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Abstract: The WNT (Wingless/Integrated) signaling pathway is implicated in various stages of
glioblastoma, which is an aggressive brain tumor for which therapeutic options are limited. WNT
has been recognized as a hallmark of therapeutic challenge due to its context-dependent role and
critical function in healthy tissue homeostasis. In this review, we deeply scrutinize the WNT signaling
pathway and its involvement in the genesis of glioblastoma as well as its acquired therapy resistance.
We also provide an analysis of the WNT pathway in terms of its therapeutic importance in addition
to an overview of the current targeted therapies under clinical investigation.
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1. Biology of WNT Signaling

WNT (Wingless/Integrated) signaling regulates key cellular events during the devel-
opment of the central nervous system. Particularly, it regulates self-renewal, differentiation,
migration and signaling of neural stem cells in the fetal ventricular zone, the postnatal
subventricular zone and the hippocampus [1,2]. It has been abundantly demonstrated that
hyperactivation of WNT signaling is associated with driving malignant transformation and
development of brain tumors [1,3,4]. The level of β-catenin expression is directly linked
with the proliferation of neural stem cells and, thus, establishing its importance in the
self-renewal and proliferation of these cells [5,6].

WNT signaling operates through a group of signal transduction pathways that pass
signals from outside of the cell through cell surface receptors into the cytoplasm and
then into the nucleus [7]. Three WNT signaling pathways have been characterized: the
canonical WNT pathway, the non-canonical planar cell polarity pathway and the non-
canonical WNT/calcium pathway [8]. The canonical WNT/β-catenin signaling pathway
regulates stem cell self-renewal, cell proliferation and cell-fate decisions of neural stem cells
(NSCs) [9]. The β-catenin transcriptional co-activator governs the canonical WNT response;
therefore, its distribution and levels within a cell are tightly regulated [10]. When cells
such as stem/progenitor cells in the adult hippocampus are not exposed to WNT ligands,
cytoplasmic β-catenin associates with a multi-protein “destruction complex” [11]. This
complex contains adenomatous polyposis coli (APC), the axis inhibition proteins 1 and/or
2 (AXIN1/2), casein kinase 1 (CK1) and glycogen synthase kinase 3 beta (GSK3β). Here,
APC and AXIN1/2 function as scaffolds to position β-catenin in the proximity of CK1
and GSK3β. Phosphorylation of β-catenin by CK1 and GSK3β prime it for ubiquitination
by the β-transducin-repeat-containing protein (β-TrCP) and subsequent degradation via
the proteasome [12]. In the absence of WNT, the members of the T-cell factor/Lymphoid
enhancer factor (TCF/LEF) family of sequence-specific transcription factors bound to
WNT responsive DNA elements (WREs) recruit transcriptional corepressor complexes.
These complexes include transducin-like enhancer (TLE) and C-terminal binding protein,
which associate with histone deacetylases to repress target gene expression [13]. WNT
ligands bind to frizzled (FZD)/low-density lipoprotein receptor-related protein (LRP) 5 or
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6 receptor complexes expressed on the cell surface. This binding results in the subsequent
recruitment of AXIN1/2 to the plasma membrane via interaction with disheveled proteins
(DVLs) and inactivation of the destruction complex. β-Catenin then escapes proteasomal
degradation, accumulates in the cytoplasm and translocates into the nucleus where it
displaces TLE from TCF/LEF bound WREs [13]. β-Catenin/TCF/LEF complexes, in turn,
recruit histone-modifying complexes, such as CREB-binding protein (CBP)/p300 protein
acetyltransferases, mixed lineage leukemia (MLL)/Set methyltransferases and chromatin
remodeling complexes including switch/sucrose nonfermentable (SWI/SNF) to induce the
expression of WNT/β-catenin target genes and drive cellular proliferation [14].

The non-canonical planar cell polarity pathway is initiated by the binding of WNT
proteins to FZD; the signal is then transduced to DVL, which subsequently activates the GT-
Pases Rho and Rac. Rac then activates c-Jun N-terminal kinase-dependent transcription and
Rho activates Yes-associated protein/Transcriptional Co-activator with PDZ-biding Motif-
dependent transcription [15]. Since the planar cell polarity pathway regulates cytoskeletal
rearrangement and cell movement, the pathway is heavily utilized during embryogene-
sis and the invasion/metastasis of cancer cells [16]. In the non-canonical WNT/calcium
pathway, bound FZD receptors activates DVL and phospholipase C (PLC), which subse-
quently produces the 1,4,5-triphosphate (IP3) that binds to and opens calcium channels
found on the endoplasmic reticulum membrane [17]. NFAT1, which is a Ca2+-dependent
transcription factor that is down stream of this pathway, is highly expressed in GBM where
it regulates invasion [18].

Recent efforts have been spent on targeting the β-catenin/TCF4 complex, i.e., the
catenin responsive transcription (CRT), with an expectation to inhibit its downstream
signaling. The CRT complex interacts with several gene regulators through a conserved
mechanism, thus raising questions about the specificity of this approach. One recent study
reports the discovery of inhibitor iCRT-3, which targets the CRT complex [19]. While this
provides hope for direct targeting of β-catenin, it is not clear whether they trigger the
degradation of β-catenin, thus raising concerns about the possibility of its re-localization
back into the nucleus. The mechanism of action of these compounds needs to be further
elucidated to assess suitability for therapeutic use. A more specific inhibitor, stapled
peptide StAx35R, is reported to block AXIN from binding to β-catenin [20]. While the
peptide is large enough to cover a significant surface area on the target, it carries the
drawback of low cell penetration, thus necessitating its use at high doses. The clinical
advantage of the stapled peptide class of molecules has yet to be established [20]. More
recent studies focused on the identification of direct small-molecule inhibitors of β-catenin
have results in the discovery of C2 and MSAB, which are demonstrated to sequester
β-catenin and cause its degradation via the ubiquitin degradation system [21,22].

Glioblastoma multiforme (GBM) is recognized as the most aggressive primary malig-
nant brain tumor with a median survival of only 12–18 months upon diagnosis [23]. The
standard of care for GBM has not advanced much recently; it includes surgical resection
of the tumor followed by radiation therapy and combined with temozolomide (TMZ)
chemotherapy [24]. As a DNA-methylating agent, TMZ is the most used chemotherapy to
treat GBM. Despite the recent advances in GBM biology, the average survival rate of GBM
patients has not improved significantly. Even though these limited therapeutic options
provide temporary relief, the course of GBM eventually results in relapse and acquired
resistance, which remain a major clinical challenge [24,25]. Hence, a detailed understanding
of the molecular mechanisms of GBM resistance and the interplay of neural stem cells is of
paramount importance for the development of novel therapeutic approaches as well as
personalized medicine regimens.

GBM tumors display a high degree of complexity in terms of heterogeneity and cellular
stratification—this indicates genomic and molecular diversity profiles of tumors [26–28].
Proneural and mesenchymal subtypes are two leading GBM subtypes identified through
multiple studies [29–31]. On the level of cellular stratification, there are subpopulations
with distinctive features enabling tumor initiation and propagation, as well as tumor
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growth and treatment resistance [32–35]. What is of paramount importance is the role
of WNT signaling in these cell events and hierarchies as it promotes GBM growth and
invasion and therapy resistance [36–39].

2. WNT Signaling in GBM Pathogenesis and Progression
2.1. The Role of WNT in Gliomagenesis

Despite accounting for less than 1% of cells within any given GBM tumor, cancer stem
cells known as glioma stem cells (GSCs) have been associated with the origin and recurrence
of GBM [40]. These tumorigenic glioma stem cells share various characteristics with normal
neural stem cells (NSCs), including self-renewal and the capacity to modulate between
proliferative and quiescent states [41,42]. NSC niches, especially the subventricular zone
(SVZ), have been associated with the population of cells that give rise to this primary
malignant tumor. In a study focused on IDH-wild-type GBM, 56% of screened patients
carried shared low-level driver mutations between tumor-free SVZs and their matched
tumor tissue, which suggests that the NSCs harboring somatic mutations can migrate
from the SVZ and transform into GSCs [43]. In addition to NSCs, NSC-derived astrocytes
and oligodendrocyte precursor cells are also candidates for the cells of origin in GBM [4].
Since GSCs have the capacity to recreate a whole tumor in xenograft assays and produce
heterogeneous populations of cells with varying degrees of differentiation, a great deal of
GBM research has been focused on interrogating the dysregulated signaling pathways that
maintain the stem cell-like phenotype of GSCs [44].

The WNT pathway, along with Notch, Hedgehog, RAS/RAF/MAPK and PI3K/Akt/MTOR,
constitute the main signaling transduction pathways that confer stemness in GBM [45].
NSC development requires WNT signaling [46]. The WNT system is often overactive in
GBM, allowing cells to recapitulate embryonic processes that result in the characteristic
proliferation and invasiveness seen in GBM tumors. While mutations relative to the WNT
pathway, except for the homozygous mutation of FAT apical cadherin (FAT1), are con-
sidered rare in GBM, epigenetic alterations to the pathway often occur in a manner that
represses WNT inhibitors and promotes β-catenin activity [47,48]. Expression levels of
canonical WNT factors such as WNT3A and TCF4 are positively correlated with glioma
grade and LEF1, which is another canonical WNT transcription factor, is associated with
poor clinical outcomes [49,50]. HOXA13, a homeobox gene, activates genes associated with
the WNT signaling and promotes GBM development via activation of the canonical WNT
pathway [51]. WNT/β-catenin signaling has been shown to transcriptionally regulate
vascular endothelial growth factor (VEGF), a key mediator of angiogenesis; The VEGF gene
promotor has been found to have seven TCF binding sites [52]. The activation of angiogen-
esis demonstrates yet another WNT-induced mechanism that supports GBM growth. As a
pathway that regulates the stemness of NSC, the aberrant activation of the canonical WNT
cascade has been associated with various cancers, including gliomas [46,53]. However, the
entire WNT system, including the non-canonical WNT signaling, has been implicated in
the role of gliomagenesis.

WNT5A, a non-canonical WNT molecule, increases neural differentiation and is ex-
pressed during NSC proliferation [54,55]. ShRNA knockdown of WNT5A in GBM-05 and
U76MG resulted in the reduction in the proliferation in these GBM cells [55]. The activation
of the non-canonical WNT signaling pathways is more associated with the invasiveness of
GBM. Expression levels of WNT5A and Frizzled-2 (FZD-2), another non-canonical WNT
factor, are correlated with GBM invasiveness [56]. In addition to being associated with a
worse prognosis, high WNT5A expression levels can be used to delineate between some
GBM subtypes in the TCGA dataset: WNT5A expression is higher in mesenchymal GBM
as compared with classical GBM [57]. Additionally, mesenchymal human GBM tissue has
been observed to produce a widespread signal of WNT5A immunoreactivity upon IHC
analyses, whereas proneural and classical tissue samples only had a few WNT5A-positive
cells [58]. WNT5A binds to tyrosine kinase-like orphan receptor (ROR) 1 or (ROR2) and
FZD, resulting in receptor internalization and the initiation of the PCP pathway [59]. JNK,
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which is a downstream factor of the PCP pathway, facilitates WNT5A-induced formation of
lamellipodia and reorientation of the microtubule-organizing center (MTOC) [60]. WNT5A
knockdown in U251 cells results in a reduction in migration during would healing, sug-
gesting that WNT5A regulates the cell motility of GBM cells [61]. Due to the upregulation
of non-canonical WNT pathways, mesenchymal tumors are more motile and invasive than
the GBM tumors that are classified as proneural or classical [62].

The canonical WNT pathway and the non-canonical (β-catenin-independent) WNT
pathways are involved in promoting components of the epithelial-to-mesenchymal transi-
tion (EMT), a complex process that describes a pattern of phenotypic changes observed
during embryonic development and regeneration. The EMT program, which has a role
in metastasis, is hardly ever fully executed in solid tumor cells. Executing the endpoint
of the transition would presumably result in differentiation, which generally follows
the EMT events that occur during embryogenesis, and therefore a reduction in adaptive
potential [35,40]. EMT-activating transcription factors (EMT-TFs) are currently the most
important components of the classical EMT that is relevant to cancer biology [63]. Although
metastasis is rare in GBM, the brain malignancy is defined as a grade IV glioma for being
highly invasive [64]. Unsurprisingly, WNT signaling is partially involved in mediating the
partial EMT observed in various cancer types [63]. WNT/ β-catenin pathway activation
results in the upregulation of EMT-TFs such as Twist, Snail, Slug and Zeb1 [29,65,66].
Additionally, increased cell motility and increased Zeb1 expression have been observed in
GBM cells with constitutively active beta-catenin [29].

As previously stated, the non-canonical signaling predominantly activates the WNT/Ca2+

and planar cell polarity pathways [67,68]. These pathways are associated with processes
that result in cytoskeletal rearrangements, which is consistent with the observation that cell
migration involved in EMT requires constant reorganization of the cytoskeleton [46,69].
The noncanonical WNT ligands WNT5A and WNT11, which activate these pathways,
induce cell migration in Xenopus and zebrafish embryonic models [70]. The utilization of
the noncanonical pathway in many GBM tumors is further supported by expression levels
of WNT inhibitory factor 1 (WIF1), which is a secreted WNT signaling agonist. In addition
to being an inhibitor of the canonical WNT pathway, WIF1 is also able to selectively atten-
uate the WNT/Ca2+ pathway [71]. In a study looking at the gene expression profiles of
80 human GBM samples, 75% of GBM tumors downregulated WIF1. Furthermore, WIF1
deletion or hypermethylation occurred in 10% and 26% of samples, respectively [72].

The capacity for aberrant WNT signaling to initiate and maintain stem-like charac-
teristics in a subset of GBM tumor cells implicates this system in the onset, progression
and recurrence of GBM, although the extent to which it is involved in each stage is highly
variable among patients and within tumors. Although tumorigenic cells from GBM tissue
will be enriched with WNT-dependent GSCs, subpopulations of GSC that are not func-
tionally reliant on WNT signaling have been observed in GBM samples. Nevertheless,
WNT-dependent GSCs are a pharmacologically relevant subpopulation of cells, as they are
more associated with an aggressive phenotype [73]. WNT signaling maintains stemness
in part by upregulating positive modulators of the partial EMT program, particularly the
components that would normally create a transient dedifferentiated state. In addition to
influencing cell morphology and cell migration, EMT-TFs can facilitate the initiation and/or
maintenance of cancer stem cells [63]. WNT/beta-catenin pathway activity upregulates the
expression of c-MYC, which, when overexpressed, results in EMT activation in mammary
epithelial cells [74]. Additionally, NFAT activation, which occurs in non-canonical WNT
signaling, promotes EMT in mouse embryonic stem cells [75]. Furthermore, a study on
pancreatic ductal adenocarcinoma provided mechanistic evidence for the regulation of
Snail and Zeb1, which are established EMT-TFs, by NFATc1 and further cements the role
of both arms of the WNT system in the partial EMT phenotype. GSCs exploit various
components of developmental signaling networks, with the EMT being one of many [76].

The importance of viewing the WNT system as a highly conserved means of cellular
communication cannot be understated. The implications of an aberrant communication
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system extend at the very least to non-tumor cells in the tumor microenvironment, which
is a crucial factor in cancer progression. Exposing microglial cells, which are common
in the tumor microenvironment, to GBM-conditioned medium results in an increase in
WNT3A expression and cell viability [76]. GBM-derived WNT3A stimulates the induction
of a M2-like phenotype on microglial cells. This is consistent with the observation that the
mesenchymal GBM subtype, which is characterized by the upregulation of angiogenesis, is
associated with the increased presence of tumor-associated microglia [77,78]. The two-way
interactions—mediated by WNT signaling—between the microenvironment and tumor
cells add further complexity to GBM pathology.

2.2. WNT Signaling in TMZ Resistance and Radioresistance

WNT signaling has a role in many of the most pernicious characteristics of GBM,
including resistance to therapeutics. Similar to GBM onset and progression, the inevitable
recurrence after stand-of-care treatment is thought to be primarily mediated by GSCs.
Cancer Stem cells CSCs, as well as normal stem cells, naturally possess an increased
capacity for DNA repair and predisposes them to preferentially survive therapeutics that
target DNA [79]. Another cytoprotective mechanism used by cancer stem cells is the
increased expression of a subclass of ATP-binding cassette (ABC) transporters, which
are efflux pumps that non-specifically remove drugs within cells [80,81]. ABCB1 is an
efflux pump that is expressed in 70–100% of high-grade gliomas [82]. The expression
of this drug efflux pump is partially regulated by the non-canonical WNT5A ligand [83].
Modulation between proliferative or quiescence states in NSCs is a highly regulated process.
Cdc42, a Rho-GTPase and downstream target of the non-canonical WNT pathway, helps
maintain the quiescent state of NSCs in the SVZ [84]. For CSCs, quiescence can operate as
a survival strategy to protect against cytotoxic conditions [85]. Single cell transcriptomic
analysis of GBM tumors has revealed subpopulations of quiescent GSCs [86]. Consequently,
radiation and chemotherapy harms proliferating tumor cells, which constitute the majority
of any bulk tumor and inadvertently enriches CD133+ GSCs [87]. The WNT system is
implicated in TMZ resistance and radioresistance by virtue of maintaining stemness, which,
as mentioned above, intrinsically equips GSCs with the machinery needed to survive
GBM treatment.

The methylation status of O6-methylguanine-DNA methyltransferase (MGMT) is
perhaps the most important epigenetic marker in the context of GBM treatment options.
One of the predominant TMZ-induced DNA adducts, O6-methylguanine, is repaired by this
mismatch repair protein [88,89]. TOPFlash reporter assay experiments have demonstrated
that TMZ treatment results in an increase in WNT signaling activity [90]. Investigations into
the relationship between the canonical WNT pathway and MGMT gene regulation revealed
that β-catenin knockdown in LS174T cells results in a decrease in MGMT expression.
However, the WNT system mediates therapy resistance in various manners that extend
beyond upregulating a repair protein.

Autophagy can operate as a pro-survival mechanism that assists in the TMZ resistance
of GBM cell lines [91]. ATG9B, which, according to the TCGA database, is significantly
upregulated in GBM compared with low-grade gliomas, is an autophagy-related (ATG)
protein that mediates the early phase of autophagy [92,93]. The result of blockage of the
canonical WNT pathway in LN229 cells was a suppression of ATG9B expression, which
is considered to be critical for TMZ-induced autophagy [92]. WNT activity also mediates
chemoresistance in the microenvironment; it has recently been shown that GBM chemore-
sistance is aided by canonical WNT signaling that promotes stem-like activation and
mesenchymalization of endothelial cells (EC) [94]. These transformed ECs subsequently
upregulate proteins involved in chemoresistance, namely multidrug resistance-associated
protein-1 expression.
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3. WNT Pathway Inhibitors in the Clinic

WNT pathway proteins have been considered an attractive and validated cancer
target for its critical roles in tumorigenesis and cancer progression as described above.
Over the past decade, much effort has been made to develop WNT pathway inhibitors,
some of which have been tested in clinical studies [95,96]. However, there have been no
FDA-approved drugs targeting WNT pathways so far. We reviewed and summarized the
key drugs that have entered the clinical trials below (Table 1).

Table 1. Key WNT pathway inhibitors in clinical trials.

Drugs Target Modality Stage Identifier Indication

Ventictumab FZD1,2,5,7,8 Monoclonal antibody Phase 1

NCT01973309
NCT01345201
NCT01957007
NCT02005315

Breast, Pancreatic and
Solid tumors

Ipafrecept FZD8 ligands Recombinant
fusion protein Phase 1

NCT01608867
NCT02069145
NCT02092363

Ovarian, Pancreatic,
Hepatocellular and

Solid tumors

90Y-OTSA101 FZD10 Antibody-radioactive
isotope conjugate Phase 1 NCT01469975 Synovial sarcomas

WNT974 PORCN Small molecule Phase 2

NCT02649530
NCT01351103
NCT02278133
NCT02050178

Head and Neck;
Pancreatic, colorectal and

Solid tumors

ETC-159 PORCN Small molecule Phase 1 NCT02521844 Solid tumors

CGX-1321 PORCN Small molecule Phase 1 NCT03507998
NCT02675946 Solid tumors

PRI-724 β-Catenin
/CBP Small molecule Phase 2

NCT02413853
NCT01764477
NCT01302405
NCT01606579

AML, CML and
Solid tumors

Cirmtuzumab ROR1 Monoclonal antibody Phase 2

NCT03088878
NCT02776917
NCT02222688
NCT02860676

Breast cancers, Lymphoma

VLS-101 ROR1 Antibody-drug
conjugate Phase 2 NCT03833180

NCT04504916
TNBC, NSCLC and

Breast cancers

NBE-002 ROR1 Antibody-drug
conjugate Phase 2 NCT04441099 Advanced solid tumors

3.1. Canonical WNT Pathway Inhibitors in Clinical Trials

Vantictumab is a human IgG2 monoclonal antibody that binds Frizzled (FZD) recep-
tors 1, 2, 5, 7 and 8 in the WNT signaling pathway and thereby prevents the activation
of canonical WNT signaling [97]. This antibody interacts with FZD receptors through a
conserved epitope within the extracellular domain. In a phase 1b dose escalation study in
patients with locally recurrent or metastatic HER2-negative breast cancer, multiple patients
experienced fractures related to vantictumab which resulted in premature termination [98].
Similarly, a phase 1b study evaluating vantictumab in combination with nab-paclitaxel and
gemcitabine in patients with untreated metastatic pancreatic adenocarcinoma was recently
closed due to concerns surrounding bone-related safety [99]. The canonical WNT pathway
regulates many cellular processes, including bone homeostasis. Ectopic expression of the
canonical ligand WNT10B can increase bone mass in transgenic mice [100]. Additionally,
WNT16, which is another canonical WNT ligand, has been shown to regulate cortical bone
thickness and mineral density [101].
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Ipafricept is a recombinant fusion protein comprising the FZD8 cysteine-rich domain
(CRD) fused to the human Fc domain [102]. This fusion protein competes with the native
FZD8 receptor for its ligands and antagonizes canonical WNT signaling. Ipafricept has
shown reduced tumor growth and decreased CSC frequency in preclinical models [103].
However, recent clinical studies in epithelial ovarian cancer patients also resulted in the
occurrence of fragility fractures at doses associated with efficacy [104]. While a study in
patients with untreated metastatic pancreatic adenocarcinoma showed reasonable toler-
ance [105], overall safety concerns limit further development of Ipafricept.

The radioimmunoconjugate drug, 90Y-OTSA101, comprises a humanized mono-
clonal FZD10 antibody OTSA101 labelled with 90Y [106]. Radioactive isotope-conjugated
OTSA101 showed strong anti-cancer activity by tumor-specific irradiation in a mouse
xenograft model. In a phase 1 clinical study in patients with synovial sarcomas (SS), the best
response was stable disease in 3/8 patients lasting up to 21 weeks for 1 patient [107,108].

PORCN is a membrane-bound O-acyltransferase (MBOAT) involved in the posttrans-
lational modification of WNT ligands, which is an important step for WNT ligand secretion.
Therefore, the development of small molecule inhibitors that block PORCN have gained
increasing attention. WNT974 (LGK974) is a first-in-class PORCN inhibitor that was shown
to be potent and efficacious in multiple tumor models [109]. In an ongoing clinical study,
biomarker analyses show that WNT974 inhibit WNT pathway activity in tumors [110].
In a recent 2020 AACR conference, a phase I clinical trial of WNT974 demonstrated that
combination therapy using WNT974 and the monoclonal PD-1 antibody spartalizumab,
was well tolerated in cancer patients with advanced solid tumors in a variety of cancers.

ETC-159 is an orally administered and potent porcupine inhibitor that has shown
preclinical efficacy in combinations with phosphoinositide 3-kinase (PI-3K) inhibitors and
poly (ADP-ribose) polymerase (PARP) inhibitors [110,111]. ETC-159 was shown to inhibit
WNT signaling at doses that were well tolerated in the clinical study [111–113]. CGX-
1321 is the latest porcupine inhibitor that has entered a clinical trial. Preclinical studies
demonstrated that inhibition of the WNT/βcatenin pathway using CGX-1321 combined
with paclitaxel reduced tumor size and proliferation in a syngeneic mouse ovarian cancer
model [114]. CGX-1321 was also shown to attenuate cardiac hypertrophy in a mouse model
and is being evaluated in a phase 1 study in solid tumors [115].

PRI-724 is a first-in-class inhibitor of the interaction between β-catenin and its coacti-
vator CBP. PRI-724 potently disrupts β-catenin interaction with CBP, thereby inhibiting
acute myeloid leukemia (AML) cells and synergizing with FLT3 inhibition in FLT3-mutant
AML [116]. It also showed anti-cancer effects in testicular germ cell tumors and human
osteosarcoma cells [117,118]. A recent study revealed that PRI-724 is a potent antifibrotic
agent in the lungs [119]. In a phase 1 study, PRI-724 combined with gemcitabine was
safe and demonstrated modest clinical activity [120,121]. There are currently no active
clinical trials investigating the use of canonical WNT signaling inhibitors to treat patients
with GBM. Such a trail would have to find a method to not only bypass the issues of
bone toxicity but also the restrictions posed by the blood–brain barrier (BBB), which is the
greatest impasse for central nervous system (CNS) targeted drug delivery. Although novel
drug delivery systems, such as ligand-anchored dendrimers that utilize receptor-mediated
transcytosis to achieve high drug localization [122], may mitigate the systemic toxicity
of canonical WNT inhibitors, the side effects of inhibiting the brain activity associated
with WNT/beta-catenin signaling, which regulates adult neurogenesis [9], will further
complicate treatment strategies. Nevertheless, the evidence on the integral role of canonical
WNT signaling in GBM onset and progression is abundant and should be examined in a
clinical trial that explores viable drug delivery options.

3.2. Noncanonical WNT Pathway Inhibitors in Clinical Trials

In addition to the canonical WNT pathway targets, non-canonical WNT pathways
are emerging as a new cancer target. One of the β-catenin-independent WNT pathway
targets is a co-receptor for WNT ligands, ROR1 [123]. ROR1, an oncofetal protein important
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for embryonic development, is expressed in multiple hematologic and solid tumors but
not on normal tissues [124]. The overexpression of ROR1 in various types of human
cancers has attracted interest from the field of drug discovery [125,126]. Below are several
ROR1-targeting therapeutics currently explored in clinical studies.

Cirmtuzumab is a humanized monoclonal antibody that targets ROR1. Treatment
with Cirmtuzumab and ibrutinib was shown to be highly effective in clearing leukemia
cells in vivo [127]. Moreover, in a phase 1 study involving 26 patients with progressive,
relapsed or refractory chronic lymphocytic leukemia (CLL), Cirmtuzumab was safe and
effective at inhibiting tumor cell ROR1 signaling in patients [128]. A recent interim phase 1
study evaluating the effects of Cirmtuzumab in combination with ibrutinib showed that the
overall best objective response rate (ORR) of patients with mantle cell lymphoma (MCL)
was 87% (13 of 15 evaluable patients).

VLS-101 is an antibody-drug conjugate (ADC) for suppressing ROR1-positive can-
cers. VLS-101 comprises UC-961 (Cirmtuzumab), which is a maleimidocaproyl-valine-
citrulline-para-aminobenzoate (mc-vc-PAB) linker, and the anti-microtubule cytotoxin
monomethyl auristatin E (MMAE). VLS-101 dramatically decreased tumor burden in
all Richter syndrome-colonized tissues and significantly prolonged survival in mouse
models [129]. Recently, VelosBio announced the initiation of a phase 2 clinical trial
(NCT04504916) to evaluate VLS-101 in patients with solid tumors. In a phase 1 study,
VLS-101 resulted in complete responses in 47% (n = 7/15) of patients with mantle cell
lymphoma (MCL) and 80% (n = 4/5) of patients with diffuse large B-cell lymphoma.

Another ADC for ROR1 is NBE-002; NBE-002 has recently entered clinical trials to
evaluate its safety and efficacy in patients with triple negative breast cancer and other solid
tumors. NBE-002 uses a novel anthracycline payload which has been shown to induce a
long-lasting anti-tumor immunity in preclinical models of solid tumors.

Interestingly, the first chimeric antigen receptor (CAR) T-cell therapeutic for ROR1
developed by BMS/Celgene has entered a clinical trial [130]. Additionally, at least five
different ROR-1-centric drugs are being evaluated in preclinical stage [128,130–132]. The
toxicity associated with targeting this non-canonical WNT receptor is dependent on the
expression levels of ROR1 in off-target tissues; ROR1 expression is observed at low levels
in adipocytes, which, based on the observed levels of plasma adiponectin following the
transfer of autologous ROR1 T-cells into macaques, appear to be lysed at a low-level during
CAR T-cell therapy. As the branch of the WNT system more associated with invasion and
migration, the non-canonical WNT pathway appears to be a less toxic pharmacological
target. Since surgical resection is often incorporated into the treatment of GBM, researchers
looking to target this pathway for drug discovery will have to be concerned with the
challenges of impairing wound healing, as ROR1 knockdown significantly inhibits cell
migration [133]. Each treatment modality, whether it be small molecule or CAR T-cell
therapy, will have unique CNS-specific challenges. There are currently no active clinical
trials investigating the use of non-canonical WNT signaling inhibitors to treat patients with
GBM. As evidenced by the emergence of preclinical and clinical trials investigating ROR1
as a drug target, the non-canonical WNT system appears to be a viable and relatively safe
pathway to attenuate in GBM treatment strategies.

4. Conclusions

For successful WNT pathway drug development, strategies to reduce normal cell
toxicity and selectively kill cancer cells are necessary. Additionally, overcoming the unique
challenges of targeting the CNS will require novel improvements to drug modalities and
precise clinical trial design. As genomics, epigenomics, proteomics and related fields
evolve, new drug targets derived from the discovery of unique molecular characteristics
of WNT signaling in GBM will supply researchers with more options for treating this
devasting condition. Testing new targets to identify untapped opportunities for WNT
pathway therapies may help mitigate the negative impacts on tissue homeostasis and
regeneration. Previous WNT pathway inhibitors have largely relied on antibodies and
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small molecules. Given the recent clinical data on ROR1-ADC, new modalities, such as
ADC, CAR-T, CAR-NK and proteolysis targeting chimera (PROTAC), provide promising
approaches that will either provide better patient outcomes or at least produce valuable
data that will ultimately guide researchers to improved treatment solutions.
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