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Abstract: Global warming leads to a progressive rise in environmental temperature. Plants, as sessile
organisms, are threatened by these changes; the male gametophyte is extremely sensitive to high
temperature and its ability to preserve its physiological status under heat stress is known as acquired
thermotolerance. This latter can be achieved by exposing plant to a sub-lethal temperature (priming)
or to a progressive increase in temperature. The present research aims to investigate the effects of heat
priming on the functioning of tobacco pollen grains. In addition to evaluating basic physiological
parameters (e.g., pollen viability, germination and pollen tube length), several aspects related to a
correct pollen functioning were considered. Calcium (Ca2+) level, reactive oxygen species (ROS)
and related antioxidant systems were investigated, also to the organization of actin filaments and
cytoskeletal protein such as tubulin (including tyrosinated and acetylated isoforms) and actin. We
also focused on sucrose synthase (Sus), a key metabolic enzyme and on the content of main soluble
sugars, including UDP-glucose. Results here obtained showed that a pre-exposure to sub-lethal
temperatures can positively enhance pollen performance by altering its metabolism. This can have a
considerable impact, especially from the point of view of breeding strategies aimed at improving
crop species.

Keywords: pollen; heat priming; heat stress response; sugar metabolism; antioxidant response;
calcium; cytoskeleton

1. Introduction

Pollen and pollen tubes are the male gametophyte of seed plants and are a key evolu-
tionary step in the success of land plants [1]. Pollen activation and cytoplasmic polarization
are fundamental for efficient pollen tube emergence and elongation, a prerequisite for
fertilization [2]. Despite these processes involve countless proteins and ions, calcium is one
the key players and its differential accumulation is fundamental to initiate cytoplasmic
polarization and promote pollen tube growth [3]. The intracellular concentration of free
Ca2+ is a balance between Ca2+ influx and Ca2+ sequestration, both extracellularly and in-
side organellar compartments. Ca2+, in combination with enhancers such as ROS, changes
the dynamics of the cytoskeleton thus affecting intracellular transport [4]. Interactions
between ion flux, such as Ca2+, ROS production, protein phosphorylation (and others not
mentioned here) contribute to the polarization of pollen tubes and promote the secretion
and deposition of new cell wall components in a finely- and timely-regulated manner [5,6].
Metabolism is also fundamental in cell wall deposition because it provides the activated
monosaccharides for polysaccharide elongation (both pectin and cellulose) [7]. Among
the many sugar-metabolizing enzymes, sucrose synthase (Sus) provides UDP-glucose, an
energetic reservoir as well as the substrate for cellulose and callose synthesis [8].
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Pollen tubes are very sensitive to high temperatures that can affect pollen viability,
pollen germination as well as pollen tube growth. Initial stages of pollen development
are more susceptible than later stages, which are relatively thermo-tolerant [9]. If pollen
is subjected to excessive temperatures at the microspore stage, this leads to microspore
abortion and to a drastic reduction in the number of pollen grains viable and capable of
germinating [10]. Another key factor to consider in the heat stress response of pollen is
the regimen of heat stress (HS) application. The ability of pollen to cope with a single
episode of HS is known as basal thermotolerance (BTT), improvable if plant cells, prior
to being exposed to acute HS, are subjected to a relatively high, non-lethal temperature.
Alternatively, plant cells can experience a gradual temperature increase. In both cases,
plant cells are subjected to the so-called “priming” or acquired thermotolerance (ATT) [10].
ATT has been applied as a pre-stress treatment only in tomato pollen and authors showed
that heat pre-treatment improved the acquisition of pollen ATT compared to the direct
stress, probably thanks to an ethylene-driven signaling [11]. HS response involves the
activation of specific transcription factors named heat shock factors (HSFs), that in turn
lead to the synthesis of heat-responsive genes [12,13]. Among the latter, well known is
the expression of heat shock proteins (HSPs), molecular chaperones that accumulate in
the cytoplasm and organelles and are involved in the stabilization, resolubilization, and
refolding of proteins [14,15]. The expression and abundance of several HSFs and HSPs in
developing anthers, microspores, and pollen subjected to HS has been widely characterized,
e.g., HSP70, HSP90, and HSP100. Besides HSPs, also other proteins are potentially involved
in the transduction of the HS response and cooperate to minimize cell damage. A large
number of regulatory and functional stress-associated proteins have been recently reviewed
and dehydrins and osmotins have been proposed to play a crucial role both in heat and
drought stresses [16].

Another important alteration of pollen under HS concerns sugar metabolism. Under
physiological conditions the vegetative cell is gradually filled with starch [17], that is
converted into soluble sugars in maturing pollen. High temperatures alter starch accumu-
lation and degradation in maturing pollen grains by changing either sugar transport or
metabolism [17]. In addition to these modifications, mild HS also changes the allocation
of soluble sugars to anther tissues [18]. Moreover, thermo-tolerant genotypes of sorghum,
barley, soybean, and chickpea were shown to maintain high content of soluble sugars and
showed higher pollen viability compared to sensitive genotypes [19–21]. It is also known
that dehydrating pollen requires sucrose for the protection and preservation of native pro-
teins and for the integrity of cellular membranes [11]. During heat stress, pollen and pollen
tubes also cope with the unbalanced accumulation of reactive oxygen species (ROS). ROS
are highly reactive metabolic by-products that act as signaling molecules, but they are toxic
when exceeding their physiological concentrations [22]. Sophisticated ROS scavenging
and detoxification mechanisms, consisting both in enzymatic (e.g., ascorbate peroxidase
(APX), catalase (CAT), superoxide dismutase (SOD)) and non-enzymatic molecules (e.g.,
flavonoids) [23], are remarkably enhanced after heat treatment, both at transcriptional
level and in activity. Although there are no direct evidences that ROS scavenging ac-
tivity protects pollen development from ROS-induced damages, several mutant-based
evidences highlight how the fine regulation of ROS content is essential for the production
of viable pollen, indicating that increased scavenging activity might contribute to heat
acclimation [24].

In the current work, we aimed to investigate the effects of ATT on pollen physiology
and metabolism. In the first part of the work, we assessed the impact of priming on basic
physiological parameters (e.g., pollen viability, pollen germination and pollen tube length)
while in the second one we performed a multi-level analysis by studying Ca2+, ROS and
related antioxidant systems, cytoskeletal organization, proteins, and sugar metabolism.
Results herein obtained suggest that a pre-exposure to moderate stress (priming) can
positively affect pollen overall performance by altering its metabolism. This can have a
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considerable impact, especially from the point of view of breeding strategies aimed at
improving crop species.

2. Results
2.1. Pollen Viability, Germination, and Pollen Tube Elongation

The first data obtained concerned basic parameters of pollen and pollen tube. Analysis
were conducted in 5 different groups: Control Group (C) maintained at room temperature
(25 ◦C—RT) for the whole duration of the experiment; Primed Group (P) subjected to
sub-lethal condition (1 h at 30 ◦C); Stressed Group (S) subjected to acute heat stress (2 h
at 35 ◦C); Primed and Recovered Group (PR) subjected to priming and later to recovery
(1 h at 30 ◦C and 3 h at RT) and finally the Primed, Recovered and Stresses Group (PRS)
subjected to priming, recovery and stress (1 h at 30 ◦C, 3 h at RT and 2 h at 35 ◦C). The
values of temperatures applied during the priming and stress phases were based on a
previous work; please, see the Material and Methods section.

Figure 1A shows pollen viability no significant variations among treatments were
detected with the only exception of S (acute heat stress) treatment where a significant
decrease of pollen viability was observed. Interestingly, pollen subjected to priming (P)
and priming plus recovery (PR) showed a pollen viability comparable to the control (C)
indicating that the temperature used for priming was not able to affect this parameter.
Notably, pollen subjected to both priming, recovery and finally stress (PRS) maintained
unvaried viability.

Pollen germination (Figure 1B) and pollen tube length (Figure 1C) were also analyzed.
After 1 h of germination, the pollen samples exhibited comparable values of germination,
except for the PRS sample, which doubled the germination rate, and S sample that reduced
this parameter. After 2 h of germination, the control sample (C) showed a germination
percentage of over 40%, while the stressed sample (S) experienced a significant reduction in
germination capacity (about 10%). While stress affected germination, priming (P) did not
have the same effect since the germination rate was more than 30%; moreover, this value
increased to 60% if priming was followed by recovery (PR). The primed and stressed sam-
ples (PRS) exhibited germination values just below the control but still significantly higher
than the stressed sample (S). Prolonging germination to 3 h confirmed the results. Analysis
of pollen tube elongation showed no significant differences among the investigated cases.
Control pollen (C) showed a linearity of growth, with pollen tubes reaching about 250 µm
in length after 3 h of germination. In all other cases, pollen tube length (either subjected
to priming -P, or stress -S, or priming and recovery -PR, or priming, recovery and stress
-PRS) was not significantly different from control. It can be deduced that pollen treated at
moderate or elevated temperatures struggles to produce the pollen tube but the latter, once
emitted, is still able to recover an adequate growth rate.

2.2. Kymograph Analysis of Pollen Tubes Revealed Differences among Experimental Groups

The kymograph analysis is an extremely convenient and fast way to analyze the
growth profile of pollen tubes. Control samples (C) showed a linear growth profile, with
average velocities about 1.4 µm/min. Velocities were very constant and the step between
two fast growth peaks was in the order of 200–250 s (Figure 2A). In the case of pollen
subjected to priming and germination, the speed was still comparable to the control
(1.3 µm/min) but the step between two fast growth peaks was significantly longer, around
500–600 s (Figure 2B). In the case of stressed pollen (S), the growth velocity of pollen tubes
was still relatively constant (around 1.5 µm/min). However, in this case the step between
two fast growth peaks was higher than the control, about 300–400 s (Figure 2C). The primed
and recovered sample showed a growth velocity comparable to the control and the step
between two fast growth peaks was also similar to the control (Figure 2D). The sample
subjected to priming, recovery, and stress (PRS) also behaved much the same as the control,
both in terms of speed (1.4 µm/min) and in terms of the pitch between two fast growth
peaks (Figure 2E).
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Figure 1. Analysis of pollen physiological parameters: (A) pollen viability; (B) pollen germination 
and (C) pollen tube length in control sample (C); primed sample (P); stressed sample (S); primed 
and recovered sample (PR); primed, recovered and stressed sample (PRS). For each treatment at 
least 100 pollen grains were considered, and results are expressed as averages ± standard deviation 
of three experiments analyzed in triplicate. Averages were compared by one-way ANOVA (for pol-
len germination and pollen tube growth means were compared within 1 h, 2 h and 3 h). Bars marked 
with the same letter are not significantly different (p ≥ 0.05). 

  

Figure 1. Analysis of pollen physiological parameters: (A) pollen viability; (B) pollen germination
and (C) pollen tube length in control sample (C); primed sample (P); stressed sample (S); primed and
recovered sample (PR); primed, recovered and stressed sample (PRS). For each treatment at least
100 pollen grains were considered, and results are expressed as averages ± standard deviation of
three experiments analyzed in triplicate. Averages were compared by one-way ANOVA (for pollen
germination and pollen tube growth means were compared within 1 h, 2 h and 3 h). Bars marked
with the same letter are not significantly different (p ≥ 0.05).
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Figure 2. Kymograph analysis of pollen tubes under different experimental conditions. For each test condition, the y-axis
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indicated; (B) primed sample (P); (C) stressed sample (S); (D) primed and recovered sample (PR); (E) primed, recovered and
stressed sample (PRS).

2.3. Stress-Related Proteins Do Not Vary among Pollen Samples

Heat stress response is characterized by a deep rearrangement of protein synthesis.
Molecular chaperones are synthesized to reestablish protein homeostasis, which is a pre-
requisite for cells to acquire ATT. In this study, we focused on osmotin and dehydrins
that are proteins known to be involved in abiotic stress response, and on HSP70 that is a
molecular chaperone (Figure 3). An anti-osmotin antibody shows that an 80-kDa cross-
reacting protein was present at comparable levels in all samples with a slight increase in
PR sample. In the case of dehydrin, immunoblotting analysis revealed two isoforms with
different molecular weight: a high molecular weight protein of 65-kDa and a low molecular
weight dehydrin of 20-kDa. Notably, their content was different, with the 65-kDa dehydrin
less represented than the 20-kDa dehydrin. The latter showed a decline in P, S and PRS
samples and an increase in PR samples. HSP70 did not appear to vary significantly between
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treatments, indicating that both priming and stress did not affect the expression of this
protein. Figure 3B is a graph representing the blot intensities of osmotin and dehydrins
compared to that of actin, while Figure 3C reports the ratio of signal intensity of HSP70
against actin.
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Figure 3. Immunoblotting with anti-osmotin, anti-dehydrin and anti-HSP70 antibody: (A) Detection
of osmotin, dehydrin and HSP70 in the different pollen samples. Lane 1, control sample (C); Lane 2,
primed sample (P); Lane 3, stressed sample (S); Lane 4, primed and recovered sample (PR); Lane 5,
primed, recovered and stressed sample (PRS). A total of 30 µg of proteins was loaded in each
lane; (B) measurement of osmotin, 65-kDa dehydrin and 20-kDa dehydrin immunoblot intensity;
(C) Measurement of HSP70 blot intensity. In all cases, data were normalized against actin, chosen as
the reference protein.
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2.4. The Content of Main Sugars Changes at Specific Treatments

To get a first assessment of the metabolic state of pollen tubes under the different
heat treatments, the concentrations of the main sugars (sucrose, fructose, glucose, and
UDP-glucose) were measured in pollen tubes. As can be seen in Figure 4A, the relative
sucrose concentration did not change significantly after treatments. On the contrary, the
content of both glucose and fructose only changed significantly after priming and heat
stress (PRS). The data indicate that priming followed by recovery induces a significant
increase in sucrose, which then presumably replenishes fructose and glucose levels under
heat stress conditions. The two monosaccharides are actively used under stress conditions
(PRS) to counteract the negative effects of heat stress, suggesting that one mechanism by
which pollen becomes tolerant is the substantial accumulation of sucrose as induced by
priming and recovery.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 27 
 

 

increase in sucrose, which then presumably replenishes fructose and glucose levels under 
heat stress conditions. The two monosaccharides are actively used under stress conditions 
(PRS) to counteract the negative effects of heat stress, suggesting that one mechanism by 
which pollen becomes tolerant is the substantial accumulation of sucrose as induced by 
priming and recovery. 

In addition to the three main sugars described above, we also analyzed the relative 
concentration of UDP-glucose (Figure 4B). The latter also derives from sucrose metabo-
lism when sucrose is cleaved by the enzyme sucrose synthase. In addition, UDP-glucose 
is of relevance because it is the precursor of several cell wall polysaccharides. The highest 
value of UDP-glucose was observed in control (C). Both priming (P) and stress phase (S) 
induced a decrease in UDP-glucose levels. The addition, a recovery phase (PR) had no 
significant effect on UDP-glucose concentration. In contrast, priming, recovery, and stress 
treatment (PRS) induced a significant increase in UDP-glucose that regained the levels of 
primed samples. 

Soluble pectins showed no significant differences among the various cases analyzed, 
indicating that heat treatments do not alter the release of pectins from the cell wall of 
pollen tubes (data not shown). 

 
Figure 4. Content of main sugars in pollen samples: (A) concentration of sucrose, glucose, and fruc-
tose in control sample (C), primed sample (P), stressed sample (S), primed + recovery sample (PR) 
and primed + recovery + stress sample (PRS). Points with the same lower-case letters do not differ 
significantly (p > 0.05); (B) concentration of UDP-glucose. Concentration is expressed as μg/mL. 

  

Figure 4. Content of main sugars in pollen samples: (A) concentration of sucrose, glucose, and
fructose in control sample (C), primed sample (P), stressed sample (S), primed + recovery sample (PR)
and primed + recovery + stress sample (PRS). Points with the same lower-case letters do not differ
significantly (p > 0.05); (B) concentration of UDP-glucose. Concentration is expressed as µg/mL.

In addition to the three main sugars described above, we also analyzed the relative
concentration of UDP-glucose (Figure 4B). The latter also derives from sucrose metabolism
when sucrose is cleaved by the enzyme sucrose synthase. In addition, UDP-glucose is
of relevance because it is the precursor of several cell wall polysaccharides. The highest
value of UDP-glucose was observed in control (C). Both priming (P) and stress phase (S)
induced a decrease in UDP-glucose levels. The addition, a recovery phase (PR) had no
significant effect on UDP-glucose concentration. In contrast, priming, recovery, and stress
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treatment (PRS) induced a significant increase in UDP-glucose that regained the levels of
primed samples.

Soluble pectins showed no significant differences among the various cases analyzed,
indicating that heat treatments do not alter the release of pectins from the cell wall of pollen
tubes (data not shown).

2.5. The Content of Sus Declines Following Priming and Stress while ATP Content Increases

Following UDP-glucose analysis, we considered a specific sugar-metabolizing enzyme,
sucrose synthase (Sus; Figure 5), that provides UDP-glucose for cellulose and callose
synthesis and that is an important hub in directing the metabolism of sucrose. Blotting
analysis (Figure 5A) revealed that this enzyme is sensitive to heat treatment (both priming
and stress) and that its content decreased when compared to control (C). To normalize the
Sus content, the immunoblot intensity was correlated to the actin signal of same samples
(Figure 5B). Sus content decreases already after priming but especially after priming and
stress, indicating that raising temperatures (both 30 ◦C and 35 ◦C) can affect Sus levels.
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Figure 5. Immunoblotting with anti-Sus antibody: (A) Detection of Sus in different pollen samples.
Lane 1, control sample (C); Lane 2, primed sample (P); Lane 3, stressed sample (S); Lane 4, primed
and recovered sample (PR); Lane 5, primed, recovered and stressed sample (PRS). A total of 30 µg of
proteins was loaded in each lane; (B) measurement of Sus immunoblot intensity. The relative content
of Sus was normalized against the content of actin, considered as a reference protein.

Because sucrose can be cleaved and its products directed to glycolysis and respiration,
we proceeded to determine the concentration of ATP. The latter is also an index of the
energy requirements of cells. The concentration of ATP (Figure 6) is significantly increased
in the primed samples (P) compared to the control (C). ATP content is barely detectable
in samples subjected to stress (S), while it decreases significantly in samples subjected to
priming and recovery (PR) as compared to the control. Of interest is that the ATP content
of primed, recovered, and stressed samples (PRS) is comparable to that after priming and
significantly higher than the control.
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one-way ANOVA. Bars marked with the same letter are not significantly different (p ≥ 0.05).

2.6. The Distribution of Actin Filaments Is Not Particularly Affected by Priming and Heat Stress

The organization of actin filaments was also checked (Figure 7). C, P, S, PR and
PRS pollen was analyzed in ungerminated pollen (Stage a), when pollen tube is emitted
(Stage b), when pollen tube length approximates the grain diameter (Stage c), and in longer
pollen tubes (Stage d). The control pollen (C) sample exhibited a typical linear arrangement
of actin filaments, uniformly distributed within the grain, not particularly focused towards
specific areas. Primed pollen (P) exhibited no detectable alterations, with actin filaments
arranged circularly within the pollen grain (Stage a). Stressed (S) pollen at Stage a often
showed fluorescent punctuation, indicating potential damage or depolymerization of actin
filaments (Figure 7 arrows). PR ungerminated pollen showed a homogeneous distribution
of actin filaments, with no evidence of damage; actin filaments were apparently shorter and
more fragmented. In the PRS ungerminated pollen, actin filaments were similar to C pollen,
being sufficiently linear and widely distributed within the pollen grain, without damage.
When pollen tube emerges (Stage b), actin filaments converged towards the aperture of
the pollen grain concomitantly with the emission of the pollen tube (C). This organization
was also clear in the primed sample (P) while it is less evident in the stressed and then
germinated sample (S). In this case, actin filaments, although abundant, still appeared
disorganized and not focused on the grain aperture. The focusing of actin filaments was
more evident in samples subjected to priming followed by recovery, i.e., PR. In the latter,
actin filaments were linearly organized from the grain to the pollen tube. During pollen
tube elongation (Stage c), actin filaments were distinctly observable inside the pollen tube,
predominantly arranged longitudinally with an evident disorganization at the apex (C).
No visible alterations were highlighted in P, showing actin filaments comparably arranged
with C. At this stage, actin filaments were comparable with the control sample also in S,
PC and PRS. PR and PRS showed predominant abundance of actin filaments within the
pollen grain, continuing within the pollen tube. No difference was shown in actin filament
organization between samples when pollen tubes grew for longer times (Stage d). In fact,
actin filaments were distinctly detectable in pollen tubes, arranged longitudinally with
evidence of partial disorganization at the apex. Based on these results, we can affirm that
although heat stress induced some damage to actin filaments in the pollen grain, actin
filaments exhibited normal organization when pollen tubes grew. Pollen samples subjected
to priming did not exhibit any damage.
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Figure 7. Distribution of actin filaments in control sample (C); primed sample (P); stressed sample (S); primed and recovered
sample (PR); primed, recovered and stressed sample (PRS). Stage a: actin filaments in the ungerminated grain; Arrows
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the pollen grain diameter; Stage d: pollen tubes with increased length. Figure reports the most representative images. At
least 30 pollen grains and tubes were analyzed. Refer to the main text for a more detailed description. Bars 20 µm.

In addition to considering actin distribution within pollen and pollen tube, we also
analyzed the content of tubulin and of two specific post-translational modifications of
tubulin (acetylation and tyrosination). Western blotting analysis (Figure 8A) did not show
any changes in tubulin content for all samples. As for modified tubulin, levels of tyrosinated
tubulin did not change between samples and acetylated tubulin was not detected. Detection
of actin is also reported in the blot panel. The relative quantification of tubulins against actin
is shown in Figure 8B, clearly showing that tubulin levels did not change after treatments.
Thus, both tubulin content and any post-translational modifications (at least acetylation
and tyrosination) do not correlate with tolerance or susceptibility to heat stress in pollen.
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Figure 8. Detection of tubulins in pollen samples: (A) immunoblots with antibodies to tubulin,
tyrosinated and acetylated tubulin as well to actin. Lane 1, control sample (C); Lane 2, primed
sample (P); Lane 3, stressed sample (S); Lane 4, primed and recovered sample (PR); Lane 5, primed,
recovered and stressed sample (PRS). A total of 30 µg of proteins was loaded in each lane; (B) relative
quantitation of tubulin (TUB) and tyrosinated tubulin (TYR TUB). All samples were normalized
using the actin signal.

2.7. Proper Distribution of ROS in Pollen Tubes Is Restored Following Priming

Because of their importance in pollen tube growth and in response to stress or damage,
ROS were monitored for both relative concentration and distribution. In control samples
(Figure 9A), the typical distribution of ROS in pollen tubes was observed with a marked
increase in the apical region, as shown by the red color. In primed pollen tubes (Figure 9B),
ROS distribution was altered, although a faint accumulation could be seen at the apex.
Stressed pollen tubes showed a very homogeneous ROS distribution, and the tube apex
did not accumulate ROS (Figure 9C). The pattern and relative concentration of ROS in
pollen tubes subjected to priming and recovery was similar to the priming case, albeit
with a slight accumulation in the apical region (Figure 9D). A significant increase in ROS
in the apical region was found in pollen tubes subjected to priming, recovery, and stress,
albeit the apical accumulation was less focused than in control samples (Figure 9E). These
observations suggest that single heat treatment (priming or stress) alters the profile of
ROS in the pollen tube. In contrast, priming and recovery followed by stress restores the
distribution of ROS.
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Figure 9. Analysis of reactive oxygen species (ROS) distribution in pollen tubes: (A) control sample
(C); (B) primed sample (P); (C) stressed sample (S); (D) primed and recovered sample (PR); (E) primed,
recovered and stressed sample (PRS). Figure reports the most representative images. At least 30 pollen
grains and tubes were analyzed. Bars 10 µm.

2.8. Stress and Priming Affect Pollen Antioxidant Machinery

Changes in ROS distribution prompted us to the analysis of the pollen antioxidant
machinery. Specific activities of the antioxidant enzymes superoxide dismutase (SOD)
and catalase (CAT) were measured in crude extracts. SOD activity was pronounced in
control pollen, with a value of 0.52 mU/mg of crude protein and stress significantly affected
the enzyme activity, which dropped to 0.39 mU/mg of crude protein (S). SOD activity
was not significantly altered in primed pollen (P). Conversely, the enzyme activity was
less enhanced in pollen subjected to priming followed by recovery (PR) and in primed
and recovered pollen subjected to stress (PRS), which showed SOD activities similar to
pollen subjected to stress (S) (Figure 10A). CAT activity was also analyzed. Control pollen
showed a mean CAT activity of 0.22 mM H2O2 min−1g−1, which decreased in stressed
pollen (0.14 mM H2O2 min−1g−1). Mirroring SOD activity pattern, also for CAT activity,
primed pollen (P) showed no significant differences with control pollen, while both pollen
subjected to priming followed by recovery (PR) and primed and recovered pollen subjected
to stress (PRS) showed a decreased CAT activity (Figure 10B).

2.9. Distribution of Cytosolic Ca2+ Changes upon Heat Treatment

As the tip-focused Ca2+ gradient is strongly associated with pollen tube emergence
and growth, it was investigated by the Fluo-4/AM probe. In the control sample (C),
the typical accumulation of cytosolic Ca2+ at the apex of pollen tubes was observable
(Figure 11A). Priming induced alterations of the Ca2+ gradient, which impaired Ca2+ focus
at the tube apex (Figure 11B,C). In the S sample, Ca2+ localized along the pollen tube but did
not accumulate in the apical region. Two distinct experimental cases were observed. In one
case, pollen tubes were characterized by high diffuse levels of cytosolic Ca2+, while in other
cases a diffuse but lower Ca2+ content was observable (Figure 11D,E). Ca2+ distribution in
the primed and recovered sample (PR) resembled the control condition, with a gradient
along the pollen tube and a pool in the apex (Figure 11F,G). The Ca2+ gradient was visible
also in the PRS sample, although fainter compared to control (Figure 11H,I).
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Figure 11. Distribution of cytosolic Ca2+ in pollen tubes: (A) control sample (C), with the typical
accumulation of cytosolic Ca2+ at the pollen tube apex; (B,C) primed sample (P), with altered Ca2+

gradient not always focused at the tube apex; (D,E) stressed sample (S), with Ca2+ localized along
the pollen tube but not in the apical region; (F,G) primed and recovered sample (PR), with diffuse
signal along the pollen tube but more evident in the apical region; (H,I) primed, recovered and stressed
sample (PRS), with Ca2+ signal again localized to the tube apex although with less intensity. Figure
reports the most representative images. At least 30 pollen grains and tubes were analyzed. Bars 10 µm.
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3. Discussion

In this manuscript, we investigated how tobacco pollen can memorize a mild heat
treatment (priming) and effectively respond to more drastic conditions. The data obtained
demonstrate that various biochemical processes can be modulated by priming. These
include Ca2+ concentration, proton gradient, and levels of reactive oxygen species. Soluble
sugar (sucrose) content can also be modulated by heat pretreatment. All this results in
a more effective pollen response (mainly proper tube growth) when subjected to heat
stress. The choice of pollen as a model of study relies on the critical need for adaptation
to HS during microsporogenesis and microgametogenesis. To date, thermotolerance is
well studied at the plant level but to a lesser extent for pollen. Moreover, while several
studies examined the response to heat stress in pollen, there is a lack of knowledge about
pollen response to HS preceded by pre-adaptation [25]. The complexity of thermotolerance
in pollen is emphasized by proteomics studies highlighting the importance of metabolic
pathways [26], reinforcing the hypothesis that thermotolerance in a simple structure such
as pollen grain or tube is multifaceted. Indeed, the implementation of various mechanisms,
including hormones [11], as well as alternative splicing [27] or production of specific
miRNAs [28], should be kept in mind if analyzing more complex systems.

At the cell level, one of the most perceptible effects of heat damage is the reduced
germination of pollen grains as well as the reduced growth rate of pollen tubes, according
to evidence since the early 1990s [29]. Due to the simplicity of measurements, the evaluation
of germination and growth of pollen tubes is a reliable and useful approach for comparing
distinct genotypes or different experimental conditions. While HS reduced germination
rates also in the model system herein proposed, i.e., tobacco pollen, priming was shown to
counteract the detrimental effect of HS. Interestingly, HS did not affect pollen tube growth,
suggesting that the onset of germination is the most susceptible stage to HS. This evidence
also hinted at the involvement of a series of buffering systems, the reason why we further
investigated biochemical and metabolic processes allowing pollen adaptation.

First, evidence concerning the mitigation of stress by priming regarded the distribution
of Ca2+ and ROS, both fundamental for proper growth of pollen tubes, and characterized
by oscillatory concentrations related to growth rates [30–34]. Our results indicated that HS
caused a sharp drop in the concentration of both Ca2+ and ROS, while priming had a posi-
tive effect on the redistribution of Ca2+ and ROS and contributed to their re-establishment
at levels comparable to control. This tip-focused Ca2+ is well-known to crucial for pollen
tube growth and orientation; and its influx likely derives from Ca2+ stores in the cell wall,
via stretch- or voltage- or ROS-activated channels [34,35]. The maintenance of low Ca2+

concentrations just below the apex involves Ca2+-ATPase that actively either pumps Ca2+

externally or compartmentalizes it within cell organelles [36]. This dynamic Ca2+ balance
requires a constant consumption of ATP, therefore investigated in our study. We found
a decrease in ATP content, which may cause a redistribution of Ca2+ with a consequent
effect on pollen tube growth. Concomitantly, ROS production involves Ca2+-dependent
enzymes, underlying a deep interconnection among ATP, ROS and Ca2+ concentrations.
Like Ca2+, also ROS accumulate in the apical region although their exact relationship with
the growth process is not fully known [33]. Together with Ca2+ and pH gradient, ROS are
likely part of the central oscillator that regulates the growth rate of pollen tubes [37]. In
our analysis, we highlighted that HS-induced changes in Ca2+ and ROS content potentially
resulting in an altered pattern of pollen tube growth. The typical growth oscillation, i.e.,
the switching between fast and slow growth, is lost after HS but is partially recovered if
pollen tubes are previously exposed to priming. In addition, ROS-scavenging antioxidant
enzymes, i.e., SOD and CAT, showed activities in primed samples comparable to control
pollen, confirming that acclimation is mediated, at least in part, by the enhancement of
cellular mechanisms preventing oxidative damage under stress [38,39]. Contrarily, after
heat stress SOD and CAT activity decreased, partially confirming the data found in Corylus
avellana pollen genotypes, in which HS reduced SOD and CAT activities [39].
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Interestingly, also osmotin, a multifunctional protein that is overexpressed under
stress conditions [40,41] and acts as an osmoprotectant, participates in the regulation of
ROS level; the protein accumulates when pollen was stressed and continues to accumulate
during recovery [42,43]. In our experimental setup, ROS content in S and PRS samples
was lower than in P and PR samples, indicating that probably osmotin contributes to limit
their concentration. However, the content of osmotin decreased under severe HS even if
pollen previously received priming treatment, suggesting that the protein accumulated
under sub-lethal temperatures might be used to cope with a more intense stress. The
involvement of proteins of refolding systems besides osmotin, i.e., dehydrins and HSP70,
in the acquisition of thermo-tolerance in tobacco pollen was also investigated because the
so-called UPR (unfold protein response) is one of the main sensors of thermotolerance at
the pollen level [44,45]. Like osmotin, dehydrins can regulate ROS content due to their
high content in antioxidant amino acids, such as lysine, histidine, and glycine, and can
scavenge ROS through oxidative modification. Two forms of dehydrins were detected
in tobacco pollen, one remaining constant in all samples and the other one mirroring the
osmotin profile progressively increasing in PR samples. HSP70 levels did not change
between control, primed, and stressed samples, suggesting that the expression of HSP70 is
not correlated to HS adaptation. This evidence might surprise; however, the role of HSPs
in pollen response to HS is hypothesized although not definitively proven. In fact, several
evidences show that HSPs (20, 22, 70, and 101) differentially accumulate in response to
HS [46–48], but earlier studies by our group did not show a corresponding accumulation
of HSP70 in tobacco pollen subjected to HS [49]. The molecular chaperone HSP 101 was
proposed to co-operate with small HSP (sHSPs) and HSP70 chaperones to promote the
removal of protein aggregates and it was shown to be essential to overcome HS [50].
Interestingly, phosphorylated sHSPs were proposed to interact directly or indirectly with
F-actin, protecting actin filament against breakage caused by actin-severing proteins, and
promoting its subsequent reorganization [51]. Since HSPs are conserved among living
organisms, it would be interesting to deepen the roles of HSPs in the response to HS and
stress adaptation.

Data reported in this work indicated that Ca2+ and ROS were altered in concentration
and distribution after HS treatment and both may be involved in the organization of the
cytoskeleton. To support this evidence, cytoskeleton organization, pollen tube growth, Ca2+

and ROS have recently been correlated in pear pollen [52]. The unaffected organization
of the actin cytoskeleton after HS suggests that the flow of vesicles and organelles does
not undergo profound alterations. Consequently, we can assume that the accumulation of
secretory vesicles at the apex is undisturbed in heat-stressed tubes. Because we observed a
major change in the growth pattern of pollen tubes, the secretory process may nevertheless
be partially altered. Indeed, the growth at the pollen tube apex is the result of a balance
between secretion of esterified pectins and subsequent conversion into acidic pectins [53].
The equilibrium between two different pectins is responsible for the oscillatory growth of
pollen tubes, assuming that the turgor pressure is kept constant [54].

HS alters actin filaments and microtubules in terms of isoform accumulation and
organization [49]. Therefore, the actin cytoskeleton was investigated, also in light of
differences in ATP concentration, the latter involved in the assembly of cytoskeleton [55].
In tobacco pollen, under our experimental conditions, ATP levels decreased during HS
but remained similar to control samples if pollen had been primed. These data indicate
that pollen is able to produce ATP after priming and stress using a metabolic system
that is not actuated by the stress condition only. As actin organization in both pollen
and pollen tubes was regular and comparable to control pollen (apart from sporadic
cases of depolymerized actin filaments), we might assume that both priming and HS do
not have a prominent effect on actin filament organization. In parallel with the analysis
of actin filaments, we also investigated the possible modification of and its modified
isoforms, i.e., tyrosinated and acetylated tubulin, usually linked to distinct functions
of microtubule subsets [56]. In tobacco pollen, no acetylated tubulin was detected, nor
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significant differences in tyrosinated tubulin among samples, suggesting that tolerance
to HS does not involve post-translational modifications of tubulin. This is not surprising
because the tubulin detyrosination/tyrosination cycle appears involved in regulating
the transition of plant cells from elongation to division [57] and acetylated tubulin is
sporadically present in pollen and anthers [58]. Unlike other plant cells and tissues,
where acetylated microtubules are expectedly involved in kinesin-based regulation of
motility [59], the presence and the role of acetylated microtubules in pollen is still an
unanswered question.

Various sugars, in addition to being energy available for pollen tube growth, are
also likely related to HS tolerance, and usually carbohydrate accumulation increases in
response to HS conditions [60]. It must also be mentioned that carbohydrates are not the
only metabolic mechanism of tolerance and lipids also play a role of some importance [61].
Understanding the role of carbohydrates requires knowledge of metabolic pathways. The
levels of sugar did not show significantly differences in our analysis, although primed
samples seemed to restore sugar concentrations comparable to the control sample. There-
fore, we analyzed the levels of Sus, a key enzyme in sucrose-degrading metabolism [62].
Sus is active during pollen tube growth because it performs both energy-conserving ac-
tion and produces activated substrates (UDP-glucose) for the synthesis of cellulose and
callose [8,63]. In the case of heat-stressed tobacco pollen, Sus is already known to decreases
significantly [49]. This manuscript confirmed that Sus content decreases in both primed and
heat-stressed samples. However, the decrease in Sus levels is not necessarily a consistent
trait of HS. For example, when HS occurs during pollen development, Sus transcripts
increase in thermotolerant tomato genotypes [64], suggesting that Sus accumulation is
an identifying trait of HS tolerance during microsporogenesis. Analyzing the levels of
Sus and major related sugars, the lower accumulation of Sus during HS implies that the
conservative energy pathway is affected, thus leading to lower levels of UDP-glucose. The
rationale is that the breakdown of sucrose into UDP-glucose is of little use because pollen
requires energy to withstand heat shock. It is, therefore, likely that sucrose is primarily
degraded by invertases such that the products of sucrose degradation are redirected to the
glycolytic and respiratory pathways for ATP synthesis. This hypothesis is confirmed by the
fact that after priming and recovery, sucrose content increased significantly, suggesting an
increased starch degradation activity or an increased sucrose uptake from the extracellular
environment. At the same time, Sus content does not return to levels comparable to the
control; therefore, the extra sucrose produced by priming and recovery will not be metab-
olized by Sus. Samples subjected to priming, recovery, and stress are characterized by a
significant increase in UDP-glucose and simultaneously a significant decrease in glucose
and fructose. We therefore assume that previously accumulated sucrose is cleaved into
glucose and fructose, a fraction of which is used for the synthesis of new UDP-glucose.
The rest of glucose and fructose is directed to ATP synthesis, whose content matches the
control values.

In conclusion, our results show that HS significantly affects sugar levels, in particular
sucrose, whose reduction presumably leads to a decrease in metabolic pathways. Among
the various effects induced by the drop in available energy, we highlighted changes in Ca2+

content and distribution. These changes could explain the lower dynamics of actin filaments
and thus the reduction in growth rate. Different accumulation of Ca2+ was interconnected
with ROS levels, which was correlated to antioxidant enzymes levels. However, priming
appears to be effective in rebalancing ROS and consequently Ca2+ concentration, which
leads to restored growth conditions. Temperature is an essential parameter controlling
crop yield and when HS occurs during the reproductive phase, plant fertility is affected,
which reduces yield and affects the next generation of plants. Thus, so far, few molecular
mechanisms responsible for low pollen germination frequency and distorted tube growth
during stress conditions have been identified and, more importantly, mechanisms on how
pollen responds to and circumvents stress limitation and how it adapts have been poorly
studied. A major challenge for basic plant research will be to understand how plants



Int. J. Mol. Sci. 2021, 22, 8535 18 of 24

adapt to heat stress to enable targeted plant improvements in the future. In particular,
understanding the important molecular processes of thermoregulation in pollen may help
identify “markers” for breeding new varieties with a less heat-sensitive fertilization process.

4. Materials and Methods
4.1. Pollen Growth and Stress Treatment

Pollen was harvested from plants grown in the greenhouse of the Botanical Garden
(Department of Life Sciences, University of Siena) and subsequently dehydrated on silica
gel, then stored at −20 ◦C. Before using, pollen was thawed and hydrated at room tem-
perature (25 ◦C—RT) overnight in a moist chamber. Pollen was then harvested into Petri
dishes and four experimental treatments were applied: Treatment 1 consisted in 1 h at
30 ◦C (Sample P); Treatment 2 consisted in 2 h at 35 ◦C (Sample S); Treatment 3 consisted
in 1 h at 30 ◦C and 3 h at room temperature (Sample PR); Treatment 4 consisted in 1 h at
30 ◦C, 3 h at RT followed by 2 h at 35 ◦C (Sample PRS) (Figure 12). After treatments, pollen
was germinated in BK medium supplemented with 12% sucrose [65]. All samples were
compared to control pollen, namely pollen not subjected to heat treatment (Sample C).
To determine pollen viability, the MTT (2,5-diphenyl tetrazolium bromide) test was used.
MTT produces a yellowish solution that is converted to dark blue, water-insoluble MTT
formazan by mitochondrial dehydrogenases of living cells. The test solution contained a
1% concentration of the MTT substrate in 5% sucrose. After 15 min incubation at 30 ◦C, the
pollen samples were visualized under a light microscope. Pollen viability, germination rate
and length of at least 100 pollen tubes were measured for all assays. The measurement of
pollen tube lengths was carried out using the ImageJ software, after calibration. Following
the required growth period, pollen was collected and used for additional analysis. The
values of temperatures applied during the priming and stress phases were based on the
work of Parrotta et al. [49].
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4.2. Protein Extraction

After 1 h of germination, pollen tubes were collected by low-speed centrifugation and
washed with HEM buffer (50 mM Hepes pH 7.5, 2 mM EGTA, 2 mM MgCl2) containing 12%
sucrose. Pollen tubes were lysed in a cold room (4 ◦C) using a Potter-Elvehjem homogenizer
(40 strokes); the lysis buffer was HEM supplemented with protease inhibitors and 1 mM
DTT. Samples were centrifuged at 500× g for 10 min (4 ◦C). The supernatant was removed
and centrifuged at high speed (100,000× g for 45 min at 4 ◦C). The resulting supernatant
from the high-speed centrifugation was precipitated in 60% TCA in cold acetone for 1 h at
−20 ◦C; precipitated proteins were washed in 100% cold acetone and then resuspended in
1-D electrophoresis buffer.
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4.3. Determination of Protein Concentration

Protein concentration was determined using a commercial kit (2-D Quant Kit, GE
HealthCare, Dornstadt, Germany), according to manufacturer’s instructions and using
BSA as reference. Each sample was analyzed in three replicates.

4.4. 1-D Electrophoresis and Immunoblotting

Separation of proteins by 1-D electrophoresis was performed on precast 10% Criterion
XT gels (Bio-Rad Laboratories, Segrate, Italy) using a Criterion cell (Bio-Rad Laboratories,
Segrate, Italy) equipped with a Power Pac BioRad 300 at 200 V for approximately 45 min.
Gels were stained with Bio-Safe Coomassie blue (Bio-Rad Laboratories, Segrate, Italy).

Transfer of proteins from gels to nitrocellulose or PVDF (for osmotin and dehydrins)
membranes was performed using a Trans-Blot Turbo Transfer System (Bio-Rad Laboratories,
Segrate, Italy) according to the manufacturer’s instructions. After blotting, membranes
were blocked overnight at 4 ◦C in 5% ECL Blocking Agent (GE HealthCare Dornstadt,
Germany) in 0.1% Tween-20 in TBS (20 mM Tris pH 7.5, 150 mM NaCl). After washing
with TBS, membranes were incubated with the primary antibody for 1 h. The following
primary antibodies were used: mouse monoclonal anti-tubulin B-5-1-2 (Sigma) diluted
1:5000, mouse monoclonal anti-actin 10B3 (Sigma) diluted 1:3000, rabbit polyclonal against
maize sucrose synthase [66] diluted 1:10,000, mouse monoclonal against HSP70 (Euroclone
Pero, Italy) diluted 1:5000, mouse monoclonal against the tubulin C-terminal tyrosine
TUB-1A2 (Sigma-Aldrich St. Louis, MO, USA, diluted 1:1000), mouse monoclonal anti
acetylated Lys 40 6-11B-1 (Sigma-Aldrich St. Louis, MO, USA) diluted 1:2000, rabbit
monoclonal anti dehydrins 1:1000 and rabbit monoclonal anti osmotin 1:1000 (Agrisera
Vännäs, Sweden). Subsequently, membranes were washed twice with TBS and then
incubated for 1 h with peroxidase-conjugated secondary antibodies. Specifically, we
used an anti-mouse IgG (Bio-Rad Laboratories, Segrate, Italy, diluted 1:3000) and a goat
anti-rabbit IgG (Bio-Rad Laboratories, Segrate, Italy, diluted 1:3000). After rinsing the
membranes with TBS, the immunological reactions were visualized with Immun-Star
(Bio-Rad Laboratories, Segrate, Italy). Images of gels and blots were acquired using a
Fluor-S apparatus (Bio-Rad Laboratories, Segrate, Italy) and analyzed with the Quantity
One software (Bio-Rad Laboratories, Segrate, Italy). The quantification of the relative band
intensity was normalized on actin and tubulin, used as housekeeping proteins as shown
not to change in accumulation under our experimental conditions. Exposure times were
30–60 s for blots and 5–7 s for Coomassie-stained gels.

4.5. Fluorescence Imaging

For actin labeling, pollen tubes of tobacco were fixed and permeabilized in 100 mM
Pipes pH 6.9, 5 mM MgSO4, 0.5 mM CaCl2, 0.05 % Triton X-100, 1.5 % formaldehyde,
0.05% glutaraldehyde for 30 min [67]. Samples were washed twice with the same buffer
described above except that the pH was 7 and it contained 10 mM EGTA and 6.6 µM
Alexa 543-phalloidin (Invitrogen Waltham, MA, USA). Samples were placed on slides
and covered with a drop of Citifluor. At least 20 pollen tubes of comparable length were
analyzed for each experimental condition.

For detection of reactive oxygen species (ROS), the fluorescent ROS indicator dye 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH2-DA; Molecular Probes Eugene, Eugene, OR,
USA) was used. The detailed protocol is reported in [68]. Controls were carried out both
without the ROS probe (in this case, we found no signal except for the autofluorescence of
pollen grains) and by addition of fluorescein diacetate (in this case, we observed a signal
uniformly diffused throughout the pollen grain and tube) (not shown). To highlight the
differences in fluorescence intensity among different regions of pollen tubes, grayscale im-
ages were transformed into pseudocoloured images using the ImageJ software, specifically
by the command Image > Lookup tables > 16 colors. At least 20 pollen tubes of comparable
length were analyzed for each experimental condition.
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Analysis of cytoplasmic Ca2+ was performed according to the protocol described
in [69]. Briefly, pollen samples were incubated for 15 min at 4 ◦C with a solution of 0.5 µM
of the Fluo-4/AM probe, 2% cetyl-trimethyl ammonium bromide (CTAB) in 100 mM
Tris-HCl, 40 mM EDTA, pH 8.0. CTAB was used to increase the permeability of the cell
wall to the probe. At least 20 pollen tubes of comparable length were analyzed for each
experimental condition.

For all experimental assays, samples were observed with a Zeiss Axio Imager fluores-
cence microscope equipped with a 63× objective, an MRm AxioCam video camera and
structured illumination. Images were captured and saved in zvi format.

To quantify the intracytoplasmic fluorescence signal of Ca2+ and ROS, individual
images were imported into ImageJ and a segmented line was depicted to cover the ROI.
The line thickness was such that it largely occupied the cell cytoplasm. The signal was
measured with the Analyze > Plot profile command. Graphs showing Ca2+ and ROS profile
are added in the Supplementary Materials.

4.6. Kymograph Analysis

Video clips of pollen tubes under different experimental conditions were recorded
to determine the growth profile for 1 h and 30 min after an initial 1-h germination in BK
medium. Kymograph analysis reported a quantitative description of different measure-
ments of pollen growth. Pollen was germinated in 24-well plates coated with polylysine
to prevent pollen from moving during video recording. We used a Nikon phase-contrast
inverted light microscope; video clips were captured with Pinnacle Media Center software
(http://www.pctvsystems.com/, 11 May 2021) in MPEG-2 format. Next, videos were con-
verted to AVI format using Virtual Dub software (http://virtualdub.org/, 11 May 2021),
then opened in ImageJ and scanned with the kymograph plug-in (written by J. Rietdorf and
A. Seitz; https://www.embl.de/eamnet/html/body_kymograph.html, 11 May 2021). For
each frame, gray values were measured along a region of interest (ROI) manually specified
by the operator. From the gray values, a new image (kymograph) was produced in which
the X-axis is the time axis (unit is the interval between frames) and the Y-axis is the distance
along the ROI (unit is the distance in pixels traveled by the apex of pollen tubes). The
speed was measured by the same plug-in. Video clips were recorded for at least 10 pollen
tubes in the various experimental cases.

4.7. Analysis of ATP and Sugars by High-Performance Liquid Chromatography (HPLC)

ATP was analyzed by HPLC (Perkin Elmer Milano, Italy, Series 200) following the
method described by [70]. Fifty milligrams of pollen were collected by centrifugation at
135× g for 5 min from sucrose germination media and resuspended in 7% TCA (1 mL) as
TCA solution stabilizes ATP half-life up to several hours (Sigma-Aldrich St. Louis, Missouri,
USA bulletin). Complete disintegration and rupture of cells were performed with a Potter-
Elvehjem homogenizer with 40 strokes per sample. The homogenate was centrifuged at
15,000× g for 15 min at room temperature. A total of 20 µL of each sample were injected into
a solid stationary-phase C18 column (75 × 4.6 mm, particle size 5 µm). The mobile phase
was a binary mobile phase gradient (Solvent A, 10 mm phosphate buffer pH 7; Solvent B,
acetonitrile) with the following gradient: 0 min, 100% Solvent A, 0% Solvent B; 2 min, 95%
A, 5% B; 4 min, 80% A, 20% B; 5.3 min, 75% A, 25% B; 6 min, 100% A, 0% B. The following
parameters were used: flow rate 0.3 mL min−1; room temperature; approximate elution
time 6 min for ATP. Identification of different components was obtained by programming
a DAD 235C spectrophotometric detector with excitation wavelength 254 nm.

Sugar analysis was performed by lysing pollen with 1 mL of water; the final super-
natants were examined by isocratic HPLC analysis with a Waters Sugar-Pak I ion-exchange
column (6.5 × 300 mm) at a temperature of 90 ◦C and using a Waters 2410 refractive
index detector. MilliQ grade water (pH 7) was used as a mobile phase with a flow rate of
0.5 mL min−1; an injection loop of 20 µL was used for all samples and standards (sucrose,
glucose, fructose, and UDP-glucose).

http://www.pctvsystems.com/
http://virtualdub.org/
https://www.embl.de/eamnet/html/body_kymograph.html
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4.8. Catalase and Superoxide Dismutase Spectrophotometric Assays

Germinated pollen was centrifuged for 5 min at 1000 rpm, room temperature, and
pollen lysed as previously reported with minor modifications [68]. Briefly, pelleted pollen
was suspended in PBS 150 mM, pH 7.5 with 0.1 mM EDTA (10 mg pollen/1 mL extraction
buffer), sonicated twice on ice for 15 s and centrifuged for 25 min at 5000× g, 4 ◦C. Freshly
prepared crude extracts were used to determine antioxidant enzyme activities according
to plant-established protocols [71]. Total SOD activity was assayed in 48 well microplates
(Corning, Corning, NY, USA) in 50 mM phosphate buffer (pH 7.8) containing 2 mM EDTA,
9.9 mM L-methionine, 55 µM NBT, and 0.025% Triton-X 100. Forty microliters of sample
and 20 µL of 1 mM riboflavin were added and the reaction was started by light irradiation.
The control plate was placed in the dark. Absorbance of the samples was measured by
plate reader after 15 min at 560 nm (Infinite M Nano, Tecan, Switzerland). The enzyme
activity (grams per fresh weight) of a sample was determined from a standard curve
obtained by using pure SOD (Merk, Milano, Italy). For CAT, the decomposition of H2O2
was followed by a decrease in absorbance at 240 nm in a UV/Vis spectrophotometer (V530,
Jasco Cremella (LC), Italy). The assay mixture contained crude extract diluted in 50 mM
potassium phosphate buffer, pH 7.0 and 10 mM H2O2. The extinction coefficient of H2O2
(40 mM−1 cm−1 at 240 nm) was used to calculate the enzyme activity, expressed in terms
of millimoles of H2O2 per minute per gram fresh weight.

4.9. Statistical Analysis

Pollen viability, germination rate and pollen tube length were analyzed using ImageJ
software after calibration. For each treatment at least 100 pollen grains/tubes were consid-
ered, and experiment was conducted in triplicates. Differences between sample sets were
determined by analysis of variance (one-way ANOVA, with a threshold p-value of 0.05).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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