies against p-TDP-43 (left), p-ERK (middle left), p-Jun (middle right), and REST (right), showing diverse effects of
oxidative stress (H2O2, dose and time indicated) in nuclear and non-nuclear (cytosol) immunostaining (quantified below).
(B) Representative coimmunostaining confocal microscopy images of the above-mentioned proteins, with mitochondrial
epitopes (Complex V). The degree of colocalization was estimated by calculation of the z’ factor, shown in the violin
graphs below. In (A), the bars indicate the mean with the standard deviation shown by the lines (n = 200–296 cells for
p-TDP-43, n = 191–255 for p-ERK, n = 234–326 for p-Jun, and n = 217–415 for REST, obtained in at least 4 independent
replicates). * Indicates p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 by Sidak’s post-hoc multiple comparison test
after a 2-way ANOVA (in A) or by Dunnett’s post-hoc multiple comparison test after an ANOVA (in B). Bars in (A,B) are
60 micrometer long.
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Figure 2. Cellular subfractionation evidence for the in vivo colocalization of the proteins implicated in neurodegeneration
with the mitochondrial components. As shown by the Western blot analyses of brain lysates after subcellular fractionation, in
addition to the nuclear-enriched (Ne) and cytosolic-enriched (Ce) compartments’ crude mitochondrial fractions (CrMitoch),
both non-transgenic and transgenic hTDP-43 mice show the presence of p-TDP-43, p-ERK, and Jun. The levels were
quantified by densitometry in the brains from 90-day-old mice. The Western blots shown are for female specimens.
Right panels indicate the quantitative analyses. Bars indicate the mean values with lines showing the standard deviation.
* Indicates p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 by Dunnett’s post-hoc multiple comparison test after a
three-way ANOVA (n = 4 different mice from each genotype and sex). The ANOVA values are shown in the text.

Finally, the analyses of the subcellular fractionation of murine brains revealed that the
crude mitochondrial fractions, in line with the immunostaining measurements, contained
a non-negligible amount of REST (Figure 3A). Crude mitochondria were the subcellular
fraction with a higher concentration of REST. Regarding the influence of specific factors,
neither sex nor TPD-43 overexpression was a significant factor contributing to the variance,
in contrast with the subcellular location (39% of the variation, p < 0.0043, Supplemental
Table S1). Besides a nonsignificant trend for an increase in REST in transgenic mice, we
evaluated the potential effect of a mutated TARDBP overexpression in well-established
REST targets by RT-qPCR. The results showed that one downstream REST, CYCS mRNA,
was increased almost significantly in the TARDBP transgenic mice (Figure 3B).
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within crude mitochondria (CrMitoch), in comparison with enriched nuclei (Ne) or cytosolic extract
(Ce). Levels were quantified by densitometry in brains from 90-day-old mice (right panel). Western
blots shown are for female specimens. Bars indicate the mean values with lines showing the standard
deviation. (n = 4 different mice from each genotype and sex). (B) Shows the effect of mutated TARDBP
overexpression in the mRNA levels of REST-regulated genes in brain lysates, quantified by RT-qPCR.
Bars indicate mean values with lines showing the standard deviation (n = 3 mice from each genotype).
(C) Shows representative immunofluorescence images of N2A cells under osmotic stress (Sorbitol,
0.4 M, 4 h), demonstrating that both TDP-43 and p-TDP-43 are localized in a non-nuclear location as
aggregates after sorbitol incubation (graphs in the right panel). (D) Shows a heatmap of the mRNA
expression levels of REST-regulated genes in SHSY-5Y cells under osmotic stress, with the scale on
the right showing the relative overexpression (in red) or downregulation (in green), quantified by
RT-qPCR. * Indicates p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 by Dunnett’s post-hoc
multiple comparison test after a three-way ANOVA (in (A) for the integrated intensity of p-TDP-43 or
TDP-43 in confocal immunofluorescence analyses or densitometry in (C)), for the Student’s t-test (in
(C) for the number of aggregates; n = 150 different cells quantified in each condition or 4 independent
RT-qPCR experiments in (B) or in (D)). The bars in (C) are 20 micrometer long.

To further confirm the interaction between TDP-43 and REST, we set up an in vitro
model of TDP-43 and p-TDP-43 aggregation in human neural cells (N2A and SHSY-5Y).
Thus, after sorbitol incubation (Figure 3C), both the number of TDP-43 aggregates and
global intensity of TDP-43, but not p-TDP-43, were increased, with a high amount of TDP-
43 in nuclear location. Thus, both the subcellular location (18% of the variance, p < 0.0001)
and sorbitol incubation (11.2% of the variance, p < 0.0165) strongly influenced the TDP-43
immunostaining intensity. In this particular model, we explored the effect of REST targets
on SHSY-5Y cells. The results of the RT-qPCR revealed that TDP-43 aggregation induced
by sorbitol incubation was associated with significant decreases in the mRNA levels of
SCN3B, FADD, PUMA, DAXX, SOD1, CAT, GAP43, 1433, MAPK11, MAPK12, and ARC,
known REST targets. Sorbitol incubation also increased some REST targets such as NRX3
and ATP2B2 (Figure 3D).

To evaluate if TDP-43 aggregation can be related to mitochondrial dysfunction, we
evaluated if sorbitol incubation in these conditions led to alterations in the cellular ATP
production. The results (Supplemental Figure S7) suggest that both mitochondrial and
glycolysis-linked ATP production is severely affected by sorbitol incubation.

We also examined if other ALS-related cell stressors, such as ER stress, could induce
similar delocalizations of the evaluated proteins. We have previously shown that pro-
teasomal and ER stress induce a cytosolic mislocalization of TDP-43 [7]. Using similar
conditions, we first evaluated if the cells exposed to proteasomal stress (epoxomicin) in
similar conditions to the ones already reported to mislocalize TDP-43 also changed p-ERK
and p-Jun. The results (Figure 4A) indicated that these proteins exhibited differential
dynamics. Thus, in p-ERK, the nuclear levels were always inferior to the cytosolic ones
(90% of the total variance explained by the cellular location, p < 0001).

Further, proteasomal stress induced by epoxomicin decreased the levels of p-ERK
significantly (either at the nuclei and in the cytosol, 7% of the total variance, p < 0.0001).
In p-Jun, there was a significant interaction between stress and the subcellular location,
i.e., the effect on epoxomicin depended on the location. Therefore, epoxomicin treatment
decreased the cytosolic levels of p-Jun (Figure 4A) in a close relationship with the increased
levels in the nuclei (51% of the total variance explained by the interaction of stress and
the subcellular location, p < 0.0001, Supplemental Table S3). In the case of ER stress
(thapsigargin), we observed similar results in p-ERK. Thus, the total levels were decreased
after the stress, both at the nuclear and cytosolic levels (Figure 4B). Similarly, the cytosol
vs. nuclear location was the factor explaining the most variance (79% of the total variance,
p < 0.0001, Supplemental Table S4). For p-Jun, while its preferential nuclear location was
maintained, the ER stress induced by thapsigargin induced a significant early increase in
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the nuclei (similar to proteasome stress), but later on, the levels were decreased, in line with
the changes in the cytosol (Figure 4B). Therefore, cytosol vs. nuclear location explained
most of the variance (90% of variance, p < 0.0001, Supplemental Table S4).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 18 
 

 

changes in the cytosol (Figure 4B). Therefore, cytosol vs. nuclear location explained most 
of the variance (90% of variance, p < 0.0001, Supplemental Table S4). 

 
Figure 4. Proteasome and ER stress induces changes in the levels of p-ERK and p-Jun. Representative confocal microscopy 
images of HMEC cells immunostained with antibodies against p-ERK and p-Jun showing diverse effects of proteasome 
inhibition (epoxomicin) in (A) and ER stress (thapsigargin) in (B) in nuclear and non-nuclear (cytosol) immunostaining 
(quantified below). Images shown are for 2 h of incubation. In (A), the bars indicate the mean with the standard deviation 
shown by lines (n = 195–283 cells for p-ERK and n = 285–394 for p-Jun) and, in (B), n = 519–658 cells for p-ERK and n = 415–
553 for p-Jun. *** Indicates p < 0.001 by Sidak’s post-hoc multiple comparison test after a 2-way ANOVA. The bars in the 
(A,B) micrographs are 20 micrometer long. 

We then evaluated the potential colocalization of these factors with the mitochondrial 
components. The results of the confocal microscopy (Figures 5 and S8) suggested that the de-
gree of colocalization was affected by cell stressors. In the case of proteasome stress, the degree 
of p-ERK colocalization increased significantly at the longer times evaluated (Figure 5A), 
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of colocalization (Figure 5A). For ER stress, at the shorter term, the z’-values increased for p-

Figure 4. Proteasome and ER stress induces changes in the levels of p-ERK and p-Jun. Representative
confocal microscopy images of HMEC cells immunostained with antibodies against p-ERK and p-Jun
showing diverse effects of proteasome inhibition (epoxomicin) in (A) and ER stress (thapsigargin)
in (B) in nuclear and non-nuclear (cytosol) immunostaining (quantified below). Images shown are
for 2 h of incubation. In (A), the bars indicate the mean with the standard deviation shown by lines
(n = 195–283 cells for p-ERK and n = 285–394 for p-Jun) and, in (B), n = 519–658 cells for p-ERK and
n = 415–553 for p-Jun. *** Indicates p < 0.001 by Sidak’s post-hoc multiple comparison test after a
2-way ANOVA. The bars in the (A,B) micrographs are 20 micrometer long.

We then evaluated the potential colocalization of these factors with the mitochondrial
components. The results of the confocal microscopy (Figure 5 and Figure S8) suggested that
the degree of colocalization was affected by cell stressors. In the case of proteasome stress,
the degree of p-ERK colocalization increased significantly at the longer times evaluated
(Figure 5A), while this was not present for p-Jun. Later, proteasome stress led to a decrease
in the degree of colocalization (Figure 5A). For ER stress, at the shorter term, the z’-values
increased for p-ERK, but later on, they showed a significant decrease (Figure 5B). Both
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at short and longer times, in the case of p-Jun, decreased degrees of colocalization were
evident (Figure 5B).
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To evaluate if the stress mentioned above could be behind the changes in the transgenic
TDP-43 model, we also studied the effects of the proteasome and ER stress in the levels
and distribution of REST in the non-neuronal cell line studied. For epoxomicin treatment,
an early (2-h) increase in the REST intensity in the cytosol was followed by a decrease in
the nuclear amount (at 4 h, Figure 6A). The degree of colocalization with the mitochondrial
markers diminished as well (data not shown). Additionally, the results showed that
ER stress increased the cytosolic and nuclear amounts of REST at longer times studied
(Figure 6B) and also due to changes in the degree of colocalization with the mitochondria
(z-values decreased by 20% in the epoxomicin treatment, data not shown).
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3. Discussion

This work shows that several proteins implicated in ALS (TDP-43, ERK) and other
neurodegenerative processes, such as AD (Jun, REST), show a sensitivity to cell stress.
Several neurodegenerative diseases exhibit protein aggregates where these proteins may be
present [19]. We evaluated three different major cellular stressors, namely oxidative stress,
proteasome inhibition, and ER stress, and we demonstrated that the effects on cellular
distribution showed stress and protein specificity.

In the case of TDP-43, the results showed that, after oxidative stress or osmotic stress,
the cytosolic levels of this protein increased both in the endothelial cell line and in the
neuronal cell lines. Further, the degree of colocalization within the mitochondria also
increased. Of note, TDP-43 may show differences in behavior with p-TDP-43. Thus, while
TPD-43 is accumulated after sorbitol stress in the cytosol, it was nonsignificant in p-TDP-43.
The in vivo evidence presented shows that this is also the case in the brain lysates, where p-
TDP-43 and TDP-43 show differential responses to the overexpression of mutated TARDBP.
Whatever the case, the subcellular fractionation data agree with the enrichment of both
endogenous murine tdp-43 and hTDP-43 in mitochondrially enriched fractions. Both the
functional and morphological analyses showed that the conditions linked to p-TDP-43
aggregation (specially in sorbitol incubation) were associated with major changes in the
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mitochondrial ATP production. We should indicate that sorbitol incubation is quite harsh,
which could impair the mitochondrial function by several pathways.

Regarding ERK, in response to increased oxidative stress, we noticed a decrease in
the cytosolic and nuclear locations after a transient increase. Nonetheless, the degree
of colocalization increased significantly, suggesting the close occurrence of p-ERK with
mitochondrial epitopes again. In contrast with p-TDP-43, the slopes relating to nuclear
and extranuclear p-ERK were inversely related to the oxidative stress intensity, suggesting
the nuclear retention of this factor or rapid cytosolic clearance of it. The same phenom-
ena (decreased both in the cytosol and in nuclei) was present after proteasome and ER
stress. This later cell stress also decreased the colocalization within the mitochondrial
epitopes. Interestingly, after the epoxomicin treatment, we observed an increase in the
degree of mitochondrial colocalization. The subcellular fractionation in the TDP-43 model
suggested that p-ERK could be significantly enriched with mitochondria, independently of
the TARDBP overexpression.

In the present work we show, concerning p-Jun, no clear accumulation in the extranu-
clear location was present after oxidative stress, though the mitochondrial colocalization
increased. After proteasome inhibition and ER stress, the extranuclear levels of this fac-
tor were decreased with concomitant retention in the nuclei (thought at later stages, the
ER stress decreased the levels of nuclear p-Jun slightly). In clear contrast with oxidative
stress, both ER stress and proteasome inhibition decreased the mitochondrial colocalization.
Indeed, the subcellular fractionation suggested that, while Jun accumulated with crude
mitochondria, this was not the case with p-Jun.

Regarding REST, its accumulation has been previously reported in a cytosolic location
in neurodegenerative processes. Our data regarding the response to cell stress showed
that its behavior was similar to p-Jun, showing an initial decrease in the cytosol followed
by a slight increase in both the nuclei and cytosol. Epoxomicin treatment decreased
the nuclear levels after the long exposure, while ER stress increased their values in the
cytosol and nuclei. Indeed, the degree of colocalization increased after oxidative stress.
Previous data also reported the relationship between changes in the REST expression
and protein aggregates [20]. Particularly, several genes under the control of this negative
regulator are upregulated, suggesting its impairment in human pathology [20]. Amongst
the controlled genes, the authors indicated increased ubiquitin carboxy-terminal hydrolase
L1, a component of the aggregates [20]. This protein is involved in the ubiquitin-proteasome
pathway of proteostasis, suggesting that REST could influence proteostasis. Our data
indicate that the reverse is also true, i.e., proteasome could control the REST protein levels
and their subcellular location.

Interestingly, the in vivo data showed that the overexpression of mutated TARDBP
increased the degree of REST enrichment in mitochondrial fractions. The interaction
between TDP-43 alterations and REST is new, and it is reinforced by the fact that several
REST-regulated genes appear affected under osmotic stress conditions, where TDP-43 is
mislocalized. These genes included SCN3B, encoding a voltage-gated sodium channel [21],
and two genes implicated in apoptosis (PUMA and FADD) [22], with downregulation in
both cases. Interestingly, in the human cells evaluated, sorbitol decreased the expression
of transcripts encoding antioxidant enzymes, such as SOD1 and catalase. Furthermore, in
these cells, an increased expression of the ATP2B2 mRNA was found, encoding a plasma
membrane Ca++ pump. Additionally, we noticed a decreased ARC mRNA expression in the
cells, implicating altered mRNA traffic (one of the functions of TDP-43). We also detected
an increased NRXN3 expression, encoding neurexin 3. This factor encodes a cell adhesion
component whose paralogs have been recently implicated in synaptic strength, in close
collaboration with the factors regulating RNA/aggregation toxicity [23]. We also detected
a tendency for decreased p35 mRNA after osmotic stress, not achieving a signification
threshold. Of note, P35 is a neuron-specific cyclin-dependent kinase 5 activator. When
p35 is cleaved by calpain into p25, the protein is relocalized from the cell periphery to
the nucleus and perinuclear region. Patients with AD accumulate the p25 form in their
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brain neurons [24]. This buildup is linked to an increase in CDK5 kinase activity, leading
to abnormally phosphorylated microtubule forms. CDK5 kinase overactivation is linked
to TDP-43 pathological effects in neuronal cells [25]. Noteworthy, we used proliferative
cell lines (HMEC human mammary epithelial cells, N2 mouse neuroblastoma cells, and
SHSY-5Y human neuroblastoma cells). It is known that these cellular types show a different
response against oxidative and osmotic stress, besides having proliferation, which is not
the case of neurons. Therefore, we need to show caution in the potential extrapolation of
these results.

We also detected a tendency for increased Foxo 1 mRNA. It is known that this key
metabolic transcription factor promotes neuron death [26]. Therefore, decreased values of
antiapoptotic factors (PUMA and FADD) may be responses to this increased expression.

Accounting for the fact that one of their primary functions is working as transcription
factors (in the case of ERK, Jun, and REST) or interacting with RNA (in the case of TDP-
43), their localization in the extranuclear placements (particularly in close relationships
with mitochondrial epitopes) suggests the existence of pathogenic mechanisms operating
in common. All these factors require nucleocytosolic transport; therefore, a loss in this
cellular property’s homeostasis may partially explain their presence in the cytosol. Indeed,
we have recently reported that the nuclear envelope (where the proteins responsible
for nucleocytoplasmic shuttling reside) showed altered properties in ALS patients and
models [14].

Several reports have described the occurrence of TDP-43 in mitochondrial fractions [27–29]
and other membranal fractions [18]. Regarding Jun, it is known that its N-terminal kinase
(JNK) is located in the mitochondria [30]. Other studies demonstrate that the cytosolic
location of c-Jun depends on its interaction with other transcription factors [31]. Of note,
the major location of p-Jun in brain lysates is the nuclei, but we detected a consistent
signal in the cytosol and in the crude mitochondrial fractions. Previous in vitro studies
showed that c-Jun interacts with phospholipids [32]. Interestingly, other in vivo reports
indicated that cytoplasmic c-Jun is associated with the mitochondria [33]. Indeed, it is
known that c-Jun may interact with mitochondrial DNA motifs, the mitochondrial location
validated by electron microscopy [34]. Despite some doubts for the mitochondrial location
of typically nuclear transcription factors, such as NF-kB [35], it may be adequate to validate
the reported findings further and establish the interaction of c-Jun with mitochondria.
Further c-Jun binding sites occur within mtDNA genes and are negatively selected [34]. It
has been suggested that oxidative phosphorylation, mitochondrial translation, and mtDNA
repair processes.

Regarding p-ERK, it is known that there are mitochondrial substrates for its kinase
activity [36]. Recent data underlines that ERK signaling specificity requires the spatial
compartmentalization of ERK activity for signals like EGF to govern diverse functional
responses via compartmentalized ERK activity [37]. Previous data showed that p-ERK mi-
tochondrial location could be a consequence of tumoral transformation [38], demonstrating
that a fraction of active ERK1/2 associates with succinate dehydrogenase and some mito-
chondrial chaperones, such as TRAP1 [39]. We have previously shown that motor neurons
in the spinal cord from ALS patients exhibit p-ERK aggregates in extranuclear locations [7].
These aggregates may be related potentially to mitochondrial interactions. In this regard,
we show that there are no interactions between p-ERK and TDP-43 overexpression in the
evaluated murine model.

To the best of our knowledge, we have not found previous evidence of REST in the
mitochondria. Previous evidence in human substantia nigra [10] showed a cytoplasmic
staining profile in neurons. Nonetheless, in this publication, REST was found as aggregates
closely related to autophagy impairment [40]. Thus, defects in the protein quality control
system induce REST mRNA expression; its gene product mainly appears in aggregates.
In brain subcellular fractionation experiments, we did not evidence changes in the total
levels of REST. Nonetheless, we show that all stress evaluated, including ER, proteasomal,
and oxidative stress, changes its cellular distribution, increasing the colocalization with
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mitochondrial epitopes. Indeed, recent data showed that CRISPR-mediated REST KO
induced mitochondrial dysfunction and impaired mitophagy in vitro. Furthermore, REST
overexpression impedes mitochondrial toxicity and mitochondrial morphology disruption
through the transcription factor PGC-1α [41].

As for the limitations of our work, we must remark that this evidence was present in
an endothelial-like cell phenotype. Therefore, neuronal or glial cells could exhibit different
dynamics. Nonetheless, some of the findings in the endothelial cell culture were replicated
independently in lysates of the brain cortex of a murine model, and in N2A and SHSY-
5Y cells, human neuronal lines further validated the potential findings. We shall also
indicate that the subcellular fractionation was more enriching than a strict purification
of the indicated compartment. However, we can exclude nuclear contamination of the
mitochondrial fraction (based on purity markers).

4. Conclusions

Cell stress related with ALS enhances the non-nuclear localization of transcription
factors. These changes could be modeled in vitro with several cell types and may be
related to impairments in nucleocytosolic traffic. These transcription factors, under cell
stress, increase their interactions with the mitochondria and potentially influence their
physiology (as shown for the TDP-43-REST interaction). In particular, TDP-43 aggregation
was associated with alterations in the mRNA levels of the REST target genes involved in
calcium homeostasis, apoptosis, and metabolism.

5. Materials and Methods
5.1. Animals

According to local laws and the Directive 2010/63/EU of the European Parliament,
all experimental procedures were approved by the Institutional Animal Care Committee of
the University of Lleida. The minimal number of animals was calculated according to the
deviation of western-blot profiles in previous experiments [18]. Both non-transgenic and
transgenic mice were obtained from JAX (The Jackson Laboratory, Bar Harbor, ME, USA).
Transgenic mice were from the line B6.Cg-Tg (Prnp-TARDBP*Q331K)103Dwc/J (Stock
number #017933). These mice express, employing the murine prion-promoter previously
reported to drive transgene expression most abundantly in the central nervous system,
both in neurons and astrocytes, ALS-linked mutant TDP-43 broadly throughout the central
nervous system [42]. Under the control of the murine prion promoter, transgenic mice
expressed the ALS-linked mutant of TDP-43 [43] (Q331K (glutamine to lysine substitution
at amino acid position 331) fused to an N-terminal myc-tag. Animals employed here were
from both sexes (at least n = 5 different mice from each sex) and from 90 days old, an age
where the motor phenotype is not present. Housing and obtention of animals were as
described [42,44]. For animal sacrifice, mice were anesthetized with 2.5% isoflurane. Brains
were rapidly excised and maintained at 4 ◦C in isolation buffer for a maximum time of
15 min, being submitted to subcellular fractionation.

5.2. Subcellular Fractionation

Purification of nuclear, mitochondria and cytosol enriched fractions performed as de-
scribed [45]. Briefly, brain samples were homogenized gently in isolation buffer (225-mmol/L
mannitol, 25-mmol/L HEPES-KOH, and 1-mmol/L EGTA, pH 7.4 containing protease
inhibitors (Cat #78429, Thermo Fisher Scientific, Waltham, MA USA) and Sodium Fluoride
and Sodium Orthovanadate as phosphatase inhibitors) with 10–12 strokes in a glass tissue
grinder. The homogenate was centrifuged for 10 min at 1500× g to obtain a nuclei-enriched
fraction. The supernatant was washed twice by centrifuging for 10 min at 1500× g to
eliminate any residual whole cells and cell debris. Supernatant obtained was centrifuged
for 15 min at 10,000× g; the supernatant contained the ER/cytosol fraction, and the pellet
contained the crude mitochondrial fraction. The ER/cytosol fraction was centrifuged for
1 h at 100,000× g in an ultracentrifuge and the supernatant was considered cytosol.
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5.3. Cell Culture

Human mammary epithelial cells (HMEC) cell line (ATCC# PCS-600-010™, ATCC
Manassas, VA, USA) was grown in DMEM medium (Invitrogen, Waltham, MA, USA,) sup-
plemented with 10% fetal bovine serum heat inactivated (Invitrogen), 2-mM L-Glutamine
(Invitrogen) and 20-U/mL penicillin and 20-µg/mL streptomycin (Invitrogen) as antibiotics.
The cells were kept at 37 ◦C in humidify atmosphere with 5% of CO2.

N2A and SHSY-5Y (ATCC) cell lines were grown in Advanced MEM medium (Invit-
rogen) supplemented with 10% fetal bovine serum heat inactivated (Invitrogen), 2-mM
L-Glutamine (Invitrogen) and 20-U/mL penicillin and 20-µg/mL streptomycin (Invitrogen)
as antibiotics. The cells were kept at 37 ◦C in humidify atmosphere with 5% of CO2.

To study the effects of oxidative stress, alteration of endoplasmic reticulum, inhibition
of proteasome activity and osmotic stress, cells were treated with 10-µM H2O2 (Millipore-
Sigma, Burlington, MA, USA), 5-µM thapsigargin (Thp) (Millipore-Sigma), and 2.5-µM
epoxomicin (Epox) (Millipore-Sigma), respectively, for 2 or 4 h or sorbitol (Millipore-Sigma)
0.4 M for 3 h. To avoid the influence of growth factors present in the fetal bovine serum
on the results, the normal culture medium was replaced by Opti-MemTM (#31985062
Invitrogen) before 12 h before all assays, as described [7]. Cell viability was evaluated by
employing the Prestoblue Cell Viability HS reagent (Thermo #P50200).

5.4. Indirect Immunofluorescence Analysis

Cells, seeded out on coverslips and incubated in serum and phenol red free medium
(Opti-MemTM, Invitrogen, Waltham, MA, USA) for 12 h were treated as indicated above.
After incubation, cells were washed with PBS and then fixed with 3.7% paraformalde-
hyde for 10 min at room temperature. Cells were rinsed with PBS, permeabilized with
0.1% Triton X-100 in PBS for 30 min and subsequently blocked with 5% normal goat serum
at room temperature for 1 h. Cells were incubated with (1) the mouse anti-p-TDP-43
(pS409/410) monoclonal antibody (TIP-PTD-M01) (diluted 1:200, Cosmo Bio Co., Tokyo,
Japan); (3) the rabbit anti-p-ERK 1/2 polyclonal antibody (4370) (diluted 1:100, Cell Sig-
naling, Beverly, MA, USA); the rabbit anti-REST polyclonal antibody (ab21635) (diluted
1:100, Abcam, Cambridge, UK); (4) the rabbit anti p-Jun polyclonal antibody (diluted 1:100,
Cell Signaling, Beverly, MA, USA); and (5) the anti-ATP5A mouse monoclonal antibody
(ab14748) (diluted 1:100, Abcam, Cambridge, UK) at 4 ◦C overnight. After 3 washes
with 0.1% Triton X-100-PBS at RT for 10 min, cells were incubated with Alexa Fluor-488
goat anti-rabbit IgG or Alexa-Fluor-594 goat anti-mouse IgG (1:800, Molecular Probes,
Eugene, OR, USA)-conjugated secondary antibody. Nuclei were stained with 4′,6′-diamino-
2-phenylindole (DAPI) (1 mg/mL, Sigma, St. Louis, MO, USA). The coverslips were
mounted in Fluoromount-G (Southern Biotech) and images were taken with an Olympus
FV10i laser scanning confocal microscope and an Olympus FV1000 confocal microscopy,
60× magnification. For the evaluation of nuclear and cytosolic protein intensity, we used a
dedicated pipeline created on the open source CellProfiler software [46]. Another CellPro-
filer pipeline was built to evaluate colocalization with the mitochondrial marker ATP5A.
In both cases, 10 fields per condition were analyzed. CellProfiler pipelines employed
are available in Supplemental Data. Mitochondrial network analyses were performed by
employing the MINE software [47].

5.5. Western-Blot

Protein homogenates were prepared in the presence of inhibitors of phosphatases
(Sigma-Aldrich) and proteases (Roche Applied Science, Penzberg, Germany). Protein
concentration of the samples was measured using the Quick Start™ Bradford 1× Dye
Reagent (Bio-Rad #5000205). Proteins were detected by immunoblotting using horseradish
peroxidase-conjugated secondary antibodies and chemiluminescence (Santa Cruz Biotech-
nology). Protein samples were run on SurePAGETM Precast gels (4–20%, 15 wells GenScript,
Piscataway, NJ, USA). Gels were blotted onto PVDF membranes by transfer at a constant
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100 volts, 1 h at RT. The membranes were then blocked by nonfat dry milk solution (5%) in
1 × TBS (Tris Buffered Saline) and incubated in the desired primary antibody overnight.

Membranes were then washed in 1 × TBST with Tween 20 (0.05%) three times, 5 min
each before incubating with the secondary antibody for 1 h at room temperature. Following
the secondary antibody incubation, membranes were washed in 1 × TBST with Tween
20 (0.05%) three times, 5 min each and one time, 5 min, with TBS 1 ×. Blots were imaged
in the Chemidoc MP Imaging System following incubation in the Immobilon ECL Ultra
Western HRP Substrate (Merck Millipore, Burlington, NJ, USA).

For Jun/ p-c-Jun Westerns, protein samples were run on SurePAGETM Precast gels
(4–20%, 15 wells GenScript, Piscataway, NJ, USA). Cruz Marker™ molecular weight stan-
dards (sc-2035, Santa Cruz Biotechnologies, Dallas, TX, USA) were loaded in the gels. Gels
were blotted onto low fluorescence PVDF membranes (Immobilon®-FL PVDF: sc-516541).
Nonspecific binding was blocked in incubating membranes with UltraCruz® Blocking
Reagent (sc-516214) for 1 h at room temperature, with shaking.

The blocked membranes were incubated with the appropriates Alexa Fluor® conjugated
primary antibodies (Anti-p-c-Jun Antibody (KM-1) Alexa Fluor® 790 and Anti c-Jun Antibody
(G-4) Alexa Fluor® 680, from Santa Cruz) diluted 1:1000 in UltraCruz® Blocking Reagent.
Cruz Marker™ MW Tag-Alexa Fluor® 680 (sc-516730) and Cruz Marker™ MW Tag-Alexa
Fluor® 790 (sc-516731) at 1:1000 were added to obtain molecular weight distribution.

Membranes were incubated in this mixture for 2 h at room temperature, in the dark,
with shaking. Membranes were then washed three times for 5 min each with TBST and
once for 5 min with TBS. Blots when then placed on the top of blotter paper and dried for
5–10 min. The western blot was imaged using the infrared (IR) laser-based instrumentation
LI-COR Odyssey (Lincoln, NE, USA).

5.6. RT-QPCR

RNA was extracted from cells and brain lysates using TRI Reagent (Thermo Fisher
Scientific, Waltham, MA, USA, AM9738) following the manufacturer’s instructions. RNA
concentrations were measured using a NanoDrop ND-1000 (Thermo Fisher Scientific). One
microgram of RNA was used for retrotranscription to cDNA employing TaqMan Reverse
Transcription Reagent and random hexamers (Thermo Fisher Scientific, N8080234).

RT-qPCR experiments were performed using a CFX96 instrument (Bio-Rad, Hercules,
CA, USA) with SYBR Select Master mix for CFX (Thermo Fisher Scientific, #4472937). Each
20 µL reaction mix contained 4-µL cDNA, 10-µL SYBR Select Master Mix, 0.2 nM of forward
primer and 0.2 nM of reverse primer solutions and 4-µL PCR grade water. RT-qPCR run
protocol was as follows: 50 ◦C for 2 min and 95 ◦C for 2 min, with the 95 ◦C for 15 s and
60 ◦C for 1 min steps repeated for 40 cycles, and a melting curve test from 65◦C to 95 ◦C at
a 0.1 ◦C/s measuring rate. Primers employed in these experiments, previously described
in reference [9] are listed in Supplemental Table S5.

5.7. Mitochondrial Function Analyses

Mitochondrial function was estimated employing the Seahorse XF HS Mini Analyzer
(Agilent technologies). Briefly, to obtain an effect of the aggregation-prone conditions in
the mitochondrial function we employed the Seahorse XFp Real-Time ATP Rate assay kit
(Agilent#103591-100), according to the manufacturer’s instructions. 20,000 SHSY-5Y cells
were plated in the microplates of the kit and incubated with sorbitol (3 h, 0.4 M). After this
incubation, oxygen consumption and extracellular acidification, were recorded, in basal
conditions, and after oligomycin and rotenone/antimycin addition.

5.8. Statistical Analysis

All statistics were performed using the GraphPad Prism version9.1.2 for Windows
software (GraphPad Software, San Diego, CA, USA). Differences between groups were
analyzed by the Student’s t-tests, One-way, Two-way, and Three-way ANOVA analyses,
with adequate post-hoc analyses, once normality of variables was tested by Kolmogorov–
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Smirnov test. The 0.05 level was selected as the point of minimal statistical significance in
every comparison.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22168853/s1. Supplemental Figure S1. Higher magnification images of confocal mi-
croscopy present in Figure 1. Scale bars shown are 20 micrometer long. Supplemental Figure S2.
Oxidative stress induces changes in cell viability at highest concentrations employed. Data shown
is for independent cell plates. **** indicates p < 0.0001 by Uncorrected Fisher’s LSD post-hoc test
after one-way ANOVA. Supplemental Figure S3. Oxidative stress induces changes in mitochon-
drial number and networks. Data shown is for 9 independent cell plates. **** indicates p < 0.0001
and *** p < 0.001 by Uncorrected Fisher’s LSD post-hoc test after one-way ANOVA. Supplemental
Figure S4. Oxidative stress induces changes between the nucleocytosolic relationships of proteins
implicated in neurodegeneration. In all cases, total immunoreactivities found in nuclear and cytosolic
compartments are related linearly significantly (in all cases p < 0.001), though the slope is signifi-
cantly affected by oxidative stress (shown p values for comparison of slopes). Shown are the linear
relationships between nuclear and cytosolic content, with 95% confidence intervals indicated with
discontinous lines (n = 200 to 296 cells for p-TDP-43; n = 191–255 for p-ERK; n = 234–326 for p-Jun
and n = 217–415 for REST, obtained in at least 4 independent replicates). Inset of graphs show the
equations of the linear relationships, separated by colors. Supplemental Figure S5. Enrichment of
protein markers in subcellullar fractionation. As shown by western-blot analyses of brain lysates
after subcellular fractionation, in addition to nuclear enriched (Ne) and cytosolic enriched (Ce) com-
partments, crude mitochondrial fractions (CrMitoch) both non transgenic and transgenic hTDP-43
mice show the relative enrichment of Mitofusin-2 and porin in crude mitocondria, with almost the
absence of histone H3 in non-nuclear fractions, and the high abundance of GAPDH in cytosolic
extracts. Actin was distributed equally among the three fractions. Supplemental Figure S6. Cellular
subfractionation evidence for in vivo colocalization of proteins implicated in neurodegeneration with
mitochondrial components. As shown by western-blot analyses of brain lysates after subcellular
fractionation, in addition to nuclear enriched (Ne) and cytosolic enriched (Ce) compartments, crude
mitochondrial fractions (CrMitoch) both non transgenic and transgenic hTDP-43 mice show the
presence of p-TDP-43, p-ERK and Jun. Levels were quantified by densitometry in brains from 90 day
old mice. Western-blot shown are for male specimens. Supplemental Figure S7. TDP-43 aggregation
is linked to mitochondrial dysfunction. Sorbitol incubation in SHSY-5Y stress induces changes in
oxygen consumption and extracellular acidification rates, measured by using Seahorse respirometry.
Data shown is for 6 independent cell plates for each condition. *** indicates p < 0.001, ** p < 0.01 and
* p < 0.05 by Uncorrected Fisher’s LSD post-hoc test after one-way ANOVA. Supplemental Figure S8.
Higher magnification images of confocal microscopy present in Figures 5 and 6. Scale bars shown are
20 micrometer long. Supplemental Table S1. Effect of mutated TARDBP overexpression in subcellular
distribution of transcription factors. Supplemental Table S2. Effect of H2O2 treatment in protein
subcellular distribution by confocal microscopy. Supplemental Table S3. Effect of Epoxomycin
treatment in protein subcellular distribution by confocal microscopy. Supplemental Table S4. Effect
of thapsigargin treatment in protein subcellular distribution by confocal microscopy. Supplemental
Table S5. Primers employed for quantitation of REST transcriptional regulation.
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