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Abstract: Background: Myocarditis is an inflammatory heart disease caused by viral infections that
can lead to heart failure, and occurs more often in men than women. Since animal studies have
shown that myocarditis is influenced by sex hormones, we hypothesized that endocrine disruptors,
which interfere with natural hormones, may play a role in the progression of the disease. The
human population is exposed to the endocrine disruptor bisphenol A (BPA) from plastics, such
as water bottles and plastic food containers. Methods: Male and female adult BALB/c mice were
housed in plastic versus glass caging, or exposed to BPA in drinking water versus control water.
Myocarditis was induced with coxsackievirus B3 on day 0, and the endpoints were assessed on day
10 post infection. Results: We found that male BALB/c mice that were exposed to plastic caging
had increased myocarditis due to complement activation and elevated numbers of macrophages
and neutrophils, whereas females had elevated mast cell activation and fibrosis. Conclusions: These
findings show that housing mice in traditional plastic caging increases viral myocarditis in males
and females, but using sex-specific immune mechanisms.

Keywords: bisphenol A; myocarditis; sex differences; endocrine disruptors; coxsackievirus B3

1. Introduction

Myocarditis is an inflammatory heart disease that is caused by viral infections in-
cluding coxsackieviruses (CVB) and SARS-CoV-2, which can lead to acute heart failure,
or progress to dilated cardiomyopathy (DCM) and chronic heart failure [1–8]. Of the total
reported cases for DCM, up to one-third are induced by myocarditis [9,10]. More men
than women develop myocarditis and DCM [11,12]. Additionally, men with myocarditis
are more likely to develop cardiac fibrosis than women, and progress to DCM and heart
failure [13,14]. Inflammation and fibrosis play significant roles in the cardiac remodelling
process. Evidence supports the idea that there is a link between cardiac inflammation and
the development of cardiac fibrosis within the perivascular and interstitial spaces of the
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heart [15,16]. T helper (Th)2 cells, which are associated with the activation and mediation
of allergic inflammatory responses, often involving mast cells, were found to present with
profibrotic characteristics. The development of fibrosis has been associated with the release
of Th2 cytokines that include interleukin (IL)-4, IL-5, and IL-13 [17]. Other proinflammatory
cells, such as Th17 cells, have been demonstrated to link inflammation and fibrosis, through
the secretion of IL-17A, which was observed to promote hypertension-induced fibrosis,
and to promote remodeling and fibrosis that lead to DCM in animal models and patients
with myocarditis [18–20]. Monocytes also play a large role in the connection between
inflammation and fibrosis. Similar to the actions of Th2 and Th17A cells, cytokines that
are associated with inflammation and produced by monocytes (TNF-α, IL-6, and IL-1β),
have also been observed to be profibrotic [17]. Certain types of cells, such as mast cells and
eosinophils that are associated with Th2-type immune responses, are known to promote
the development of fibrosis following tissue injury or damage [21]. Previously, we showed
that α1-antichymotrypsin, which is released exclusively from mast cells, was upregulated
during CVB3 myocarditis and promotes cardiac remodeling and fibrosis [22]. We recently
reported a sex ratio of 3.5:1 male-to-female for patients with myocarditis [23]. Additionally,
testosterone has been found to increase viral myocarditis in male mice, while 17β-estradiol
decreases disease in females [24]. We previously reported that male mice with myocarditis
have elevated levels of CD11b, also known as complement receptor (CR)3 that is increased
on macrophages, neutrophils, and mast cells, and elevated by testosterone [25,26]. Ad-
ditionally, we showed that Toll-like receptor (TLR)-4 expression is increased on splenic
and heart infiltrating CD11b+ immune cells, including mast cells, during the innate and
adaptive immune response during myocarditis [22,25,27]. CR1, which binds complement
C3, inhibits its binding to CR3, thereby reducing viral myocarditis, remodeling, fibrosis,
and DCM [28]. Mast cells are key cells that are activated by complement and play a
critical role in promoting myocarditis, remodeling, and fibrosis during myocarditis, by
releasing enzymes such as α1-antichymotrypsin (serpin A3n) that activate cytokines such
as IL-1β and matrix metalloproteinases (MMPs), which drive the remodeling that leads
to fibrosis and DCM [22]. IL-1β, IL-6, and IL-17A responses are elevated in men with
myocarditis/cardiomyopathy, and associated with poor recovery from heart failure [19].

Bisphenol A (BPA) is an endocrine-disrupting chemical that is used in the production
of polycarbonate plastics and epoxy resins, and is found in items such as plastic water
bottles, plastic food containers, the lining of cans, on thermal receipts, and photocopy
paper [29–32]. Studies have found that people of all ages have detectable levels of BPA,
or its metabolized products, in their body fluids [33,34]. BPA has been detected in nearly
all patients when assessed in the urine or blood [34–38]. Epidemiological and animal
data indicate that increased exposure to BPA worsens cardiovascular diseases, including
hypertension [39–41], atherosclerosis [42–44], myocardial infarct [45], arrhythmias [46,47],
and DCM [48], as well as autoimmune and inflammatory diseases [40,41,44,49–56]. A
positive correlation has also been made between BPA exposure and the subsequent rise in
cardiovascular diseases, such as cardiomyopathy, myocardial infarcts, and congestive heart
failure in the US population [48,57,58]. Myocarditis leads to 1/3 of all DCM cases and,
therefore, BPA could increase myocarditis which then progresses to DCM. Importantly,
an endocrine disruptor, such as BPA, could alter the effect of sex hormones on cardiac
inflammation following viral infection in a sex-specific manner. We previously showed
that a human-relevant exposure of BPA, administered in drinking water to female mice,
increased viral myocarditis to levels similar to males [59]. Few studies have examined the
effect of BPA exposure on males [50,60,61]. To our knowledge, no one has examined the
effect of BPA on myocarditis in males.

Because viral myocarditis is influenced by sex hormones, we hypothesized that the
endocrine disruptor BPA, which we found altered the immune response to myocarditis in
females, may play a role in the progression of disease in males. In studies that assessed
the pharmacokinetics of BPA, its effect was primarily mediated through the estrogen
receptor (ER), but was also found to bind the androgen receptor (AR) as an agonist at a
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low level (at about 20% of the binding efficiency of testosterone) [62]. BPA has also been
found to decrease ERα expression in the spleen of male rats [63]. Similarly, BPA treatment
of male human T-cell lymphoblast lines in culture was found to increase ERβ expression
using qRT-PCR [64]. In this study, we examined whether BPA exposure from plastic caging
could alter CVB3 myocarditis in adult male and female BALB/c mice. We compared the
effect of this environmental exposure on viral myocarditis in mice that were given the EPA
reference dose of BPA as a positive control.

2. Results
2.1. Plastic Caging Increases Myocarditis in Male BALB/c Mice during Viral Myocarditis

In order to assess the effect of plastic caging on myocarditis, in this study we examined
the effect of exposure to plastics from traditional plastic cages and plastic water bottles
(plastic caging), and control glass cages and glass water bottles (glass caging), in 6–8-week-
old male and female BALB/c mice with CVB3 myocarditis, using control water (containing
no added BPA). The mice received soy-free food and bedding for all the experiments.
As a positive control, the male and female BALB/c mice were given 250 µg BPA/L in
their drinking water, which is equivalent to an estimated intake of 50 µg BPA/kg body
weight (BW), which is equivalent to the EPA reference dose or the maximum daily oral
exposure dose that is likely to occur over a lifetime without deleterious effects [65]. The
mice who received BPA in their drinking water were housed in glass caging with soy-free
food and bedding.

We found that exposure to plastic caging in BALB/c female mice (with no BPA added
to the drinking water) did not significantly alter myocardial inflammation histologically, at
day 10 post infection (pi), during peak myocarditis (p = 0.34) (Figure 1a). However, a BPA
exposure of 250 µg BPA/L in the drinking water, which is equivalent to an estimated intake
of 50 µg BPA/kg BW [65], significantly increased myocarditis histologically in female
mice (p = 0.02) (Figure 1a). One-way ANOVA in female mice was significantly different
between the groups (p = 0.002) (Figure 1a). In contrast, plastic caging significantly increased
myocarditis in males compared to glass caging that was assessed histologically (p = 0.02),
similarly to high-dose BPA (p = 0.02) (Figure 1b). The one-way ANOVA in male mice was
significantly different between the groups (p = 0.02) (Figure 1b). Representative images of
the H&E stains of the hearts from the glass, plastic, and 50 BPA (Figure 1c) groups show
increased myocarditis (% inflammation) in the plastic and 50 BPA groups compared to the
glass group in male mice.

2.2. Plastic Caging and BPA Exposure Has No Significant Affect on VP1 Viral Gene Expression in
Males or Females during Myocarditis

We found that the early viral gene VP1 of CVB3, indicating viral replication [66],
was not upregulated in the heart of female (Figure 2a) or male mice (Figure 2b) during
myocarditis at day 10 pi, due to plastic caging or BPA exposure. These data suggest that the
increase in myocarditis that was found in male BALB/c mice who were exposed to plastic
caging and BPA in their drinking water (Figure 1) was not due to increased virus levels
in the heart. The one-way ANOVA was not significantly different between the groups in
females (p = 0.29) (Figure 2a) or males (p = 0.57) (Figure 2b).
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exposure, mice received an intraperitoneal (i.p.) injection with 103 plaque-forming units (PFU) of CVB3 on day 0 and 

harvested at day 10 post infection (pi). Myocarditis was assessed as % inflammation compared to the total size of the heart 

section with H&E using a microscope grid. Data shown as scatter plot and mean +/−SEM using one-way ANOVA with 

Holm–Šídák’s multiple comparisons test with 9–10 mice/group (* p < 0.05). (c) Representative H&E images of cardiac 

inflammation in plastic caging (plastic), glass caging (glass) or with 50 BPA in drinking water (50 BPA) (magnification 

200×, scale bar 100 μm). 
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Figure 1. Plastic caging increases myocardial inflammation during acute myocarditis in male BALB/c mice. (a) Female
(pink) and (b) male (blue) BALB/c mice were given normal drinking water (drinking water that did not contain BPA)
for 2 weeks and housed either in glass cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free
food and bedding, or BALB/c mice housed in glass cages/water bottles with soy-free food and bedding were either given
normal drinking water (drinking water that did not contain BPA) (glass) or 250 µg BPA/L water (50 BPA) for 2 weeks. After
BPA exposure, mice received an intraperitoneal (i.p.) injection with 103 plaque-forming units (PFU) of CVB3 on day 0 and
harvested at day 10 post infection (pi). Myocarditis was assessed as % inflammation compared to the total size of the heart
section with H&E using a microscope grid. Data shown as scatter plot and mean +/−SEM using one-way ANOVA with
Holm–Šídák’s multiple comparisons test with 9–10 mice/group (* p < 0.05). (c) Representative H&E images of cardiac
inflammation in plastic caging (plastic), glass caging (glass) or with 50 BPA in drinking water (50 BPA) (magnification 200×,
scale bar 100 µm).
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Figure 2. Plastic caging or BPA did not increase cardiac VP1 viral gene expression during acute
myocarditis. (a) Female (pink) and (b) male (blue) adult BALB/c mice were given normal drinking
water (drinking water that did not contain BPA) for 2 weeks and housed in glass cages/water bottles
(glass) or plastic cages/water bottles (plastic) caging with soy-free food and bedding. BALB/c mice
housed in glass cages/water bottles with soy-free food and bedding received either normal drinking
water (drinking water that did not contain BPA) (glass) or 250 µg BPA/L water (50 BPA) for 2 weeks.
Mice were injected i.p. with 103 PFU of CVB3 on day 0 and harvested at day 10 pi. Relative gene
expression (RGE) of CVB3 VP1 levels in the heart were determined using qRT-PCR compared to
the housekeeping gene hypoxanthine phosphoribosyltransferase (Hprt). Data shown as scatter plot
and mean +/−SEM using one-way ANOVA with Holm–Šídák’s multiple comparisons test with
7–10 mice/group.
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2.3. Plastic Caging Increases Macrophage and Neutrophil Markers in Males during Myocarditis
by qRT-PCR

Exposure to plastic caging in BALB/c females did not significantly increase myocardi-
tis histologically (Figure 1a), or the gene expression of major immune cell markers (CD45,
CD11b, F4/80, GR1, CD14, CD3, CD4, and CD8), compared to glass caging, as previously
reported in [59]. The only marker that was increased in the females was cKit, which is a
marker of mast cells (p = 0.04). In contrast, males that had been exposed to plastic caging
had significantly increased gene expression of CD11b (p = 0.001), GR1 (p = 0.005), and CD14
(p = 0.006) in the heart during myocarditis using qRT-PCR (Figure 3b,d,e). Plastic caging
did not significantly alter CD45 (p = 0.49) or F4/80 (p = 0.17) gene expression in the heart
of the males with myocarditis compared to glass caging (Figure 3a,c). However, all the
inflammatory cell markers, except GR1, that were analyzed were significantly increased
by exposure to 250 µg BPA/L in the drinking water including CD45 (p = 0.009), CD11b
(p = 0.02), F4/80 (p = 0.001), and CD14 (p = 0.02) (Figure 3a–c,e). The one-way ANOVA was
significantly different between the groups for CD45 (p = 0.01) (Figure 3a), CD11b (p = 0.002)
(Figure 3b), F4/80 (p = 0.002) (Figure 3c), GR1 (p = 0.008) (Figure 3d), and CD14 (p = 0.008)
(Figure 3e). Thus, plastic caging increases viral myocarditis in male and female mice, by
activating different immune cell populations according to sex.
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Figure 3. Plastic caging increases macrophage and neutrophil markers during acute myocarditis in BALB/c males. Male
BALB/c mice were given normal drinking water (drinking water that did not contain BPA) for 2 weeks and housed either
in glass cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free food and bedding. BALB/c mice
were housed in glass cages/water bottles with soy-free food and bedding and administered either normal drinking water
(drinking water that did not contain BPA) (glass) or 250 µg BPA/L water (50 BPA) for 2 weeks. Mice were injected i.p.
with 103 PFU of CVB3 on day 0 and harvested at day 10 pi. Relative gene expression (RGE) of whole hearts by qRT-PCR
was used to assess (a) CD45 (total lymphocytes), (b) CD11b+ cells (i.e., macrophages, neutrophils, mast cells), (c) F4/80+
macrophages, (d) GR1 (neutrophils), (e) CD14 (part of the TLR4 signaling complex), compared to the housekeeping gene
Hprt. Data shown as scatter plot and mean +/−SEM using one-way ANOVA with Holm–Šídák’s multiple comparisons test
with 9–10 mice/group (* p < 0.05), (** p < 0.01).

2.4. Plastic Caging Has No Significant Effect on T-Cell Markers in Males and Females
during Myocarditis

Exposure to plastic caging in BALB/c mice did not significantly alter the gene expres-
sion of markers that were associated with T cells including CD3, CD4, or CD8, compared
to glass caging in males (Figure 4) or as previously reported for females in [59]. However,
exposure for 2 weeks to 250 µg BPA/L (50 BPA) in drinking water significantly increased
the expression of CD3 (p = 0.007) and CD4 (p = 0.02) in the heart compared to the 0 BPA
control water (glass) during CVB3 myocarditis in the males (Figure 4a,b). The one-way
ANOVA was significantly different between the groups for CD3 (p = 0.01) (Figure 4a) and
CD4 (p = 0.01) (Figure 4b), but not for CD8 (p = 0.28) (Figure 4c).
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Figure 4. Plastic caging has no effect on expression of T-cell markers during acute myocarditis in BALB/c males. Male
BALB/c mice were given normal drinking water (drinking water that did not contain BPA) for 2 weeks and housed either
in glass cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free food and bedding. BALB/c mice
housed in glass cages/water bottles with soy-free food and bedding were given either normal drinking water (drinking
water that did not contain BPA) (glass) or 250 µg BPA/L (50 BPA) in drinking water for 2 weeks. Mice were injected i.p.
with 103 PFU of CVB3 on day 0 and harvested at day 10 pi. Relative gene expression (RGE) was used in whole hearts
by qRT-PCR to assess (a) CD3+ T cells, (b) CD4+ T cells and (c) CD8+ T cells compared to the housekeeping gene Hprt.
Data shown as scatter plot and mean +/−SEM using one-way ANOVA with Holm–Šídák’s multiple comparisons test with
10 mice/group (* p < 0.05), (** p < 0.01).

2.5. Plastic Caging Increases Macrophages and Neutrophils in Males during Myocarditis by IHC

Plastic caging had significantly increased the gene expression of CD11b and GR1
in the heart during myocarditis using qRT-PCR (Figure 3b,d). The exposure to 250 µg
BPA/L in the drinking water increased the gene expression of CD45, CD11b, F4/80, and
CD3 compared to 0 BPA/glass (Figures 3a–c and 4a). To confirm the findings from the
RT-PCR gene expression data, immunohistochemistry (IHC) was performed for CD45,
CD11b, F4/80, GR1, and CD3. The males that had been exposed to plastic caging had
significantly increased positively stained cells for CD11b (p = 0.008) and GR1 (p = 0.01) in
the heart, during myocarditis, using IHC (Figure 5b,d). The exposure to 250 µg BPA/L in
the drinking water also increased the positive-stained cells for CD45 (p = 0.005), CD11b
(p = 0.04), F4/80 (p = 0.007), GR1 (p = 0.001), and CD3 (p < 0.0001) compared to 0 BPA/glass
(Figure 5a–e). The one-way ANOVA was significantly different between the groups for
CD45 (p = 0.009) (Figure 5a), CD11b (p = 0.01) (Figure 5b), F4/80 (p = 0.01) (Figure 5c), GR1
(p = 0.01) (Figure 5d), and CD3 (p < 0.0001) (Figure 5e). Thus, plastic caging increases viral
myocarditis in male BALB/c mice by increasing myocardial macrophages and neutrophils.

2.6. Plastic Caging Increases the Mast Cell Marker cKit in the Heart of Females with Myocarditis,
but Decreases it in Males

We found that the only immune cell marker in the heart that was significantly in-
creased during myocarditis at day 10 pi by qRT-PCR after exposure to plastic caging in
female BALB/c mice was the mast cell marker cKit (p = 0.02) (Figure 6a). However, we
did not see an increase in cKit expression in the heart after exposure to 250 µg BPA/L
(50 BPA) in the drinking water in females compared to 0 BPA/glass (Figure 6a). In contrast,
housing male BALB/c mice in plastic caging significantly decreased the expression of cKit
(p < 0.0001) (Figure 6b), similarly to exposure to 250 µg BPA/L (50 BPA) in the drinking
water (p = 0.04) (Figure 6b). The one-way ANOVA was significantly different between the
groups in females for cKit (p = 0.005) (Figure 6a), and for males (p < 0.0001) (Figure 6b).
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Figure 5. Plastic caging increases macrophages and neutrophils during acute myocarditis in BALB/c
males. Male BALB/c mice were given normal drinking water (drinking water that did not contain
BPA) for 2 weeks and housed either in glass cages/water bottles (glass) or plastic cages/water bottles
(plastic) with soy-free food and bedding. BALB/c mice were housed in glass cages/water bottles
with soy-free food and bedding and administered either normal drinking water (drinking water that
did not contain BPA) (glass) or 250 µg BPA/L water (50 BPA) for 2 weeks. Mice were injected i.p.
with 103 PFU of CVB3 on day 0 and harvested at day 10 pi. Five micron sections were stained with
antibodies against (a) CD45 (total lymphocytes), (b) CD11b+ cells (i.e., macrophages, neutrophils,
mast cells), (c) F4/80+ macrophages, (d) GR1 (neutrophils), (e) CD3+ T cells, and positive pixels
were compared to total positive and negative pixels to determine % positive. Data shown as scatter
plot and mean +/−SEM using one-way ANOVA with Holm–Šídák’s multiple comparisons test for
17–19 mice/group (* p < 0.05), (** p < 0.01), (**** p < 0.0001). Representative images of positive-stained
cells (brown) in plastic caging (plastic), glass caging (glass) and 50 BPA in drinking water (50 BPA) in
glass cages shown for (a) CD45, (b) CD11b, (c) F4/80, (d) GR1, and (e) CD3. Red arrow points to
brown GR1-positive cells (magnification 200×, scale bar 200 µm).
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Figure 6. Plastic caging increases the mast cell marker cKit during acute myocarditis in BALB/c
females, but decreases its expression in males. (a) Female (pink) and (b) male (blue) BALB/c mice
were given normal drinking water (drinking water that did not contain BPA) for 2 weeks and housed
either in glass cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free food
and bedding. BALB/c mice housed in glass cages/water bottles with soy-free food and bedding were
given either normal drinking water (drinking water that did not contain BPA) (glass) or 250 µg BPA/L
water (50 BPA) for 2 weeks. Mice were injected i.p. with 103 PFU CVB3 on day 0 and harvested at day
10 pi. The cKit levels in the heart were determined by qRT-PCR for relative gene expression (RGE)
compared to the housekeeping gene Hprt. Data shown as scatter plot and mean +/−SEM using
one-way ANOVA with Holm–Šídák’s multiple comparisons test with 10 mice/group (* p < 0.05),
(**** p < 0.0001).

2.7. Plastic Caging Increases Pericardial Mast Cell Numbers and Degranulation in Females
during Myocarditis

Next, we examined the mast cell numbers and degranulation histologically, and found
that plastic caging significantly increased the total number of cardiac degranulating mast
cells (p = 0.006) (Figure 7b) and the number of pericardial mast cells that were degranulating
(p = 0.0002) (Figure 7c), compared to the mice who were housed with glass caging. The same
result was observed when the mice were exposed to 250 µg BPA/L (50 BPA) in the drinking
water compared to those without BPA exposure (0 BPA/glass), with a significant increase
in the total cardiac mast cells (p = 0.004) (Figure 7f). Similarly, the mast cell degranulation of
the total mast cells (p = 0.03) (Figure 7g) and pericardial mast cells (p = 0.0001) (Figure 7h)
were increased in the 50 BPA group.

2.8. Plastic Caging Has No Effect on Mast Cell Numbers or Degranulation in Males during
Myocarditis, but Males Have More Degranulating Pericardial Mast Cells Than Females Regardless
of Plastic Exposure

While we detected decreased cKit gene expression in the heart of males by qRT-PCR
after exposure to plastic caging and BPA in the drinking water (Figure 6), we did not
observe a significant change in the total number of mast cells or mast cell degranulation,
histologically, with either exposure (Figure 8). However, an important sex difference that
we observed in the mast cells histologically was that the exposure to plastic caging and BPA
in the drinking water caused a shift in the females from pericardial mast cells that were not
degranulating to those that were degranulating (Figures 7c and 9a). However, in males
the mast cell numbers/degranulation state did not shift after plastic/BPA exposure, but
males had higher numbers of degranulating mast cells regardless of plastic/BPA exposure
(Figure 8c; Figure 9b). The data that are shown in Figures 7 and 8 are combined by sex in
Figure 9, to illustrate the point more clearly.
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Figure 7. Plastic caging increases pericardial mast cell numbers and degranulation in females during myocarditis. Female
BALB/c mice (pink) were given (a–e) normal drinking water (drinking water that did not contain BPA) for 2 weeks and
housed either in glass cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free food and bedding.
(f–j) BALB/c mice housed in glass cages/water bottles with soy-free food and bedding were given either normal drinking
water (drinking water that did not contain BPA) (glass) or 250 µg BPA/L water (50 BPA) for 2 weeks. Mice were injected i.p.
with 103 PFU of CVB3 on day 0 and harvested at day 10 pi. Mast cell scoring was completed using the 40× high-power
objective on a compound microscope. Mast cells were counted and categorized according to whether they were degranulated
or not and by their location as pericardial, myocardial or near vessels. Data shown as scatter plot and mean +/−SEM using
a Student’s t-test with 9–10 mice/group (* p < 0.05), (** p < 0.01), (*** p < 0.001), (**** p < 0.0001). Representative histology
images of mast cells (purple, arrow). Representative images in plastic caging (plastic), glass caging (glass), or 50 BPA in
drinking water (50 BPA) in glass cages show mast cells associated with the (k) pericardium, (l) myocardium or (m) vessels
(magnification 400×, scale bar 60 µm).
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Figure 8. Plastic caging does not alter mast cell numbers or degranulation in males during myocarditis. Male BALB/c
mice (blue) were given normal drinking water (drinking water that did not contain BPA) for 2 weeks and housed either
in glass cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free food and bedding. BALB/c mice
housed in glass cages/water bottles with soy-free food and bedding were given either normal drinking water (drinking
water that did not contain BPA) (0 BPA/glass) or 250 µg BPA/L water (50 BPA) for 2 weeks. Mice were injected i.p. with 103

PFU of CVB3 on day 0 and harvested at day 10 pi. Mast cell scoring was completed using the 40× high-power objective
on a compound microscope. (a–e) Mast cells were counted and categorized according to whether they were degranulated
(small blue granules can be observed released from the cell at high power) or not and by their location as pericardial,
myocardial or near vessels. Data shown as scatter plot and mean +/−SEM using one-way ANOVA with Holm–Šídák’s
multiple comparisons test with 10 mice/group (** p < 0.01), (**** p < 0.0001). (f,g) Representative histology images of mast
cells (purple, arrow). Representative images in plastic caging (plastic), glass caging (glass) or with 50 BPA in drinking water
in glass cages (50 BPA) show (f) mast cells that are not degranulating (NOT) versus (g) degranulating mast cells (degran)
with identifiable mast cell granules outside of the cell (magnification 400×, scale bar 60 µm).
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Figure 9. Plastic caging associated with pericardial mast cell degranulation in females, but not in males, where mast cells
degranulate regardless of plastic exposure. (a,c) Female (pink) and (b,d) male (blue) BALB/c mice were given (a,b) normal
drinking water (drinking water that did not contain BPA) for 2 weeks and housed either in glass cages/water bottles (glass)
or plastic cages/water bottles (plastic) with soy-free food and bedding. (c,d) BALB/c mice housed in glass cages/water
bottles with soy-free food and bedding were given either normal drinking water (drinking water that did not contain
BPA) (glass) or 250 µg BPA/L water (50 BPA) in glass cages for 2 weeks. Mice were injected i.p. with 103 PFU of CVB3 on
day 0 and harvested at day 10 pi. Mast cell scoring was completed using the 40× high-power objective on a compound
microscope. Mast cells were counted and categorized according to whether they were degranulated or not and by their
location as pericardial. Data shown as scatter plot and mean +/−SEM using a Student’s t-test with 9–10 mice/group
(* p < 0.05), (** p < 0.01), (*** p < 0.001).

2.9. Plastic Caging Increases Fibrosis in the Heart during Myocarditis in Females, but Has No
Significant Affect in Males

When we examined female BALB/c mice for evidence of fibrosis by determining
the collagen levels in the heart by qRT-PCR and fibrosis histologically, we found that
plastic caging significantly increased collagen 1 gene expression in the heart (p = 0.009)
(Figure 10a), and cardiac fibrosis (p = 0.023) (Figure 10b). The same result was observed for
exposure to 250 µg BPA/L in the drinking water for fibrosis (p = 0.0005) (Figure 10b). The
one-way ANOVA was significantly different between the groups in females for collagen 1
(p = 0.005) (Figure 10a) and for fibrosis (p = 0.001) (Figure 10b). In contrast, plastic caging
did not significantly alter collagen 1 gene expression (p = 0.71) (Figure 10c) or fibrosis in
males (p = 0.29) (Figure 10d) compared to glass caging; this was a result that was confirmed
for BPA exposure in the drinking water (collagen 1 gene expression p = 0.71, Figure 10c;
and fibrosis p = 0.85, Figure 10d). The one-way ANOVA was not significantly different
between the groups in males for collagen 1 (p = 0.69) (Figure 10c) or for fibrosis (p = 0.30)
(Figure 10d).
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Figure 10. Plastic caging increases collagen gene expression and fibrosis in the heart of females, but not male mice during
myocarditis. (a,b) Female (pink) and (c,d) male (blue) BALB/c mice were given normal drinking water (drinking water
that did not contain BPA) for 2 weeks and housed either in glass cages/water bottles (glass) or plastic cages/water bottles
(plastic) with soy-free food and bedding. BALB/c mice housed in glass caging with soy-free food and bedding were given
either normal drinking water (drinking water that did not contain BPA) (0 BPA/glass) for 2 weeks or 250 µg BPA/L water
(50 BPA). Mice were injected i.p. with 103 PFU of CVB3 i.p. on day 0 and harvested at day 10 pi. (a,c) Collagen 1 levels
in the heart were measured using qRT-PCR to determine relative gene expression (RGE) of collagen I compared to the
housekeeping gene Hprt. (b,d) Fibrosis was assessed as the % fibrosis compared to the total size of the heart section using
Sirius Red-stained sections and a microscope eyepiece grid. Data shown as scatter plot and mean +/−SEM using one-way
ANOVA with Holm–Šídák’s multiple comparisons test with 8–12 mice/group (* p < 0.05), (** p < 0.01), (*** p < 0.001).
Representative images of fibrosis detected with Sirius Red (arrow) shown in the (e) pericardium, (f) myocardium or (g)
vessels (magnification 400×, scale bar 60 µm).
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2.10. Plastic Caging Decreases ERα and AR and Increases ERβ Expression in the Heart of Males
during Myocarditis, but Has No Affect on ERs in Females

The ERs and AR are located on/in immune cells, cardiomyocytes, endothelial cells,
and cardiac fibroblasts in both males and females [67–70]. It is likely that the ratio of ERs-to-
ARs on/in immune cells is critical in the sex hormone regulation of inflammation [67–70].
However, this is a rapidly growing area of research, with many questions that still remain.
When comparing plastic caging to glass caging, we found that there was no significant
difference in the gene expression of ERs in the heart in females (Figure 11a–c), but they
had significantly increased AR expression (p = 0.03) (Figure 11d). In contrast, ERβ was
significantly increased in females that were exposed to 250 µg BPA/L in their drinking
water (p = 0.04), compared to 0 BPA/glass (Figure 11b). The one-way ANOVA was not
significantly different between the groups in females for ERα (p = 0.52) (Figure 11a), ERβ
(p = 0.02) (Figure 11b), ERRγ (p = 0.30) (Figure 11c), or AR (p = 0.004) (Figure 11d).
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Figure 11. Plastic caging decreases ERα and AR and increases ERβ expression in the heart of males, but has no effect on
ERs in females during myocarditis. (a–d) Female (pink) and (e–h) male (blue) BALB/c mice were given normal drinking
water (drinking water that did not contain BPA) for 2 weeks and housed either in glass cages/water bottles (glass) or plastic
cages/water bottles (plastic) with soy-free food and bedding. BALB/c mice housed in glass cages/water bottles with
soy-free food and bedding were given either normal drinking water (drinking water that did not contain BPA) (0 BPA/glass)
or 250 µg BPA/L water (50 BPA) for 2 weeks. Mice were injected i.p. with 103 PFU of CVB3 on day 0 and harvested at day
10 pi. Relative gene expression (RGE) was assessed in whole hearts by qRT-PCR. (* p < 0.05), (** p < 0.01). Expression of (a,e)
ERα, (b,f) ERβ, (c,g) ERRγ, and (d,h) AR were assessed compared to the housekeeping gene Hprt. Data shown as scatter
plot and mean +/−SEM using one-way ANOVA with Holm–Šídák’s multiple comparisons test with 8–10 mice/group.

On the other hand, male BALB/c mice who were housed in plastic cages had sig-
nificantly decreased cardiac gene expression of ERα (p = 0.02) (Figure 11e), decreased
expression of ERβ (p = 0.03) (Figure 11f), and increased expression of the AR (p = 0.002)
(Figure 11h) in the heart by qRT-PCR. The plastic caging had no significant effect on
ERRγ expression in the heart of males with myocarditis compared to the glass cages using
qRT-PCR (p = 0.09) (Figure 11g). In contrast, 250 µg BPA/L (50 BPA) in the drinking
water of males did not significantly alter the expression of ERα (p = 0.46), ERβ (p = 0.36),
ERRγ (p = 0.07), or AR (p = 0.13) expression in the heart compared to the control water
(0 BPA/glass) (Figure 11e–h). The one-way ANOVA was not significantly different be-
tween the groups in males for ERα (p = 0.02) (Figure 11e), ERβ (p = 0.05) (Figure 11f), ERRγ
(p = 0.08) (Figure 11g), or the AR (p = 0.005) (Figure 11h).
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2.11. Plastic Caging Increases Complement Gene Expression in the Heart of Males with
Myocarditis, but Not Females

Because of the important role of the complement pathway in the pathogenesis of
CVB3 myocarditis in male mice [71], and because plastic caging and the EPA reference
dose of BPA increased CD11b/CR3 expression in the males with myocarditis (p = 0.002
and p = 0.04, respectively), we examined the expression of complement components and
receptors in the heart of mice who were housed in plastic caging or exposed to 250 µg
BPA/L in their drinking water. We found that the plastic caging had no significant effect
on the complement components in females with plastic caging (Table 1). In contrast, the
plastic caging significantly increased the expression of CD11b/CR3 (p = 0.002) (Figure 12a),
C4b (p = 0.002) (Figure 12c), and the mast cell anaphylatoxin complement receptor C5aR1
(p = 0.006) (Figure 12d) in males during acute myocarditis compared to glass caging. These
complement components were also significantly increased in males after exposure to BPA in
their drinking water (Figure 12a,b,d). One-way ANOVA was significantly different between
the groups in females for CR3 (p = 0.004) (Figure 12a), C3aR1 (p = 0.17) (Figure 12b), C4b
(p = 0.004) (Figure 12c), and C5aR1 (p = 0.008) (Figure 12d).

Table 1. Effect of plastic vs. glass caging on female mice on expression of complement and fibro-inflammatory markers in
the heart using qRT-PCR.

Cell Marker Description Glass Plastic p-Value

Complement
CR3 complement receptor 3 6.2 ± 1.1 5.5 ± 1.3 0.34

C3aR1 complement component 3a
receptor 1 3.5 ± 0.6 4.7 ± 0.8 0.13

C4b complement component 4b 4.6 ± 0.7 6.0 ± 1.2 0.15

C5aR1 complement component 5a
receptor 1 3.3 ± 0.5 3.4 ± 0.5 0.46

Fibro-inflammatory
IL-1R2 interleukin 1 receptor, type II 1.9 ± 0.2 2.4 ± 0.4 0.08

Timp-1 tissue inhibitor matrix
metalloproteinase 1 7.5 ± 1.6 9.6 ± 2.3 0.23
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Figure 12. Plastic caging increases complement markers in males with myocarditis, but not in females. Male (blue) BALB/c
mice were given normal drinking water (drinking water that did not contain BPA) for 2 weeks and housed either in glass
cages/water bottles (glass) or plastic cages/water bottles (plastic) with soy-free food and bedding. BALB/c mice housed in
glass cages/water bottles with soy-free food and bedding were given either normal drinking water (drinking water that
did not contain BPA) (0 BPA/glass) or 250 µg BPA/L water (50 BPA) for 2 weeks. Mice were injected i.p. with 103 PFU
of CVB3 on day 0 and harvested at day 10 pi. Relative gene expression (RGE) was used in whole hearts by qRT-PCR
to assess (a) complement receptor 3 (CR3), (b) complement component 3 antagonist receptor 1 (C3aR1), (c) complement
component C4b, or (d) complement component 5 antagonist receptor 1 (C5aR1), compared to the housekeeping gene Hprt.
Data shown as scatter plot and mean +/−SEM using one-way ANOVA with Holm–Šídák’s multiple comparisons test with
10 mice/group (* p < 0.05), (** p < 0.01).
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3. Discussion

In this study, we found that plastic caging alone increased myocarditis and fibrosis
in adult male and female BALB/c mice, respectively, with a similar result observed after
a high-dose exposure of BPA in their drinking water. These findings suggest that BPA
that ‘leaches’ from plastic water bottles, and possibly also from plastic cages that house
the mice, is able to alter viral myocarditis in a sex-specific manner. Previously, it has been
reported that BPA can leach from polysulfone and polycarbonate cages that have been
exposed to high temperatures, as occurs during the autoclave sterilization process [72].
However, in glass and polypropylene cages, the leakage of BPA was not observed [72]. BPA
was also found to be released from hemodialyzers that were comprised of polysulfone and
polycarbonate plastic that had undergone heat disinfection [73]. BPA is known to leach
from plastic into water, such as water bottles that are used by people and in caging that is
used to house research animals. Studies have determined that the exposure route of BPA
influences its pharmacokinetics and the clinical relevance of the animal studies. The oral
exposure of BPA has been found to more closely match the levels that are found in humans,
compared to subcutaneous injection or bolus gavage routes [74]. Future studies will need
to determine whether BPA leaching from plastic water bottles or plastic cages is sufficient
to increase myocarditis in mice, or if it requires both sources.

Male BALB/c mice in our model of CVB3 myocarditis typically have inflammation
ranging from 30 to 50% of the heart section [22,25]; these are data that have been obtained
with traditional plastic caging and bedding. Our findings here suggest that the traditional
plastic caging that is used to house mice may contribute to the sex differences in viral my-
ocarditis, particularly an increase in the complement components on CD11b+ macrophages,
neutrophils, and mast cells. Interestingly, BPA has also been found to significantly increase
the number of CD11b+ microglia (which are brain macrophages) in the brains of male
rats, but not in females [61]. Importantly, the same sex difference that we observe for
myocarditis in BALB/c mice who are housed in plastic cages (i.e., worse in males) exists
for myocarditis patients, [11,14,19] suggesting that exposure to plastics in our environment
may promote sex differences in inflammation in the heart in response to viral infection
in humans. To our knowledge, no studies have been conducted to determine the BPA
levels in the blood or urine of patients with myocarditis. BPA exposure has been found to
activate macrophages to promote a proinflammatory response including elevated TLR4,
and the proinflammatory and profibrotic cytokines TNFα, IL-1β, IL-6, and IL-8, within lung
tissue from 4-week-old female C57BL/6 mice [75–78]. Importantly, the sex differences in
myocarditis after plastic caging in this study were not due to alterations in viral replication
based on VP1 gene expression. Previously, we described that viral replication in the heart,
using a plaque assay, does not differ by sex during acute CVB3 myocarditis, with both
sexes clearing the virus by day 14 [25,71,79].

Complement cascade genes are known to be important in promoting human [80] and
CVB3 myocarditis in mice [28]. The upregulation of CD11b/CR3 and C5aR1 in male mice
due to plastic caging (and all complement components with high-dose BPA exposure)
suggests mast cell activation, yet the cKit levels were significantly decreased in the hearts
of males by both plastic caging and BPA exposure, and there was no increase in mast cell
number or degranulation histologically for either exposure route. Perhaps there was not
an increase because the mast cell numbers and pericardial mast cell degranulation were
already high in males prior to BPA exposure. In contrast, the primary immune effect of
BPA exposure on female BALB/c mice was to increase mast cell numbers, cKit expression,
and pericardial mast cell degranulation and fibrosis. Previously, we reported that 25 µg/L
BPA in the drinking water of the female BALB/c mice was able to increase myocarditis by
activating mast cells [59]. Our data here suggest that BPA exposure from caging increases
cardiac inflammation after CVB3 infection by different immunologic mechanisms in males
and females.

BPA is known to be an endocrine disruptor particularly targeting the ER, due to
its hormone-like properties [59]. As a result, its binding to ARs by competition with 5a-
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dihydrotestosterone (DHT) allows it to disrupt the function of the reproductive pathways
in males. Interestingly, a cross-sectional study found that BPA exposure in men led to
higher testosterone levels in the sera [81,82]. We have previously shown that testosterone
increases myocardial inflammation in male mice and humans with myocarditis, specifically
increasing CD11b/CR3+ immune cells [22,26,83]. If BPA leads to increased testosterone
levels, this could explain, at least in part, the ability of BPA to increase myocarditis in males.
Studies have found that BPA can bind to the AR [62], which could then directly activate the
AR, leading to increased myocarditis in males. However, the AR expression in the heart
was significantly decreased with plastic caging compared to glass caging, but it can be
difficult to interpret hormone receptor function using gene expression, which may decrease
due to the activation or engagement of the receptor [84]. Importantly, BPA has been found
to alter the metabolism of genes that are involved in hormone metabolism, including
TSPO/STAR, which are responsible for cholesterol transport into the mitochondria and
the production of sex steroids by macrophages and other cells [85–87]. Previously, we
have shown that TSPO is expressed primarily in CD11b+ immune cells in the hearts of
men and male mice with myocarditis [22,84,88]. In this study, we observed that plastic
caging caused significate alterations in the hormone receptor expression in the heart of
male mice. BPA has been found to act through ERβ to increase cardiac arrhythmias and
other cardiac complications in animal models [44,89]. In CVB3 myocarditis, ERβ signaling
was found to promote myocarditis in male and female mice who were treated with the
ERβ agonist diarylpropionitrile [24,90]. We also previously showed that female mice given
25 µg/L BPA in their drinking water had elevated ERβ levels in the heart and increased
myocarditis [59], which was also increased by 250 µg/L BPA in the drinking water in this
study. Additionally, here we found that males housed in plastic caging had significantly
increased ERβ expression, which may promote myocardial inflammation. In contrast,
ERα is believed to mediate most of the cardioprotective effects of estrogen in women and
female mice [67]. Estrogen (17β-estradiol), via ERα, has been found to reduce myocardial
inflammation during CVB3 myocarditis [23,70,90,91], which was demonstrated by the
elevated cardiac inflammation in ERα knockout mice, while CVB3-infected male mice
treated with the ERα agonist propyl pyrazole triol had reduced inflammation [24,90].
Fibrosis does not typically occur during acute CVB3 myocarditis, but we previously found
that BPA increased fibrosis in the hearts of female mice given 25 µg/L BPA in their drinking
water [59]. Cardiac fibrosis and collagen type I expression were also increased in female
mice in this study after exposure to 250 µg/L BPA in their drinking water. In a separate
study, we previously showed that α1-antichymotrypsin (Serpin A3n), which is released
exclusively from mast cells, is upregulated during CVB3 myocarditis and promotes cardiac
remodeling and fibrosis [22] suggesting that mast cell degranulation, caused by plastic
caging in this study, increased fibrosis in the females. The lack of mast cell degranulation
and fibrosis in males exposed to plastic, even though they had elevated macrophages and
neutrophils, further highlights the important role of mast cells in promoting remodeling
and fibrosis during myocarditis.

Recent articles have begun to address concerns associated with animal studies that
are attempting to understand the role of endocrine disruptors, such as BPA, on immune
function and/or disease. These articles have brought up a number of potentially confound-
ing issues, including plastic cages, food and bedding containing the phytoestrogen soy or
other phytoestrogens, enormous variation in the doses of BPA used, and varying exposure
methods [92]. Our findings suggest that traditional plastic caging may affect the immune
response to viral infection in a sex-specific manner, at least in BALB/c mice. Future studies
will need to determine whether our findings are specific to viral myocarditis or require
viral infection, or if BPA that leaches from plastic water bottles and/or cages can alter the
normal physiology of animals or cells in a sex-specific manner. If so, endocrine disruptors
could be affecting not only viral myocarditis, but also many of the experiments that are
conducted by basic researchers.
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BPA and other endocrine disruptors that leach out of plastic are ubiquitous in our
environment. Increasing numbers of clinical and basic science studies report an association
between BPA levels and worse cardiovascular disease and outcomes. Our findings suggest
that BPA exposure in the environment may promote sex differences in cardiac inflammation
following viral infection. Future studies are needed to determine whether these chemical
endocrine disruptors contribute to worse myocarditis outcomes in men or women with
common viral infections, such as coxsackievirus, influenza, and SARS-CoV-2.

4. Materials and Methods
4.1. Animal Care Ethics Statement

Mice were used in strict accordance with the recommendations in the Guide for the
Care and Use the Laboratory Animals of the National Institutes of Health. Mice were
maintained under pathogen-free conditions in the animal facility at the Johns Hopkins
School of Medicine and at Mayo Clinic Florida, and approval was obtained from the
Animal Care and Use Committee at Johns Hopkins University and Mayo Clinic Florida for
all procedures (IACUC numbers (Approval date): A30315 (27 October 2015), A00003983
(3 January 2019)). Mice were sacrificed according to the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.

4.2. CVB3-Induced Myocarditis Model

Male and female BALB/c (stock #651) 6–8 week old adult mice were obtained from
the Jackson Laboratory (Bar Harbor, ME). Mice were maintained under pathogen-free
conditions in the animal facility at the Johns Hopkins School of Medicine or the Mayo Clinic
Florida animal facility. Generally, 10 mice per group/sex were used for all experiments,
unless otherwise indicated. Mice were placed in plastic cages with plastic water bottles,
or glass caging with glass water bottles. When the mice were 8 weeks old, they were
inoculated intraperitoneally (i.p.) with sterile phosphate-buffered saline (PBS) or 103

plaque forming units (PFU) of heart-passaged stock of coxsackie virus B3 (CVB3) on day 0,
and acute myocarditis examined at day 10 pi, as previously described [93,94]. CVB3 (i.e.,
Nancy strain) was originally obtained from the American Type Culture Collection (ATCC;
Manassas, VA, USA) and grown in Vero cells (ATCC), as previously described [94].

4.3. Bisphenol A and Bedding

The dose of BPA (Sigma, St. Louis, MO, USA) that was administered was 250 µg
BPA/L in drinking water, which is equivalent to an estimated intake of 50 µg BPA/kg
body weight (BW), based on predicted exposure levels in the human population [65]. At
the time of the development of this project, Jenkins et al. was the only study available that
assessed the effect of BPA in a mouse model using oral exposure in drinking water. The
EPA reference dose was calculated using a safety factor of 1000×, the lowest observable
adverse effect level (LOAEL) [95]. The EPA reference dose is defined as an estimate of the
daily exposure to a susceptible individual without an appreciable risk of deleterious effects
during a lifetime. Estimated intake of BPA for mice in drinking water was based on [65].
They found that a 20 g mouse drinks approximately 4 mL of water a day and reported that
BPA is stable for one week in water [65,96]. For this reason, as well as to provide the mice
with fresh water, control and BPA water were replaced each week of the experiment.

All experiments used bedding (Envigo-Tekland, 7990.BG, Minneapolis, MN, USA)
and food (Envigo-Tekland, 2020X) from Envigo (Minneapolis, MN, USA) that was free of
soy and phytoestrogen to exclude other naturally occurring endocrine disruptors. BPA
was given to mice dissolved in drinking water for two weeks prior to inoculation i.p. with
103 PFU of heart-passaged stock of CVB3 on day 0 and acute myocarditis examined at day
10 pi, as previously described [22,94]. BPA exposure was continued from day 0 of viral
infection until harvest at day 10 pi. At harvest, heart tissue was divided in half and each
half of the heart was used for histology, IHC or qRT-PCR.
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4.4. Histology

Mouse hearts were cut longitudinally and fixed in 10% phosphate-buffered formalin
and embedded in paraffin for histological analysis. Five micron sections were stained with
hematoxylin and eosin (H&E) to detect inflammation, picrosirius red to detect collagen
or toluidine blue to detect mast cell granules. Myocarditis and fibrosis were assessed as
the percentage of the heart with inflammation or fibrosis compared to the overall size of
the heart section using a microscope eyepiece grid, as previously described [22,83,88,97].
Sections were scored by at least two individuals blinded to the treatment group.

4.5. Quantitative Real-Time PCR
4.5.1. RNA Isolation of Heart Tissue

At harvest, half of the heart was collected and stored at −80 ◦C for RNA isolation.
Hearts were homogenized and lysed using Tissuelyser (Qiagen, Germantown, MD, USA),
with 7 mm stainless steel beads in RTL buffer with 0.5% DX buffer to reduce foam. The
homogenate was then placed in an automated RNA isolation and purification instrument,
QIAcube, with reagents for RNase easy fibrous mini kit including a DNase and proteinase
K step (Qiagen, Germantown, MD, USA). RNA was eluted into 30 µL. If the heart had
been divided in the earlier step, the eluted RNA was pooled prior to being aliquoted. RNA
quantification was determined in µg/µL using NanoDrop (Thermo Scientific, Waltham,
MA, USA).

4.5.2. qRT-PCR Method

Total RNA from mouse hearts was assessed by quantitative real-time (qRT) PCR
using assay-on-demand primers and probe sets and the ABI 7000 Taqman system from
Applied Biosystems (Foster City, CA, USA) after RNA was converted to cDNA using
high-capacity cDNA reverse transcriptase kit (Applied Biosystems, Foster City, CA, USA),
as previously described [84,98]. Data are shown as relative gene expression (RGE) normal-
ized to the housekeeping gene hypoxanthine phosphoribosyltransferase 1 (Hprt). All the
following primers listed were purchased from Thermo-Scientific (Waltham, MA, USA):
HPRT (Mm03024075_m1), CD45 (Mm00448522_m1), CD11b (Mm00434455_m1), F480
(Mm00802529_m1), GR1 (Mm00439154_m1), CD14 (Mm00438094_g1), CD3e (Mm01179194),
CD4 (Mm00442754_m1), CD8a (Mm01182107_g1), cKit (Mm00445212_m1),
C3aR1 (Mm02620006_s1), C4b (Mm00437893_g1), C5aR1 (Mm00500292_s1),
Esr1 (Mm00433149_m1), Esr2 (Mm00599821_m1), Esrrg (Mm01314576_m1),
AR (Mm00442688_m1), Col1a1 (Mm00801666_g1). Gene expression was analyzed by
assessing comparative quantification, which utilizes cycle threshold (Ct) for each primer
to calculate the delta Ct (∆Ct), which is the threshold cycle comparison between the gene
of interest and the housekeeping gene. This is then used to calculate the relative gene
expression using the formula RGE = 2 − (∆Ct − ∆Ct(max)).

4.5.3. Measurement of CVB3 Genome VP1 Levels by qRT-PCR

Probe sets to detect CVB3 VP1 were developed by Antoniak et al. and obtained from Inte-
grated DNA Technologies (Coralville, IA, USA) [66]. Probe sets are as follows: CVB3 forward,
5′-CCCTGAATGCGGCTAATCC-3′; CVB3 reverse, 5′-ATTGTCACCATAAGCAGCCA-3′;
CVB3 probe, 5′-FAM-TGCAGCGGAACCG-TAMRA-3′.

4.6. Immunohistochemistry

Five micron sections of the heart were stained with CD3 (Abcam, ab16669, 1:200,
rabbit), CD11b (Abcam, Cambridge, United Kingdom, ab133357, 1:3000, rabbit), CD45
(Biolegend, San Diego, CA, USA, 103102, 1:200, rat), F4/80 (BioRad, Hercules, CA, USA,
MCA497G, 1:250, rat), or GR-1 (Invitrogen, Waltham, MA, USA14-5931-85, 1:150, rat).
Secondary antibody for rabbit utilized Envision+ anti-rabbit labeled polymer (K4006) and
rat-on-rodent kit (RT517) (Biocare, Pacheco, CA, USA) for rat antibodies. Stained slides
were scanned using an Aperio AT2 slide scanner (Leica, Wetzlar, Germany). Ventricles of
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cardiac sections were manually selected by a lab member blinded to the study groups for
analysis. The default “positive pixel” algorithm was modified for each stain by adjusting
the hue width parameter so that the program’s selection of positive and negative pixel
counted accurately reflected each stain. The hue value for all algorithms used was 0.1
(brown). The ventricles of each heart were analyzed using Aperio eSlide Manager (Leica,
Wetzlar, Germany) with the aforementioned algorithms. Stain positivity (% Positive) for
CD3, CD11b, CD45, and F4/80 were determined with the default “Positivity” parameter
(positivity = number of positive pixels/(number of positive + number of negative pixels)).
For GR1 slides, which had fewer cells that stained positive than the other markers, posi-
tivity was determined using the default “Nsr” output (Nsr = number of strongly positive
pixels/(number of weakly positive + number of positive + number of strongly positive
pixels)) where “strongly positive pixels” indicated intensity of the stain.

4.7. Statistical Analysis

The normally distributed data comparing two groups were analyzed using a two-
tailed Student’s t-test. The data comparing three groups were analyzed using one-way
ANOVA with Holm–Šídák’s multiple comparisons test. The data comparing two parame-
ters (mast cell degranulation status and experimental groups) was analyzed using two-way
ANOVA with Holm–Šídák’s multiple comparisons test. The data are expressed as scatter
plot and mean ± SEM. A value of p < 0.05 was considered significant. Statistical analysis
was performed in GraphPad Prism 9.0.2.
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