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Abstract: Pathological insults usually disturb the folding capacity of cellular proteins and lead to 

the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which leads to so-called 

“ER stress”. Increasing evidence indicates that ER stress acts as a trigger factor for the development 

and progression of many kidney diseases. The unfolded protein responses (UPRs), a set of molecu-

lar signals that resume proteostasis under ER stress, are thought to restore the adaptive process in 

chronic kidney disease (CKD) and renal fibrosis. Furthermore, the idea of targeting UPRs for CKD 

treatment has been well discussed in the past decade. This review summarizes the up-to-date liter-

ature regarding studies on the relationship between the UPRs, systemic fibrosis, and renal diseases. 

We also address the potential therapeutic possibilities of renal diseases based on the modulation of 

UPRs and ER proteostasis. Finally, we list some of the current UPR modulators and their therapeutic 

potentials. 
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1. Introduction 

Kidney diseases have recently received considerable attention because the renal 

function is vulnerable to pathogenic insults, including inflammation, hypoxia, hyperten-

sion, and aging. Once acute kidney injury (AKI) occurs, the event frequently leads to the 

progression of chronic kidney disease (CKD) despite a transient recovery from AKI [1]. 

Renal tubulointerstitial fibrosis is a common pathway of advanced CKD, which is associ-

ated with vasoconstriction, capillary obliteration caused by fibrotic expansion, and finally 

the formation of a hypoxic microenvironment that worsens renal function [2,3]. 

There is accumulating evidence indicating that the disruption of endoplasmic retic-

ulum (ER) homeostasis is involved in various pathological processes, including cancer, 

metabolic diseases, diabetes, neurodegenerative disorders, and liver dysfunction [4]. The 

unfolded protein responses (UPRs) signaling activated by the ER stress participates in the 

progression of AKI and CKD [5]. In addition, ER stress is also involved in the progression 

of organ fibrosis, including those of the kidney, liver, and lung [6]. Because of the limited 

therapeutic options for the retarding of CKD progression, the modulation of UPRs signal-

ing has become an attractive target for drug discovery [7]. In this mini-review, we discuss 

the role of UPRs in renal diseases and renal fibrosis, highlight the therapeutic potentials 

of the modulation of UPRs and the proteostasis of ER, and, in particular, emphasize the 

role of inositol-requiring protein 1-X-box-binding protein 1 (IRE1-XBP1) signaling. 
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2. Fundamental Roles of ER Stress and Unfolded Protein Responses 

The ER is the organelle where most secretory and transmembrane proteins are syn-

thesized, modified, and folded into their correct conformations. Since the ER plays such 

an essential role in the maintaining of proteostasis, it must optimally control the quality 

of protein folding [8]. However, the folding capacity of the ER is susceptible to environ-

mental stress, such as inflammation, oxidative stress, infection, or the deprivation of nu-

trients, which leads to the abundant accumulation of misfolded or unfolded protein in the 

ER, which is hence termed the “ER stress” [9]. Restoring the proteostasis of the ER will 

initiate the signaling of UPRs, thereby reducing protein load, increasing folding ability, or 

triggering cell apoptosis for as long as overwhelming ER stress persists [8]. Three ER 

transmembrane proteins, including IRE1, pancreatic eukaryotic translation initiation fac-

tor 2-alpha kinase (PKR-like protein kinase, PERK), and activating transcription factor 6 

(ATF6), mediate the transduction of UPRs signaling. In normal proteostasis, the immuno-

globulin heavy-chain binding protein (BiP) will conjugate with these three transmem-

brane proteins, and no UPRs cascade will be initiated. When ER stress occurs, BiP acts as 

an endogenous chaperon that binds to misfolded proteins, and therefore, detaches from 

the UPRs initiators, resulting in the activation of UPRs signaling [10]. 

Upon ER stress, IRE1 is activated after the dissociation of BiP, which leads to the 

conformational change of IRE1. This promotes its dimerization and trans-autophosphor-

ylation, followed by activation of the kinase and RNase domains [11,12]. XBP1 RNA is 

spliced by unconventional endonuclease, causing a frameshift and generating spliced 

XBP1 (XBP1s), which possesses a completely different function from its intact form 

(XBP1u) [13]. XBP1s acts as a transcription activator, upregulating genes that encode ER-

associated degradation (ERAD) and chaperone [14,15]. However, the overwhelming level 

of ER stress induces the activation of the kinase domain, and then recruits tumor necrosis 

factor receptor (TNFR)-associated factor-2 (TRAF2), before activating the signaling of c-

Jun amino-terminal kinases (JNK), which are pro-apoptosis mediators [16]. In addition, 

hyper-activation of IRE1α is reported to activate regulated IRE1α-dependent degradation 

(RIDD) and digest a subset of mRNAs that encode secretory proteins [17,18]. 

The manner of activation of PERK is similar to the way in which IRE is activated. 

After dimerization and trans-autophosphorylation, PERK suppresses global protein 

translation by phosphorylating the α subunit of eukaryotic translation initiation factor-2 

(eIF2α) [19]. However, ATF4, a critical transcriptional regulator in the PERK-eIF2α path-

way, is upregulated by ribosomal skipping [20]. Following the activation of downstream 

stress-induced redox proteins, C/EBP-homologous protein (CHOP) [21], which is well rec-

ognized as a pro-apoptotic protein that mediates UPR-related cell death [22], directly ac-

tivates both growth arrest and DNA damage-inducible protein-34 (GADD34) [23], the 

protein that dephosphorylates the phospho-eIF2α in cells under ER stress and helps cells 

to recover from translational inhibition [23]. 

Activated ATF6 translocates from the ER to the Golgi apparatus, and is cleaved by 

site-1 and site-2 proteases in the Golgi apparatus [24,25], thereby generating the cleaved 

fragment of ATF6 (cATF6), and then cATF6 enters the nucleus to activate the genes that 

enhance protein folding, including BiP, GRP94, calreticulin, protein disulfide isomerase 

(PDI), and XBP1 [26–29]. 

The three-branch axis orchestrates the process of UPRs, and their interdependency in 

terms of regulation is well documented. For instance, the downstream target genes of 

ATF6 can be compensated by XBP1 during acute silence of ATF6 [30]. Inhibition of PERK 

leads to the compensatory activation of XBP1s, and the inhibition of IRE1α contributes to 

the sustained activation of PERK and CHOP [31]. In addition, hyperactivation of IRE1α is 

found in the XBP1 deletion hepatocyte [32]. Recent evidence demonstrated that cell fate is 

determined by elaborate ER compensation during ER stress. 
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3. Homeostatic Role of Proteolysis through Adaptive UPRs Activation in Disease  

Progression 

ERAD plays a pivotal role in the removal of misfolded protein to maintain the home-

ostasis and cell survival of ER. The process of ERAD is initiated by unfolded substrate 

recruitment, assisted by chaperones such as Bip and the ER degradation-enhancing alpha-

mannosidase-like protein (EDEM) protein family. The tagged protein is eventually de-

graded by the 26S proteasome and resolves ER stress [33,34]. However, it may shut down 

the capacity of ERAD and activate apoptotic ER stress during the overloading of mis-

folded/unfolded proteins, as well as during oxidative stress or heat shock states [35]. Var-

ious ERAD-deficient mouse models developed organ dysfunction, including enteritis, 

obesity, and glucose intolerance [36–38]. In addition, ERAD inhibition was identified as a 

therapeutic target in cancer treatment [39,40]. Furthermore, the enhancement of ERAD 

through the overexpression of XBP1s reduced amyloid β-peptide accumulation in an Alz-

heimer’s disease model [41,42]. 

4. ER Stress-Mediated Autophagy and Proteostasis 

There is strong evidence supporting the crosstalk between ER stress and autophagy 

[43–45]. Autophagy is triggered by a mechanistic rapamycin (mTOR) inhibition target and 

involves sequential steps, including the initiation of phagophore, which begins with Unc-

51-like autophagy activating the complex formation and nucleation of kinase 1 (ULK1). 

Then, the autophagosome membrane elongation is assisted by the conjugation of autoph-

agy-related protein (ATG) to LC3 phosphatidylethanolamine (PE) and the lysosome, and 

finally, proteolytic degradation is initiated [46]. 

The interplay between ER stress and autophagy has been frequently mentioned. For 

example, the accumulation of cytosol calcium from ER will activate UPRs, followed by the 

inhibition of mTOR and the induction of autophagy [47]. Margariti et al. and Ogata et al. 

demonstrated that autophagy transcriptionally induced the activation of beclin-1 via the 

IRE1/XBP1s and IRE1/JNK axis [48,49]. B’chir et al. elegantly showed that induction of 

PERK/eIF2α/ATF4 axis is essential for ATGs genes expression [50]. Furthermore, Fang et 

al. and Qi et al. showed that the chemical chaperone 4-PBA and TUDCA can attenuate 

STZ and obesity-induced diabetic nephropathy, extracellular matrix deposition, and au-

tophagy in an ER-stress-dependent manner [51,52]. All of the above-mentioned reports 

support the connection between ER stress and autophagy. 

5. UPRs and Systemic Fibrosis Progression 

Many studies proposed the relationship between UPRs and organ fibrosis [6,53]. Fa-

milial interstitial pneumonia (FIP), a class of interstitial pneumonitis that may be caused 

by the genetic mutation in surfactant protein C (SPC) [54], suggests a potential connection 

between organ fibrosis and ER stress. SPC is secreted by type II alveolar epithelial cells in 

order to maintain alveolar distensibility. In vitro studies revealed that the mutation of SPC 

in the carboxyl domain leads to its accumulation, in a misfolded form, in the ER lumen 

[55]; furthermore, tissue samples from FIP patients with SPC mutation showed prominent 

expression of BiP, and XBP1 expression co-localized with fibrotic areas [56]. 

In murine models of cardiac fibrosis, subcutaneous injection of isoproterenol and an-

giotensin II-induced fibrosis activated UPR signaling and upregulated the pro-apoptotic 

expression of CHOP. In these models, the severity of fibrosis was attenuated through the 

administration of chemical chaperone 4-phenylbutyric acid (4-PBA) [57,58]. 

6. UPRs in Renal Disease and Fibrosis 

Renal fibrosis is the final common pathway of CKD and end-stage renal disease 

(ESRD) [59], which results from the loss of parenchymal due to the occurrence of natural 

senescence, diabetes, or acute kidney insults. It has been well documented that AKI is 

recognized as a cause of long-term risk of CKD or ESRD and maladaptive repair of kidney 



Int. J. Mol. Sci. 2021, 22, 8674 4 of 17 
 

 

injury, leading to renal fibrosis and the transition from AKI to CKD [60,61]. Myofibro-

blasts play a critical role in the inducing of excessive deposition of the extracellular matrix, 

which contributes to renal fibrosis. Myofibroblasts can originate from the activation of 

renal interstitial fibroblasts, perivascular fibroblasts, pericytes, and bone marrow-derived 

mesenchymal cells, as well as the transition of endothelial cells or tubular epithelial cells 

[62–66]. Recent studies revealed that perivascular fibroblasts and pericytes, but not in-

jured tubular epithelial cells, transdifferentiate into myofibroblasts and contribute to fi-

brosis in renal fibrosis animal models. However, an emerging concept is that kidney dam-

age caused by AKI or unresolved injuries leads to prolonged cell arrest in the cell cycle 

G2/M phase and leads to the appearance of profibrotic and proinflammatory features in 

tubule cells. Profibrogenic growth factors and inflammatory cytokines secreted from in-

jured tubules can stimulate the proliferation of fibroblasts and the production of extracel-

lular matrix, and eventually contribute to progressive renal fibrosis. In addition, many 

publications also revealed that UPRs signaling is involved in the progression of renal dis-

eases, which is triggered by hypoxia, oxidative stress, inflammation, high glucose, and 

functional genetic deficiency of the glomerular protein [67]. 

6.1. Disturbance of UPR Contributes to AKI-to-CKD Transition 

Renal ischemia-reperfusion injury is a common cause of AKI that results in hypoxia, 

and ER stress is well recognized as the initial response to ischemia-reperfusion injury 

[68,69]. A calcitonin/calcitonin gene-related peptide, namely intermedin, ameliorates re-

nal ischemia-reperfusion injury by inhibiting ER stress-mediated apoptotic signaling, for 

example, the expression of CHOP and caspase-12 [70]. The unilateral ureteral obstruction 

(UUO) model activated all three effectors of the UPR signaling during the development 

of renal fibrosis. The pro-apoptotic signals, such as CHOP, caspase-12, JNK, and Bax, were 

also increased [65]. Furthermore, Fan and Xiao et al. showed that the dysregulation of 

UPRs was correlated to the severity of the progression from AKI to CKD in humans, with 

upregulated expression of Bip, p-PERK, and CHOP and reduced expression of XBP1s in 

patients with progressive AKI renal biopsy [71]. Jao et al. revealed that the dysregulation 

of UPRs induced the accumulation of lipids, as well as renal fibrosis [72]. The renal fibrosis 

induced in the UIRI mice model coincides with the accumulation of lipids and the activa-

tion of ATF6 in tubular epithelial cells. Furthermore, ATF6 knockout mice demonstrated 

less tubulointerstitial fibrosis and lipid accumulation through the activation of PPARα. 

The production of reactive oxygen species (ROS) during renal ischemia-reperfusion 

injury also causes the pathogenesis of CKD progression [73]. Antioxidant therapy for CKD 

patients showed significant benefits, including attenuation of the risk of ESRD develop-

ment, reduced serum creatinine levels, and improved creatinine clearance [74]. The pro-

duction of ROS interferes with cellular redox-dependent metabolism and protein-folding 

capacity, resulting in the accumulation of misfolded proteins in the ER [75]. The antioxi-

dative effects of UPRs were also found during the stimulation of cells against ROS [76]. 

Nuclear factor E2-related factor 2 (Nrf2) is an antioxidative transcription regulator that 

resists oxidative stress through the activation of antioxidative genes, such as catalase, 

heme oxygenase-1 (HO-1), and superoxide dismutase [77]. In terms of the connection be-

tween Nrf2 and three branches of UPRs initiators, it was demonstrated that Nrf2 is the 

downstream target of the ATF6 [78], IRE1/JNK [76], and PERK pathways [79]. The PERK-

Nrf2 pathway, for example, plays an essential role in the maintenance of redox homeosta-

sis, as shown by the fact that a deficiency of PERK leads to the accumulation of ROS in 

cells [80]. Cadmium induces kidney injury through the generation of ROS and leads to ER 

stress-mediated apoptosis [81]. This evidence suggests that ER stress is an important path-

ogenic mediator of renal diseases. 
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6.2. Dysregulation of UPR Mediates Renal Fibrosis in Diabetic Nephropathy and Podocyte 

Defect Mice Model 

Diabetic nephropathy (DN) accounts for up to 40% of incident ESRD [82]. In the 

streptozotocin (STZ)-induced DN model, the upregulation of BiP and CHOP, and the ac-

tivation of PERK signaling, are observed in 22-month-old mice with DN accompanied by 

tubulointerstitial fibrosis and extensive inflammatory cell infiltration [83]. The renal renin-

angiotensin system (RAS) is well known for governing blood pressure and the homeosta-

sis of target organs. In the cascade of RAS, angiotensin II is the key regulator that contrib-

utes to vasoconstriction. In addition, the proinflammatory and profibrogenic effects of an-

giotensin II are widely discussed in the progression of CKD [84]. Therefore, angiotensin-

converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) are the stand-

ard treatments for hypertension or heart failure patients. Evidence showed that ACEIs 

reduce the apoptosis of renal tubular cells and suppress the signaling of UPRs, as demon-

strated by, for example, the activation of phospho-eIF2α and phospho-PERK in STZ-in-

duced diabetic rat models [85]. Human kidney biopsy samples demonstrated that diabetic 

nephropathy had higher expression of BiP, XBP1, and CHOP, which is consistent with in 

vitro findings. In addition, albumin and high glucose administration induced the activa-

tion of ER stress in human and rodent renal tubules [86]. Furthermore, the deletion of 

podocyte-specific IRE1a and XBP1s in mice led to more severe cases of albuminuria, glo-

merular basement membrane thickening, and ER stress induction [87,88]. 

7. Therapeutic Strategies: Targeting the IRE1-XBP1 and PERK-eIF2α Axis 

7.1. IRE1-XBP1 Axis of UPRs 

The XBP1 arm of the UPRs is generally recognized as cytoprotective. As mentioned 

above, the three UPRs branches are all activated in the UUO model [65]. In this model, 

XBP1s has been downregulated during the development of renal fibrosis, which ARB 

could reverse. Somlo and colleagues reported that site-specific deficiency of XBP1 in po-

docytes resulted in severe albuminuria, glomerulosclerosis, and kidney fibrosis in a Sec63 

and XBP1 double knockout model [89,90]. In this first part of the study, the authors 

demonstrated the accumulation of unfolded proteins without proteinuria or pathological 

features in podocyte-specific Sec63 or XBP1s single knockout mice. However, podocyte-

specific Sec63 and XBP1s double-knockout mice developed defects in the integrity of the 

glomerular filtration barrier and progressive tubulointerstitial fibrosis in association with 

the loss of podocytes, which occurred through the activation of the JNK-apoptotic path-

way in 2-month-old mice. Moreover, the re-expression of XBP1s in vivo completely res-

cues chronic tubulointerstitial kidney injury in XBP1 and Sec63 double knockout mice. 

Madhusudhan et al. also revealed an essential role of XBP1 in DN. They demonstrated 

that sXBP1 lies downstream of insulin signaling, and attenuates insulin signaling in po-

docytes through the genetic ablation of the insulin receptor or the regulatory subunits 

phosphatidylinositol 3-kinase (PI3K) p85α or p85β, which impair sXBP1 nuclear translo-

cation and exacerbate DN [87] (Figure 1). 

Oxidative stress is also a potential contributor to renal fibrosis [91]. Liu and col-

leagues showed that mouse embryonic fibroblasts with a genetic deficiency of XBP1 are 

more sensitive to H2O2-induced apoptosis. The anti-oxidative properties of XBP1 resulted 

from the transcriptional upregulation of catalase that occurred through binding to its pro-

moter region [92]. Another group also showed that XBP1 attenuated disturbed flow-in-

duced oxidative stress through the upregulation of heme oxygenase 1 (HO-1) in endothe-

lial cells [93]. Angiogenin (ANG) is a ribonuclease that promotes the adaptation of tissue 

to injury. By promoting the cleavage of tRNA, ANG plays a physiologically relevant, ER 

stress-mediated, adaptive role in the translational control of kidney injuries, in a IRE1-

XBP1-dependent manner [94] [95] (Figure 1). Inflammation also plays a critical role in the 

development of renal fibrosis. In a recent study, ER stress preconditioning could attenuate 

LDL-induced inflammation in human mesangial cells. Its underlying mechanism is 
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mainly through the induction of XBP1 followed by the blocking of the IRE1α/IKK/NF-κB-

mediated inflammatory response [94]. Collectively, modulation of the IRE1-XBP1 axis 

might be a favorable therapeutic target among ER stress-mediated injuries. 

 

Figure 1. The IRE1-XBP1-related UPRs pathways played pathological and therapeutic roles in kidney disease. (a) Unfolded 

proteins bind to BiP and allow the activation of IRE1 to occur through its dimerization and trans-autophosphorylation. 

IRE1 phosphorylation as indicated p in the yellow cycle. Activated IRE1 splices the mRNA of XBP1u to form spliced XBP1 

(XBP1s) mRNA, which encodes XBP1s protein then translocates to the nucleus, inducing genes that are thought to be 

generally cytoprotective, such as chaperones, trafficking associators, ERAD-related proteins. (b) Evidence shows that 

XBP1 knockout makes cells sensitive to oxidative stress, an important insult to kidney injury. Combining the XBP1 knock-

out model with genetically induced ER stress in the kidney leads to severe albuminuria, glomerulosclerosis, and renal 

failure. (c) XBP1s could directly induce angiogenin (ANG) expression in renal epithelial cells, which has been proven to 

protect cells and attenuate adverse effects caused by ER stress. (d) Severe ER stress triggers cell death through the IRE1-

TRAF2-JNK pathway in many kinds of kidney diseases. Quercetin, a natural flavonoid, has been demonstrated to inhibit 

the IRE1-TRAF2-JNK pathway in unilateral ureteral obstruction (UUO), diabetic nephropathy, and cadmium-induced 

kidney injury. It might be a strong therapeutic option for the targeting of UPRs. 

7.1.1. IRE1-XBP1-Mediated Inflammasome in Renal Fibrosis 

Kidney inflammation is considered to be a pathogenic factor that triggers CKD pro-

gression [96]. Prolonged inflammation resulting from mononuclear infiltration or the dep-

osition of immunogens leads to the recruitment of fibrocytes, and consequently, renal fi-

brosis [97]. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), a protein oli-

gomerization that forms inflammasomes, is involved in the cleavage of pro-IL-1β and pro-

IL-18, which contribute to renal inflammation and fibrosis in various non-diabetic kidney 

diseases [98–101]. NLRP3 knockout ameliorates tubular injury, inflammation, and fibrosis 

in the UUO kidney. Notably, the hyperactivation of IRE1α results in the degradation of 
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miR-17 following the activation of the NLRP3 inflammasomes. By blocking the activation 

of XBP1s by STF-083010, the RNA endonuclease inhibitor attenuates the secretion of IL-

1β during treatment with thapsigargin [102]. Therefore, the ER stress-mediated activation 

of NLRP3 inflammasome can be specifically attenuated by the activation of IRE1-XBP1s . 

7.1.2. Application of Small Molecular Compounds Targeting the IRE1-XBP1 Pathway 

Kinase-Inhibiting RNase Attenuators (KIRA) 

Hyperactivation of IRE1 may trigger the RIDD and lead to cell apoptosis. Recently, 

Dr. FR Papa has developed a KIRA that allosterically inhibits IRE1α kinase activity by 

breaking oligomers. KIRA prevents hyper-oligomerization of IRE1 and maintains the 

RNA endonuclease of IRE1, which allows XBP1 to be spliced properly. It successfully pro-

tected pancreatic β cells and retinal cells from ER stress-induced injury in vivo and in vitro 

[103]. It might be a vital molecule under research in the future; however, more tests are 

needed in different disease models. 

Quercetin 

Quercetin is one of the most abundant flavonoids with antioxidative properties in 

the human diet. Recent studies demonstrated its ability in the activation of IRE1 RNase 

and the inhibition of IRE1-JNK signaling [104–106]. Previous research studies showed that 

quercetin has a renoprotection effect in many types of kidney injuries, including DN [107], 

cadmium toxicity [108], and UUO kidney (Figure 1) [109]. Furthermore, in vitro investi-

gation showed that the anti-fibrotic effect of quercetin is mediated through the attenuation 

of TGF-β1-induced collagen I and α-SMA expression in normal rat kidney fibroblast cells 

(NRK-49F) [110] and UUO kidney [111]. In addition, another research study demonstrated 

that quercetin protects glomerular endothelial cells from asymmetric dimethylarginine 

(ADMA)-induced apoptosis through PERK- and IRE1-associated and TGF-β-enhanced 

pathways [112] (Table 1). 

XBP1 Agonists 

Although the hyperactivation of IRE1-induced renal inflammation and fibrosis were 

found, the therapeutic effect of the IRE1 RNase targeted molecule, XBP1s, was proved by 

Lian Qiu et al. in a mouse model of ulcerative colitis (UC) or inflammatory bowel disease 

(IBD). IBD is a chronic intestinal inflammatory disease that revealed hypomorphic vari-

ants of XBP1 as a susceptibility factor that leads to IBD [113]. The XBP1 agonists, HLJ2 and 

(±)-8-ADC, are monomeric compounds that are extracted and modified from Ranuncula-

ceae and Papaveraceae plant families [114]. These XBP1 agonists exert an anti-inflamma-

tory effect toward dextran sulfate sodium-induced colitis through the inhibition of NF-

κB. Furthermore, HLJ2 demonstrated an anti-epithelial mesenchymal transition (EMT) ef-

fect under TGF-β1 stimulation [115,116]. These findings suggest the promising therapeu-

tic value of XBP1 agonists in inflammatory disease and organ fibrosis (Table 1). 

7.2. PERK- eIF2α Axis 

7.2.1. Application of Salubrinal 

Salubrinal, a selective inhibitor of GADD34-phosphatase-1 (PP1), which prevents 

dephosphorylation of eIF2α, was shown to protect cells from ER stress-induced apoptosis 

[117]. Cadmium increased the generation of ROS with subsequent induction of ER stress 

in a cultured renal proximal tubular cell line [118,119]. The administration of Salubrinal 

attenuated the cadmium-induced expression of BiP and CHOP, and the activation of cell 

death signaling of JNK, in HK-2 cells [120]. Salubrinal also ameliorates podocyte damage 

caused by hyperglycemia, as well as damage induced by other xenotoxicant agents such 

as arsenic, paraquat, cyclosporine, and cisplatin [51,121]. However, our previous animal 

study of the effects of salubrinal on cisplatin-induced renal cell damage showed a different 
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conclusion from that obtained through in vitro studies. We found that salubrinal en-

hanced cisplatin-induced nephrotoxicity in mice, and this was accompanied by the acti-

vation of ATF4 and CHOP, and the cleavage of caspases-12, 9, and 3 [64]. Since salubrinal 

itself did not trigger renal cell injury in mice, the acceptable reason for this discrepancy in 

the results might be the hyperactivation of eIF2α and the enhanced cisplatin-triggered 

oxidative stress in the kidney. 

More recently, salubrinal was shown to prevent the suppression of HK-2 cell prolif-

eration by indoxyl sulfate [122]. In addition to salubrinal, other PERK signaling modula-

tors including Guanabenz and GSK2606414 were investigated. Guanabenz, the α2-adren-

ergic receptor agonist that was originally used to treat hypertension, could prevent the 

dephosphorylation of eIF2α by GADD34 through competitive binding to PP1c [123]. 

GSK2606414 inhibits the activation of PERK by binding to the active site of the PERK ki-

nase domain, thereby repressing tumor growth in several mouse xenograft models [124] 

(Table 1). 

7.2.2. CHOP is the Most Potential Therapeutic Target 

It is well recognized that CHOP expression is involved in many diseases, and the 

modulation of CHOP expression might be the most potent target to retard the progression 

of renal disease and fibrosis. In the ischemia-reperfusion injury model, CHOP-deficiency 

significantly reduced serum creatinine and BUN levels compared to wild-type mice. His-

tological scores also showed decreased renal tubule dilation, tubular cell death, and cast 

formation in CHOP-deficient mice. This effect may be mediated by the regulation of pro-

apoptosis, inflammation, and ROS-related signals, including cyclo-oxygenase-2 (COX-2), 

Caspase-3, and Caspase-8 [66]. CHOP-deficiency also attenuates renal fibrosis in the UUO 

model through a reduction in inflammatory infiltration, collagen deposition, and intersti-

tial fibrotic area, and a repression of the expression of fibrotic markers including fibron-

ectin, collagen, and α-SMA. The underlying mechanism may be mediated through the 

attenuation of CHOP-mediated inflammatory factors including IL-1β and TGF-β1 pro-

duction, as well as PI3K/Akt activity [125]. These findings are consistent with the liver 

fibrotic murine model, in which CHOP deficiency attenuates hepatic fibrosis, inflamma-

tory gene expression, and oncogenesis [126]. 

In terms of therapeutic approaches, one notable study on malignant cells states that 

the PERK-CHOP pro-apoptotic pathway is the barrier to malignancy. At the same time, 

the deletion of CHOP increases tumor incidence, and the molecular chaperone p58IPK se-

lectively attenuates PERK-CHOP-mediated apoptosis [127]. Since the repression of CHOP 

expression leads to some beneficial effects, the modulation of CHOP expression might 

offer potential in dealing with ER stress-mediated kidney injury. In contrast, CHOP defi-

ciency results in more severe kidney injury in the LPS-induced acute kidney injury model 

[128]. LPS injection induces the activation of UPRs, including XBP1s, GRP78, GRP94, and 

CHOP. However, CHOP deficiency leads to higher BUN levels, albuminuria, and apop-

totic cell death compared to WT mice under LPS treatment. The authors suggest that the 

mechanism is independent of the modulation of UPR singling; instead, it is mainly caused 

by changes in the inflammatory response of the downstream target C/EBP family proteins. 

CHOP might play an anti-inflammation role in LPS-induced kidney injury. Additionally, 

we should carefully discuss the role of CHOP in various kidney diseases, especially in 

kidney damage that is mainly caused by the inflammatory response. 

8. Other Beneficial Effects in Moderating the ER Protein Homeostasis 

8.1. Pre-Conditioning ER Stress 

ER stress pre-conditioning showed protective effects in many studies, both in vitro 

and in vivo. In 1999, Bush and colleagues revealed that ER stress pre-conditioning protects 

ATP depletion-induced cell damage [129], and that pretreatment with tunicamycin could 

protect mice from acute ischemic injury [130]. This protective effect could be seen in other 
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in vitro disease models, such as prolonged ATP depletion or oxidative stress-induced car-

diomyocytes injury [131]. The underlining mechanisms may involve the prevention of in-

creased intracellular Ca2+ concentration and ERK activation, and the decreasing of JNK 

activation [132], or they may be caused by the preserving of intercellular junctions, cyto-

architecture, and cell-substratum interactions in ATP-depleted epithelial cells. In addition, 

the administration of the ER stress inducers, tunicamycin or thapsigargin, significantly 

reduced mesangial proliferation and the adhesion of Bowman’s capsule to the glomerular 

tuft and proteinuria in a rat glomerulonephritis model [62]. 

8.2. AMPK Activation 

AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is thought to 

be a metabolism modulator that controls cellular and whole-body energy balance [133]. 

Recent studies showed that AMPK activation might protect renal cells from ER stress-

induced injury. Administration of metformin, an AMPK activator, protects renal tubular 

cells against albumin loading-induced ER stress via inhibition of ROS through the induc-

tion of thioredoxin, an endogenous antioxidative molecule, and the suppression of BiP 

expression in an albumin-overloaded rat model [134]. Furthermore, AMPK suppressed 

tunicamycin, thapsigargin and/or TGF-β, angiotensin II, aldosterone, and high-glucose-

induced ER stress in tubular epithelial cells [135]. Metformin also suppressed ER stress 

and fibrosis in both tunicamycin-induced AKI and UUO mouse models [135]. 

8.3. Roles of Chemical Chaperone 4-PBA and TUDCA 

Both 4-phenylbutyrate (4-PBA) and TUDCA are small molecular weight chemical 

chaperones. The FDA approved 4-PBA for children with urea cycle disorders. They were 

also shown to have therapeutic potential for neurodegenerative diseases [136] and several 

types of cancers [137–139]. Both compounds assist in the adequate folding of protein in 

order to relieve ER stress-associated diseases [69,140,141], including renal fibrosis and di-

abetic nephropathy. In STZ-induced diabetes nephropathy, 4-PBA and TUDCA reduced 

the excretion of albuminuria and the expression levels of BiP, ATF6, PERK, JNK, and 

CHOP, and the inflammatory mediators. The chemical chaperons also restored the adap-

tive UPRs molecule XBP1s [52,87]. Furthermore, the chemical chaperones exerted an anti-

fibrotic effect in post-injured UIRI or UUO mice models. Notably, recent research found 

that ER stress is involved in angiotensin II-induced NLRP3 inflammasome activation, and 

pretreatment with 4-PBA could reduce the expression of both NLRP3 and inflammatory 

cytokines, suggesting that 4-PBA serves as a potential agent to reduce renal fibrosis [142] 

(Table 1). 

Table 1. Summarized the therapeutic effect of UPR modulators. 

Chemical Mechanism of Action Animal Model 
Therapeutic Ef-

fect 
Ref 

4-PBA unfolded protein folding UIRI, UUO, Dahl salt-sensitive rat, STZ-DN Yes [57,69,140,141] 

GSK2606414 PERK inhibitor Prion infected mice Not clear [143] 

Guanabenz eIF2α phosphatase inhibitor N/A Not clear [7,123] 

KIRA6 IRE1 RNase inhibitor Akita Mouse Yes [103] 

Salubrinal eIF2α phosphatase inhibitor Cisplatin, Cadmium, Arsenic, Paraquat, Cyclosporine Not clear [64,120,121] 

TUDCA unfolded protein folding UIRI, STZ-induced DN Yes [87,140] 

HLJ2 XBP1s agonist UC Yes [115,144] 

(±)-8-ADC XBP1s agonist UC Yes [116] 

Quercetin IRE1 RNase activator UUO, DN, Cadmium, ADAM Yes [104–112] 
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9. Conclusions 

A number of therapeutic strategies related to UPR signaling were investigated in re-

cent years; however, most focused on CNS disease, cancer, or diabetes [126,145]. In this 

article, we highlighted the findings of recent publications on the use of UPRs signals to 

target renal diseases or fibrosis progression either directly or indirectly, as well as some 

UPR modulators. We suggest that the modulation of phosphorylation-dependent PERK 

and IRE1 activities might be a promising direction in future pharmaceutical investigations 

[146]. As for the UPR modulator, there is lack of prominent reports, but based on the 

mechanisms of pathophysiology, it might still be a potential therapeutic target. Neverthe-

less, UPR modulators play the role of a double-edged sword, as they might induce either 

the systemic activation or inhibition of UPRs signaling, and be accompanied by unpre-

dictable cellular stress. However, it is worth noting that the activation of adaptive UPR 

molecules, especially XBP1s in DN, podocyte-defective, or inflammatory models, is a 

promising therapeutic approach. Furthermore, the elimination of unfolded proteins or the 

enhancement of the ERAD function is also beneficial for kidney injury. In contrast, the 

role of the apoptotic UPR molecule CHOP is still not conclusive. For clinical applications 

of UPR modulators in renal fibrosis, some candidates, such as 4-PBA and TUDCA, are 

involved in ongoing DN clinical trials. Still, most of the compounds were only confirmed 

in vivo or in vitro. Therefore, more studies are required to confirm the beneficial effects of 

the modulation of UPRs on renal diseases. 
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Abbreviations 

Abbreviation Meaning 

4-PBA 4-phenylbutyric acid 

ACEI Angiotensin-converting enzyme inhibitor 

AKI Acute kidney injury 

AMPK AMP-activated protein kinase 

ANG Angiogenin 

ATF4 Activating transcription factor 4 

ATF6 Activating transcription factor 6 

BiP Binding immunoglobulin protein 

CHOP CAAT/enhancer-binding protein (C/EBP) homologous protein 

CKD Chronic kidney disease 

COX-2 Cyclo-oxygenase-2 

CREB cAMP response element-binding protein 

DN Diabetic nephropathy 

EDEM ER degradation-enhancing alpha-mannosidase-like protein 

eIF2α Eukaryotic translation initiation factor 2α 

EMT Epithelial-mesenchymal transition 
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ER Endoplasmic reticulum 

ERAD ER-associated protein degradation 

FIP Familial interstitial pneumonia 

GADD34 Growth arrest and DNA-damage-inducible 34 

GRP78 Glucose-regulated protein 78 

HDAC3 Histone deacetylase 3 

IBD Inflammatory bowel disease 

IRE1α Inositol-requiring enzyme 1 α 

JNK c-Jun amino-terminal kinases 

KIRA Kinase-Inhibiting RNase Attenuators 

NLRP3 NOD-, LRR- and pyrin domain-containing protein 3 

PDI Protein disulfide isomerase 

PP1 Phosphatase-1 

RIDD Regulated IRE1-dependent decay 

ROS Reactive oxygen species 

SPC Surfactant protein C 

STZ Streptozotocin 

TNRF Tumor necrosis factor receptor 

TRAF2 Tumor necrosis factor receptor-associated factor 2 

TUDCA Tauroursodeoxycholic acid 

UC Ulcerative colitis 

UPR Unfolded protein response 

UUO Unilateral ureteral obstruction 

XBP1 X-box binding protein 1 

XBP1s Spliced isoform of XBP1 

XBP1u Unspliced isoform of XBP1 
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