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Abstract: Anthocyanins contribute to the quality and flavour of fruits. They are produced through
the phenylpropanoid pathway, which is regulated by specific key genes that have been identified in
many species. The dominant anthocyanin forms are reversibly transformed at different pH states,
thus forming different colours in aqueous solutions. In plants, anthocyanins are controlled by specific
factors of the biosynthetic pathway: light, temperature, phytohormones and transcription factors.
Although great progress in research on anthocyanin structures and the regulation of anthocyanin
biosynthesis has been made, the molecular regulatory mechanisms of anthocyanin biosynthesis
in different plants remain less clear. In addition, the co-regulation of anthocyanin biosynthesis is
poorly understood. In this review, we summarise previous findings on anthocyanin biosynthesis,
including the biochemical and biological features of anthocyanins; differences in anthocyanin biosyn-
thesis among fruit species, i.e., apple, red pear, and the model plant Arabidopsis thaliana; and the
developmental and environmental regulation of anthocyanin accumulation. This review reveals the
molecular mechanisms underlying anthocyanin biosynthesis in different plant species and provides
valuable information for the development of anthocyanin-rich red-skinned and red-fleshed apple
and pear varieties.

Keywords: anthocyanins; phytohormones; light and temperature; transcription factors; molecu-
lar mechanisms

1. Introduction

The accumulation of different pigmentations affects the growth, development and
reproduction of plants under various conditions, which, similar to the diversification of
coat hair colour in mammals, is appropriate for different environments [1]. Anthocyanins
are water-soluble flavonoid pigments widely distributed in the petals, fruits, stems and
leaves of plants. [2–4]. In addition, anthocyanins are natural antioxidants that can strongly
scavenge free radicals and reactive oxygen species (ROS) [5]. Anthocyanins have a pivotal
role in the rendering of red, purple and blue colours of plant tissues and organs, and
contribute to the dispersal of pollen and seeds by attracting animals such as bees and
birds [6,7]. Moreover, anthocyanins are also important indicators of fruit ripening and
influence the quality of fruits and their derived products (e.g., wine and fruit juices), which
affects the purchasing behaviour of consumers to a certain extent [8].

In the past few decades, great progress in the understanding of anthocyanin metabolism
in model plant species has been made, especially with respect to the biosynthetic pathways
of these compounds. In plants, anthocyanin biosynthesis is affected by various biotic
and abiotic stresses, including UV irradiation, insect attack, drought, and low tempera-
ture [9–11]. Additionally, the accumulation of anthocyanins is also determined by enzyme-
coding structural genes, transcription factors, plant hormones and microRNAs [12–15].
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Anthocyanins participate in the formation of fruit quality, affecting taste, colour and
lustre, whilst even affecting human health. The biosynthesis of anthocyanins in fruit
crops has attracted large amounts of attention from academics. With the development of
molecular biology and bioinformatics, an increasing number of studies have revealed that
there are obvious differences in the regulatory mechanisms of anthocyanin biosynthesis
between different plant species. Many key players in the complex regulatory network
remain to be identified. Therefore, this article aims to provide a detailed overview of
the known regulatory mechanisms of anthocyanin biosynthesis in apples and pears and
provide a theoretical foundation for the genetic improvement and breeding of crops, fruits
and ornamental plant species [16].

2. Basic Information of Anthocyanins
2.1. Classification and Chemical Structure of Anthocyanins

Anthocyanins are important secondary metabolites belonging to the flavonoids
(polyphenols). At present, more than twenty kinds of anthocyanins have been identi-
fied in nature, and approximately 90% of more than 550 kinds of anthocyanins found in
nature are derived from the six most common anthocyanins: cyanidin (Cy), peonidin (Pn),
pelargonidin (Pg), malvidin (Mv), delphinidin (Dp) and petunidin (Pt). Anthocyanins exist
alongside a variety of monosaccharides, including glucose, rhamnose, galactose and xylose,
and disaccharides consisting of rhamnose, gentian disaccharide and sophora disaccharide
to form glycosides. Additionally, anthocyanins consist of α-phenylbenzopyran cations and
are mainly composed of C6(A)-C3(C)-C6(B) carbon skeleton structures (Figure 1). At the A
and C rings of these six anthocyanins, the 3, 5 and 7 positions connect to the hydroxyl group,
while at the B ring, the hydroxyl group is connected to position 4′. Whether positions 3′

and 5′ have hydroxyl groups and are methoxylated is considered the standard for distin-
guishing the six anthocyanins. Due to the methylation and hydroxylation modifications at
different positions of the ring, different colours of anthocyanins are formed (Table 1).
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Figure 1. Basic chemical structures of anthocyanidins. A, C6; B, C6; C, C3, anthocyanins consisting of
α-phenylbenzopyran cations are mainly composed of C6-C3-C6 carbon skeleton structures. R1 and
R2, structural groups at different positions (3′ and 5′) on the B ring. Detailed information on R1 and
R2 substitutions is listed in Table 1.

2.2. The Influence of pH on Anthocyanin Chemical Structure

The corresponding four dominant anthocyanin forms, flavylium cations, carbinol
pseudobases, neutral quinonoidal bases and chalcone, are reversibly transformed at differ-
ent pH states (Figure 2), and so different colours will be produced concomitantly in aqueous
solutions [17]. Under acidic conditions, three chemical equilibria, including acid-base equi-
librium, hydration equilibrium and ring-chain tautomeric equilibrium, were found to
coexist. When the pH < 2, anthocyanin exists in the form of red flavylium cations; as the
pH increases, the flavylium cation rapidly continues to hydrate to produce a colourless
carbinol pseudobase at a pH from 4 to 6. Under alkaline conditions, acid-base equilibrium
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becomes dominant, and proton transfer reactions swiftly occur to generate products that
are unstable and that easily degrade into other products. As the solution pH value varies
from 6 to 8, the colours vary from purple to violet. When the pH > 8, anthocyanins exist in
the form of chalcone, and a colourless solution emerges. Under the same external condi-
tions, the higher the pH, the faster the degradation rate of anthocyanins [18]. In addition,
anthocyanins are unstable in nature, approximately 65% of anthocyanins are acylated, and
glycosylation and methylation promote the polymorphism of anthocyanins. The presence
of metal ions, oxidative degradation, vitamin C, sugars, temperature and light also affects
the stability of the anthocyanin chemical structure [19,20].

Table 1. Basic information on the six common anthocyanidins.

Name (Abbreviations)
Substitution

Colour λmax in HCl Acidified MeOH
R1 R2

Pelargonidin (Pg) H H Red 520
Cyanidin (Cy) OH H Magenta 535

Delphinidin (Dp) OH OH Purple 546
Peonidin (Pn) OCH3 H Magenta 532
Petudinin (Pt) OCH3 OH Purple 543
Malvidin (Mv) OCH3 OCH3 Purple 542
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Figure 2. Scheme of the pH-dependent structural equilibrium interconversion between the dominant anthocyanin forms.
Four dominant anthocyanin forms, flavylium cation, carbinol pseudobase, neutral quinonoidal base and chalcone, can
reversibly transform at different pH states and then produce different colours. pH < 2, the colour ranges from red to orange;
4 < pH < 6, shows mainly a colourless solution; 6 < pH < 8, the colours vary from purple to violet; pH > 8 a light yellow and
colourless solution appears.
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3. Biosynthesis Pathway of Anthocyanins

Anthocyanins are synthesised from a common phenolic precursor through the phenyl-
propanoid pathway on the cytoplasmic face of the endoplasmic reticulum in plants. Stable
anthocyanins formed by different modifications, such as glycosylation, methylation and
acylation, are transported into the vacuole, where they accumulate. As one of the end-
products of the flavonoid biosynthetic pathway, proanthocyanidins are synthesised from
epicatechin, which is catalysed by anthocyanidin reductase (ANR) and subsequently trans-
ported and polymerised [21]. The correlative enzymes and central regulatory factors in-
volved in the anthocyanin biosynthetic pathway are shown in schematic models (Figure 3).
In the anthocyanin biosynthetic pathway, multiple enzyme-encoding structural genes are
involved as follows: upstream structural genes, such as phenylalanine ammonialyase (PAL)
and 4-coumarate–CoA ligase (4CL); early biosynthetic genes (EBGs), such as chalcone
synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-
hydroxylase (F3′H), and flavonoid 3′5′-hydroxylase (F3′5′H); late biosynthetic genes (LBGs),
such as dihydroflavonol 4-reductase (DFR), anthocyanidin synthase/leucoanthocyanidin
dioxygenase (ANS/LDOX), and UDP-glucose flavonoid glucosyl transferase (UFGT); and
modifying genes, such methyltransferase (MT), O-methyltransferase (OMT) and antho-
cyanin transferase (AT). In addition, four structural genes, transparent taste 10 (tt10),
transparent taste 12 (tt12), transparent taste 13 (tt13) and transparent taste 19 (tt19), encode
polyphenol oxidase (PPO), a secondary transport factor of the MATE (multidrug and toxic
compound extrusion) family, H (+)-ATPase and glutathione S-transferase (GST), respec-
tively. These proteins play significant roles in the modification, transport and oxidation of
anthocyanidins [22–24].

The synthesis of anthocyanins in plants is controlled by regulatory genes. At present,
the identified genes involved in the regulation of the anthocyanin biosynthetic pathway
consist of the myeloblastosis family (MYB) TFs, the basic helix-loop-helix (bHLH) TFs
and the tryptophan-aspartic acid repeat (WDR) TFs [25,26]. Generally, the members of
these three families of regulatory factors mainly depend on the MYB-bHLH-WD40 (MBW)
complex to exert their effects [27,28].
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Figure 3. The biosynthetic pathway of anthocyanins/proanthocyanidins. PAL, phenylalanine ammo-
nia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate CoA ligase; CHS, chalcone synthase; CHI,
chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′ hydroxylase; F3′5′H, flavonoid
3′5′hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; LAR, leucoanthocyanidin
reductase; ANR, anthocyanidin reductase; ANS, anthocyanidin synthase; LDOX, leucoanthocyanidin
dioxygenase; UFGT, UDP-galactose flavonoid 3-O-galactosyltransferase; OMT, O-methyl transferase;
MT, methyltransferase.

4. Regulatory Mechanism of Anthocyanin Biosynthesis

The biosynthesis of anthocyanins is affected by many factors, and therefore the regula-
tory mechanism is complicated in plants. To date, the main factors include environmental
factors, phytohormones, transcription factors and epigenetic modification. A schematic
of the regulatory mechanism of the activation of anthocyanin biosynthesis is summarised



Int. J. Mol. Sci. 2021, 22, 8441 6 of 13

briefly (Figure 4). In plants, MYB TFs are characterised by the highly conserved MYB
domain, with MYB proteins usually interacting with bHLH factors and WD-repeat proteins
in order to regulate anthocyanin biosynthesis [29]. Internal factors such as plant hormones,
and external factors such as light, temperature, fertility, sucrose and drought, can both
highly affect the transcriptional activation of target genes and the biosynthesis, accumula-
tion and transport of anthocyanins [30,31]. Anthocyanin metabolic pathways and related
gene transcription in different plant species respond to changes under different conditions.
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MRE (MYB recognition elements) and BRE (bHLH recognition elements), which bind to the promoter of the target gene.
The transcriptional activation of target genes promotes anthocyanin biosynthesis.

4.1. Light and Temperature

Light is essential for plant growth and development, and especially affects antho-
cyanin biosynthesis. After photostimulation, the photoreceptors activate a range of signal
transduction pathways involving photoreactions and corresponding gene expression [11].
In this process, some central light signal elements, such as constitutive photomorphogenic
1 (COP1), suppressor of PYHA (SPA) and elongated hypocotyl 5 (HY5), are involved. In
general, HY5 itself can target but not activate the promoters of anthocyanin biosynthesis-
related genes [32,33]. Once HY5 accumulates in abundance, it will be degraded by COP1
because of the photoinhibition of COP1 activity [34,35]. Some BBX proteins interact with
HY5 and further induce anthocyanin biosynthesis [36,37]. At present, most of the research
on the regulation of anthocyanin biosynthesis by light focuses on apple and pear.

In apples (Figure 5A), light negatively regulates anthocyanin biosynthesis mainly by
inhibiting the expression of MdBBX37. MdBBX37 belongs to the zinc finger transcription
factor family, whose members contain at least one conserved B-box motif in the N-terminal
region [38,39]. MdBBX37 reduces the expression level of MdHY5 by directly targeting
the promoter of MdHY5. Conversely, MdWRKY72 and MdWRKY11 transcription fac-
tors bind to the W-box cis-element of MdHY5 to activate its regulation of anthocyanin
biosynthesis [20,40]. Thus, the function of BBX proteins in response to light-induced an-
thocyanin accumulation requires the participation of HY5 [36,37]. Moreover, as a bZIP TF
and positive regulator of light signalling, MdHY5 can enhance anthocyanin biosynthesis
by directly activating the expression of MdMYB1/10 [34]. However, MdBBX37 hinders the
binding of MdMYB1 and MdMYB9 to their target genes and further reduces anthocyanin
accumulation [41–43].
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anthocyanin biosynthesis [41]. (A) Light, temperature and transcription factors involved in regulating anthocyanin
biosynthesis in red-fleshed apples. (B) Phytohormones and light are involved in regulating anthocyanin biosynthesis in red
pears. (C) Light and phytohormone-induced regulation of anthocyanin biosynthesis in A. thaliana.

In red pears, PpBBX16, a positive regulator of light-induced anthocyanin accumulation,
cannot combine directly with the promoter of either PpMYB10 or PpCHS, but can interact
with PpHY5 physically to form the PpBBX16-PpHY5 complex (Figure 5B). PpHY5 directly
binds to the PpMYB10 promoter, but whether PpHY5 can activate gene expression has
not been proven [44]. The PpBBX16-PpHY5 complex stimulates the promoter activity of
PpMYB10 and subsequently strongly enhances light-induced anthocyanin accumulation,
and the overexpression of PpBBX16 also promotes anthocyanin accumulation in the peel of
pear fruits [45]. As a positive regulator, PpBBX18 directly interacts with PpHY5, and the
heterodimer PpBBX18-pHY5 regulates anthocyanin accumulation by inducing PpMYB10
transcription [46]; conversely, as a negative regulator, PpBBX21 can physically interact with
PpBBX18 and PpHY5, repressing anthocyanin biosynthesis by hindering the formation
of the PpHY5-PpBBX18 complex [44,47]. In addition, HY5 binds to the MYBD promoter
directly in A. thaliana, which positively accelerates the expression of downstream genes in
light- or cytokinin-stimulated signalling pathways [40,48,49].

A large number of studies have also revealed that ambient temperature is a key fac-
tor regulating the accumulation of anthocyanins. In general, high temperature represses
while low temperature promotes the biosynthesis of anthocyanin [50–52]. It is likely
that the COP1-HY5 module may also play an important role in this process. When the
temperature is elevated, COP1 is imported to nucleus and further decreases the biosyn-
thesis of anthocyanins by destabilising HY5 [53]. In contrast, cold temperature depletes
COP1 from the nucleus, resulting in HY5 stabilisation and an increase in anthocyanin
production [54]. Moreover, low temperature enhances the transcription of MdbHLH3 and
promotes the activity of structural genes involved in anthocyanin biosynthesis by phospho-
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rylating MdbHLH3 [31]. Detailed regulatory mechanisms of temperature on anthocyanin
biosynthesis still need to be explored.

4.2. Phytohormones

Phytohormones are indispensable for the processes of plant growth and develop-
ment, and known plant hormones, such as JA (jasmonate), ABA (abscisic acid), ethylene
and auxin, could stimulate the ethylene response factor family (ERF) and be involved
in the regulation of anthocyanin biosynthesis [55–57]. In red pear and A. thaliana, JAZ
(jasmonate ZIM-domain) proteins are substrates of the SCFCOI1 complex, which interferes
with the transcriptional levels of WD/bHLH/MYB complexes by interacting directly with
the C-terminus of both bHLH and MYB members, in turn repressing anthocyanin biosyn-
thesis [58]. Moreover, JAZs act as negative regulatory factors in apples [59]. The direct
interaction of MdJAZ with MdbHLH3 interferes with the recruitment of MdbHLH3 to
the MdMYB9 promoter, which represses the transcription of the MBW complexes and
further decreases anthocyanin biosynthesis [44]. In addition, ABI5 promotes ABA-induced
anthocyanin biosynthesis by regulating the MYB1-bHLH3 complex in apples [60]. Ethy-
lene inhibits anthocyanin biosynthesis by downregulating the expression of R2R3-MYBs
(including PpMYB10 and PpMYB114) and LBGs (late biosynthetic genes) in red pears, and
ethylene signal transduction occurs via ethylene response factors (ERFs) and EIN3/EILs
(ethylene-insensitive 3, EIN3; EIN3-like, EIL) [57]. Usually, high levels of auxin can inhibit
anthocyanin biosynthesis by suppressing regulatory genes and structural genes [45,61].
Cytokinin plays a positive role in photomorphogenesis in Arabidopsis thaliana, while GA
signalling curbs anthocyanin biosynthesis via DELLA proteins [62,63]. DELLAs may also
be essential for the function of gibberellic acids (GA) in regulating the biosynthesis of
anthocyanins. In the presence of GA, DELLAs are polyubiquitinated and then degraded
by the 26S proteasome [64].

4.3. Transcription Factors

The expression of structural genes during anthocyanin biosynthesis is directly con-
trolled by the MYB-bHLH-WDR complex. R2R3-MYB transcription factors play a critical
role in this regulatory pathway, which can directly regulate the expression of related genes
and lead to tissue-specific anthocyanin accumulation [65,66]. BHLH transcription factors
are indispensable for the activity of R2R3-MYBs, mainly by stabilising the MYB complex
or promoting its transcription [29,67]. For example, some MYB transcription factors, such
as MdMYB1, MdMYB9, MdMYB10 and MdMYB114, can promote apple fruit colouration
by means of interaction with bHLH3 and WD40 [42,68]. In fleshy fruit skin, MdMYB1 is
initially found in apple skin, and its product participates in photoinduction by activating
the transcription activity of MdDFR and MdUFGT promoters. The transcript level of
MdMYB1 is positively correlated with the accumulation of anthocyanin and the expression
of structural genes because the MdDFR and MdUFGT promoters include light-response
elements, such as ACGTs and MRE or MRE-like sequences [43,69]. Members of the WD40
protein family have 4–10 random WD repeat domains, which consist of 40 amino acid
sequences ending in tryptophan (W) and aspartic acid (D). MdTTG1 was the first WD40
protein isolated from apple, similar to AtTTG1 in Arabidopsis, MdTTG1 can interact with
MdbHLH3 and MdMYB9 to control the expression of downstream structural genes [70].
Similarly, PpMYB10 and PpMYB114 also contribute to the colouration of red pears. How-
ever, some MYB TFs, such as Arabidopsis MYBL2, apple MYB16, peach MYB17-20, and
strawberry MYB1, negatively regulate anthocyanin biosynthesis [71–73]. The interaction of
MYBL2 with bHLH hinders the formation of the MBW complex, and MYBL2 competitively
interacts with the MYB/bHLH and bHLH subunits. Once the expression level of MYBL2 is
reduced, the expression of early biosynthetic genes and the accumulation of anthocyanin
increase (Figure 5C). Given that TFs from the same family have different functions in the
regulation of anthocyanin biosynthesis, the functional elucidation of more TFs will be a
fertile research area in the coming years.
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4.4. Other Regulatory Factors

Demethylation and methylation of DNA also have important roles in regulating an-
thocyanin accumulation, and studies have shown that the DNA methylation inhibitor
5-azacytidine can induce red pigmentation in apple and peach fruits [74,75]. Coinciden-
tally, in red-fleshed radish, DNA methylation of the RsMYB1 promoter inhibits antho-
cyanin biosynthesis [76]. In addition, microRNAs also play vital roles in the biosynthesis
of anthocyanins. For example, mdm-miR828 inhibits anthocyanin accumulation in re-
sponse to high temperature in apple [77], and miR156 regulates anthocyanin biosynthesis
by targeting SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) in poplar and
Arabidopsis [78–80]. Moreover, phosphorylated MYB75 is essential for light-induced Ara-
bidopsis anthocyanin accumulation [13].

5. Conclusions and Perspectives

Anthocyanins protect against abiotic and biotic stresses in plants, and optimising
anthocyanin content is regarded as the goal of breeding programmes in apples and pears.
Many factors, such as light, transcription factors, phytohormones, affect the anthocyanin
accumulation in plant tissues. Although HY5 and the MBW complex play core roles in
anthocyanin biosynthesis in apples, pears and A. thaliana, there are still obvious differences
in the regulatory mechanism of anthocyanin biosynthesis between different plants. For
example, BBX proteins are a link between light signals and HY5 in apples and pears, but
PHYTOCHROMES B (PHYB) functions as a “bridge” connecting light stimulus and HY5 in
A. thaliana. Therefore, it is necessary to elucidate the regulatory mechanisms of anthocyanin
biosynthesis in different plant species.

In addition, as follows, there are other problems that also remain to be studied:
(1) although the biosynthesis and accumulation of anthocyanins are reportedly regulated
by environmental factors, plant hormones, structural genes and regulatory genes, their
interrelationships in this pathway need to be further explored. (2) What kind of tran-
scription factor modifications exist in the dynamic balance of anthocyanin synthesis and
degradation? Four dominant anthocyanin forms are reversibly transformed at different pH
states and affect the colour of aqueous solution. However, what is the mechanism by which
pH affects anthocyanin transformation? (3) Current research is limited to the molecular
level, but as science and technology progresses, we can strengthen integrated genomic,
phenotypic genomics, proteomic, and metabolomic research and use a variety of means to
explore unknown parts of anthocyanin regulatory mechanisms and metabolic pathways
in apple and pear, and then reveal relationships among anthocyanin and colour, sugar
content, and other flavour attributes. In addition, to put this information in perspective,
the mechanisms involved in the function of the MBW complex are highly conserved during
the regulation of anthocyanin biosynthesis in higher plants, but mechanisms related to
environmental and developmental factors affecting anthocyanin biosynthesis are com-
plicated, even the information based on these mechanisms from different species is very
fragmented. Thus, additional regulatory pathways and key genes and proteins during the
process of anthocyanin biosynthesis in crop, ornamental and other fruit species would also
be worthwhile for further investigation.

Overall, with the deepening of research, we will have a clearer understanding of
the mechanism of anthocyanin synthesis and accumulation, therefore establishing a sta-
ble genetic transformation system using gene engineering technology to improve plant
colour, which will provide a solid technology and information basis for crop breeding and
mechanised intensive planting in the future.
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