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Abstract: Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and
neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause
excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory.
This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter
1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young
rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-
CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with
weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However,
PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that
extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased
glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in
neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the
CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze
test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic
plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.

Keywords: long-term potentiation; NMDA receptor; hippocampus; EAAT2; memory

1. Introduction

Glutamate is a primary excitatory neurotransmitter in the central nervous system,
acting through ionotropic and metabotropic receptors [1,2]. Ionotropic α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPARs) play a major role in driving rapid
depolarization of postsynaptic neurons and action potential firing. N-methyl-D-aspartate
receptors (NMDARs) are thought to be very important for controlling synaptic plastic-
ity [3]. The intensity and duration of excitatory synaptic activity play an essential role in
information exchange between neurons, with these processes critically dependent on how
long glutamate remains in the synaptic cleft [4].

Under physiological conditions, the extracellular glutamate concentration is main-
tained at a range of 0.6–2.0 µM [5]. However, in many pathological conditions associated
with impaired glutamate clearance, the glutamate concentration in the synaptic cleft accu-
mulates over time, with excessive extracellular glutamate causing excitotoxicity in some
cases [4].

The molecular machinery of glutamate clearance in the cerebral cortex and hippocam-
pus mainly involves three excitatory amino acid transporter (EAAT) proteins: EAAT1
(glutamate aspartate transporter [GLAST], murine equivalent), EAAT2 (glutamate trans-
porter 1 [GLT1]), and EAAT3 (excitatory amino acid carrier 1 [EAAC1]) [5]. GLAST
and GLT1 are expressed primarily in astrocytes but may be expressed also in other cell
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types [6,7]. EAAC1 is expressed in neurons only, mostly in postsynaptic membranes [8].
GLT1 transports more than 90% of synaptic glutamate in the hippocampus, and GLT1
accounts for 80% of EAAT molecules [9,10]. Therefore, enhancing GLT1 expression with
pharmacological and genetic methods is considered a promising therapeutic option for
diseases associated with impaired glutamate transport [5,10,11].

Currently, ceftriaxone (CTX), a cephalosporin antibiotic, is one of the most studied
GLT1 expression enhancers [12–14]. CTX causes both acute and long-term increases in GLT1
expression, and it also enhances the functional activity of GLT1 [13]. In our previous study,
CTX administration had mild anticonvulsant effects on pentylenetetrazole (PTZ)-induced
convulsions and in a maximal electroshock threshold test [14]. Other studies revealed that
CTX reduced signs of kindling in the PTZ model [15,16]. In addition to anticonvulsive
effects, studies have demonstrated that CTX has neuroprotective action [10,13,17] and
anti-ischemia effects [18].

It can be assumed that enhanced GLT1 expression in a normal brain will increase
glutamate uptake from the synaptic cleft and potentially affect excitatory transmission in
neuronal networks and synaptic plasticity. Experimental data in this area are limited and
somewhat contradictory. In a previous study, we detected no significant change in the
efficacy of glutamatergic synaptic neurotransmission in the hippocampus and temporal
cortex following CTX treatment. However, we detected attenuation of field excitatory
postsynaptic potential (fEPSP) amplitudes in CA1 evoked by intense electrical stimulation
of Schaffer collaterals in the CTX-treated group [14]. Other laboratories have shown that
CTX-treated rats display significant impairment in novel object recognition, which is
consistent with a hippocampal deficit [19]. Upregulation of the glutamate transporter GLT1
by CTX severely impaired mGluR-dependent long-term depression (LTD) induced in rat
mossy fiber (MF)–CA3 synapses by repetitive stimulation of afferent fibers. Furthermore,
CTX-induced GLT1 upregulation significantly reduced the magnitude of LTP at MF–CA3
synapses but not at Schaffer collateral–CA1 synapses [20].

Therefore, in this study, we aimed to investigate the characteristics of synaptic plastic-
ity in the hippocampus of young rats after CTX administration.

2. Results
2.1. LTP Was Attenuated in the CA1 Hippocampal Area after CTX Treatment

As overexpression of GLT1 may affect synaptic plasticity due to changes in glutamate
dynamics in synaptic clefts [20], we investigated whether CTX treatment for 5 days af-
fects synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses (Figure 1). We
used two protocols for LTP induction: theta-burst stimulation (TBS) and high-frequency
stimulation (HFS). In the control animals, both protocols induced substantial LTP (TBS:
1.46 ± 0.08, n = 15; HFS: 1.51 ± 0.08, n = 17). LTP was attenuated in the CTX-treated groups
as compared with that in the control groups (two-way analysis of variance [ANOVA], effect
of CTX treatment: F1,56 = 13.8; p < 0.001; TBS: 1.12 ± 0.09, n = 14; HFS: 1.23 ± 0.07, n = 14).
We found no differences in the efficacies of the two LTP induction protocols (HFS vs. TBS:
F1,56 = 1.03; p = 0.31) and no interaction effect (type of LTP induction protocol × CTX
treatment: F1,56 = 0.08; p = 0.77).
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Figure 1. Long-term potentiation (LTP) was attenuated in the CA1 hippocampal area after administration of ceftriaxone 
(CTX). (a) Representative examples of field excitatory postsynaptic potential (fEPSP) before induction (1) and 60 min after 
theta-burst stimulation (TBS) or high-frequency stimulation (HFS) (2). (b) Diagram showing changes in the value of the 
normalized slope of fEPSP in the control (CTRL) and CTX-treated (CTX) animals after TBS or HFS. Black arrow indicates 
the moment of LTP induction (TBS or HFS). (c) Diagram illustrating the differences in LTP between the control and CTX-
treated (CTX) animals according to the type of induction protocol. All the data are presented as mean ± standard error of 
the mean. * p < 0.05: a significant difference versus the control group ('Tukey’s post hoc test). 

Many studies have demonstrated that LTP in the hippocampal CA1 region is an 
NMDAR-dependent process [21,22]. However, in some pathological conditions, LTP in-
duction in the hippocampus may become NMDA-independent [23]. To test whether LTP 
induction in CA3-CA1 synapses following CTX treatment was NMDAR-dependent, we 
induced LTP in the presence of the NMDAR channel blocker MK-801 (10 µM). The appli-
cation of MK-801 significantly affected LTP induction following the TBS protocol (Figure 
2a,b; two-way ANOVA, effect of MK-801: F1,44 = 7.3, p < 0.01) and HFS protocol (Figure 
2c,d; F1,46 = 26, p < 0.001). In the control groups, the MK-801 application markedly inhibited 
LTP induction in both the TBS (Figure 2a,b; 0.98 ± 0.05, n = 10) and HFS protocol groups 
(Figure 2c,d; 0.99 ± 0.05, n = 11). In the CTX-treated animals, the effect of MK-801 was 
significant only in the HFS protocol group; no LTP was induced in the presence of MK-
801 (HFS, MK-801: 0.87 ± 0.12; n = 8). In the TBS protocol group, in which LTP was almost 
absent, MK-801 did not affect synaptic plasticity (TBS, MK-801: 1.13 ± 0.09; n = 9). Thus, 
these data suggested that LTP induction in the control and CTX-treated animals is an 
NMDAR-dependent process. 

Figure 1. Long-term potentiation (LTP) was attenuated in the CA1 hippocampal area after administration of ceftriaxone
(CTX). (a) Representative examples of field excitatory postsynaptic potential (fEPSP) before induction (1) and 60 min after
theta-burst stimulation (TBS) or high-frequency stimulation (HFS) (2). (b) Diagram showing changes in the value of the
normalized slope of fEPSP in the control (CTRL) and CTX-treated (CTX) animals after TBS or HFS. Black arrow indicates the
moment of LTP induction (TBS or HFS). (c) Diagram illustrating the differences in LTP between the control and CTX-treated
(CTX) animals according to the type of induction protocol. All the data are presented as mean ± standard error of the mean.
* p < 0.05: a significant difference versus the control group (’Tukey’s post hoc test).

The initial phase of LTP (5–15 min) in the treated animals was almost the same as that
recorded in the controls. Subsequently, synaptic potentiation declined in the CTX-treated
group. Thus, LTP maintenance was impaired after the CTX treatment, regardless of the
type of induction protocol used.

Many studies have demonstrated that LTP in the hippocampal CA1 region is an
NMDAR-dependent process [21,22]. However, in some pathological conditions, LTP
induction in the hippocampus may become NMDA-independent [23]. To test whether
LTP induction in CA3-CA1 synapses following CTX treatment was NMDAR-dependent,
we induced LTP in the presence of the NMDAR channel blocker MK-801 (10 µM). The
application of MK-801 significantly affected LTP induction following the TBS protocol
(Figure 2a,b; two-way ANOVA, effect of MK-801: F1,44 = 7.3, p < 0.01) and HFS protocol
(Figure 2c,d; F1,46 = 26, p < 0.001). In the control groups, the MK-801 application markedly
inhibited LTP induction in both the TBS (Figure 2a,b; 0.98 ± 0.05, n = 10) and HFS protocol
groups (Figure 2c,d; 0.99 ± 0.05, n = 11). In the CTX-treated animals, the effect of MK-801
was significant only in the HFS protocol group; no LTP was induced in the presence of
MK-801 (HFS, MK-801: 0.87 ± 0.12; n = 8). In the TBS protocol group, in which LTP was
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almost absent, MK-801 did not affect synaptic plasticity (TBS, MK-801: 1.13 ± 0.09; n = 9).
Thus, these data suggested that LTP induction in the control and CTX-treated animals is an
NMDAR-dependent process.
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TBS (a) and HFS (c). (b,d) Diagrams illustrating the magnitude of plasticity in the control and CTX groups in the presence 
of MK-801, after TBS (b) or HFS (d). Black arrow indicates the moment of LTP induction (TBS or HFS). Two-way ANOVA 
following Tukey post hoc tests were used. All the data are presented as mean ± standard error of the mean. * р < 0.05, ** р 
< 0.01, *** p < 0.001: A significant difference versus the control group (Tukey’s post hoc test). 

2.2. NMDA-Mediated Signaling during Train Stimulation Was Attenuated after CTX Treat-
ment 

LTP attenuation might be caused by insufficient activation of NMDARs during the 
induction protocol. To test this possibility, we investigated the NMDAR-mediated re-
sponses of CA3-CA1 synapses during a TBS-like protocol in the control and CTX groups 
using whole-cell recordings. First, we estimated the relative impact of NMDAR- and AM-
PAR-mediated currents in evoked excitatory postsynaptic currents (eEPSCs). We rec-
orded AMPAR-mediated eEPSCs in CA1 pyramidal neurons in the presence of the 

Figure 2. NMDAR-dependent mechanism of LTP induction is unaltered following administration of CTX. (a,c) Diagram
showing changes in the value of the normalized slope of fEPSP in the control (CTRL) and CTX-treated groups (CTX) after
TBS (a) and HFS (c). (b,d) Diagrams illustrating the magnitude of plasticity in the control and CTX groups in the presence
of MK-801, after TBS (b) or HFS (d). Black arrow indicates the moment of LTP induction (TBS or HFS). Two-way ANOVA
following Tukey post hoc tests were used. All the data are presented as mean ± standard error of the mean. * p < 0.05,
** p < 0.01, *** p < 0.001: A significant difference versus the control group (Tukey’s post hoc test).

2.2. NMDA-Mediated Signaling during Train Stimulation Was Attenuated after CTX Treatment

LTP attenuation might be caused by insufficient activation of NMDARs during the in-
duction protocol. To test this possibility, we investigated the NMDAR-mediated responses
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of CA3-CA1 synapses during a TBS-like protocol in the control and CTX groups using
whole-cell recordings. First, we estimated the relative impact of NMDAR- and AMPAR-
mediated currents in evoked excitatory postsynaptic currents (eEPSCs). We recorded
AMPAR-mediated eEPSCs in CA1 pyramidal neurons in the presence of the GABAaR and
GABAbR antagonists bicuculline (10 µM) and CGP 55845 (5 µM), respectively, clamping the
membrane potential at −80 mV, which eliminated NMDAR-mediated currents due to the
Mg2+ block. We adjusted the stimulus amplitude for each cell to elicit a clear monosynaptic
AMPAR-mediated EPSC with an amplitude of 100–200 pA, which is in the subthreshold
range for CA1 neurons (Figure 3a) and is similar to that used in the LTP experiments. After
recording 15 EPSCs, we then applied a selective AMPAR antagonist DNQX (20 µM) and
continued the stimulation for 10 min to ensure a complete block of the EPSCs (Figure 3b).
We then recorded NMDAR-mediated EPCSs at −20 mV holding potential. Finally, to mimic
TBS, we applied trains of five stimuli at 50 Hz of the same strength and duration as for the
AMPAR-mediated eEPSCs (Figure 3c).

We calculated NMDAR/AMPAR ratios by dividing the peak NMDAR-mediated
amplitude for the last EPSC in the train by the peak of the AMPAR-mediated EPSC
amplitude. We found that the NMDAR/AMPAR ratio in the CTX group was significantly
lower that that in the control group (Figure 3e; control: 1.40 ± 0.14, n = 14; CTX: 0.70 ± 0.12,
n = 9; Student’s t-test = 3.65, p < 0.01). Thus, similar synaptic stimulation, as estimated by
AMPAR-mediated currents, results in much lower NMDAR-mediated conductance during
train stimulation (Figure 3d) and consequently less transfer of calcium ions to postsynaptic
neurons. These results explain the decrease in the LTP magnitude in the CTX group.

Next, we analyzed other properties of NMDAR-mediated EPSCs that may affect the
amplitude of the evoked response. To assess summation properties, we measured the peak
amplitudes of each consecutive eEPSC and normalized them to the first eEPSC amplitude.
We compared the resulting normalized amplitudes in the control and CTX groups using
a one-way repeated-measures ANOVA and found no difference between these groups
(Figure 3f; F3,63 = 2.2, p = 0.10).

We then measured the decay kinetics of the NMDAR-mediated EPSCs by fitting the
80-20% decay phase of the train’s last response with a single exponential function. There
was no significant difference in the decay kinetics between the control and CTX groups.
Nevertheless, there was a tendency toward a decrease in tau decay (Figure 3g; control:
103 ± 7 ms, n = 14; CTX: 84 ± 5 ms, n = 9; Student’s t-test = 1.9, p = 0.067). Therefore,
neither the summation nor time course of NMDA EPSCs was affected in the CTX group.

2.3. Expression of Glutamate Receptor Subunit Genes Encoding the NMDAR following
CTX Treatment

Smaller NMDAR-mediated synaptic responses might be explained by downregula-
tion of NMDAR and/or upregulation of AMPAR expression following CTX treatment.
Therefore, we compared the expression of glutamate receptor subunit genes encoding the
NMDAR (Grin1, Grin2a, and Grin2b) and AMPAR (Gria1, Gria2) in the dorsal hippocampus
(Figure 4). No changes in the production of mRNA Grin1, an obligate NMDAR subunit,
were detected, suggesting that the total amount of the NMDARs, most likely, did not
change. The expression of the Grin2b gene increased in the dorsal hippocampus (t = 3.25;
p < 0.01) but not the expression level of Grin2a or the Grin2b/Grin2a expression ratio.
Together, these findings exclude the hypothesis of downregulation of NMDAR expression
in the hippocampus after CTX administration.
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Figure 3. The N-methyl-D-aspartate receptor (NMDAR)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) ratio was significantly reduced in the CTX-treated animals, with no effect on NMDAR-mediated current kinetics.
(a) AMPAR-mediated evoked excitatory postsynaptic currents (eEPSCs) recorded at −80 mV in the presence of GABAaR
and GABAbR antagonists bicuculline (10 µM) and CGP 55845 (5 µM). (b) Complete block of the AMPAR-mediated current
by bath-applied DNQX (20 µM). (c) NMDAR-mediated eEPSCs recorded in the same neuron in the presence of DNQX at
−20 mV with the same stimulus current amplitude. (d) Average NMDAR-mediated currents normalized by the AMPAR-
mediated eEPSC amplitude for each group. The transparent areas represent the standard error of the mean for each trace.
(e) NMDA/AMPA ratios measured as the peak NMDAR-mediated current amplitude (for the last EPSC) divided by the
peak AMPAR-mediated current amplitude. The asterisk represents a significant difference according to the Student’s t-test
(p < 0.01). (f) Average NMDAR-mediated peak eEPSC amplitudes normalized by the first EPSC amplitude for each recorded
cell. (g) Decay τmeasured at the 80–20% amplitude of the last NMDAR-mediated EPSC in the train using a monoexponential
approximation. ** p < 0.01, a significant difference versus the control group according to the Student’s t-test.
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ratio in the dorsal hippocampal area after CTX treatment. Contr—control group, CTX—experimental
group. Data are presented as a mean with a standard error of the mean. Each dot (circle, triangle)
represents a value obtained in individual animal. ** p < 0.01, a significant difference versus the control
group according to the Student’s t-test.

We also detected no significant changes in the expression of AMPAR subunits, as the
expression levels of Gria1 and Gria2 were similar in the control and CTX groups (Figure 4).
Therefore, the hypothesis of upregulation of AMPARs was also excluded.

2.4. Rats’ Behavior Is Not Impaired after Ceftriaxone Treatment
2.4.1. Open Field Test

We detected no changes in rat behavior following the CTX treatment (Figure 5).
The rats in the control and CTX-treated groups traveled the same distance in the arena
(control: 7.4 ± 0.8 m CTX: 7.2 ± 1.3 m) and spent a similar time in the center (5.5 ± 1.2
and 9.2 ± 3.2 s, respectively). Thigmotaxis was similar in the two groups (112 ± 15 and
116 ± 14 s, respectively). Thus, the CTX treatment impaired neither the explorative activity
nor anxiety levels of the rats.

2.4.2. Morris Water Maze

In the Morris water maze, there was no difference in short- or long-term memory of
the rats in the CTX and control groups, as the dynamics of finding the hidden platform
were the same in both groups (Figure 6). Short-term memory was estimated by the distance
traveled to reach the hidden platform in four trials on Day 1 of training. A repeated-
measures ANOVA revealed no significant differences in the dynamics of the control and
CTX-treated groups in the distance traveled to reach the hidden platform (F3,14 = 0.78,
p = 0.52, Figure 6a). However, the CTX-treated rats had significantly fewer failed trials
on Day 1 (18% vs. 43%, p < 0.05, ’Fisher’s exact test, Figure 6b), suggesting improved
short-term memory after CTX administration. Long-term memory was estimated based on
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the results averaged across four trials per day for 3 days. Both groups exhibited similar
learning behaviors, and a repeated-measures ANOVA showed no significant effect of the
treatment on spatial memory in the Morris water maze (F2,17 = 2.76, p = 0.09, Figure 6C).
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Figure 5. The behavior of CTX-treated rats in the open field test does not change. (a) Distance
traveled by a rat during the testing time, (b) the time rat spent in the center of the arena, (c) the time
rat spent in thigmotaxis. Data are presented as a mean with a standard error of the mean. Each dot
(circle, triangle) represents a value obtained in individual animal.
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3. Discussion

In this study, 5-day CTX administration led to marked LTP attenuation in CA3-CA1
synapses of young rats. LTP attenuation was associated with weakening of NMDAR-
dependent signaling in hippocampal synapses. We attribute this weakening mainly to
enhanced glutamate reuptake and not to changes in the expression levels of the glutamate
receptors, as the PCR analysis did not show downregulation of NMDAR subunits. It is
worth noting that significant LTP attenuation was not accompanied by any noticeable
behavioral changes in the rats, with the behavioral tests revealing no abnormalities in the
CTX-treated animals in either the open field test or Morris water maze.

The role of CTX treatment in enhancing the expression and activity of GLT1 is now
well known. Since ’Rothstein’s original work [13], many studies have reported increased ex-
pression of GLT1 at both mRNA and protein levels [12,24]. Research has also demonstrated
the ability of CTX treatment to elevate or normalize GLT1 expression levels in animal
models of different disorders with decreased GLT1 expression [25]. In previous works, up-
regulation of GLT1 expression decreased the glutamate concentration in the synaptic cleft
and had a neuroprotective effect [18,26]. It was also beneficial in epilepsy, stroke, hypoxia,
and neurodegeneration, pointing to the potential role of GLT1 as a pharmacological target
for treating these disorders [5,9,11]. CTX treatment also reduced behavioral impairment
in multiple diseases. For example, 14-day CTX (200 mg/kg) administration prevented
alterations in working memory in T-maze and new object recognition tests in an MPTP rat
model of ’Parkinson’s disease [27]. In addition, 5-day CTX treatment normalized impaired
spatial memory in rats with chronic cerebral hypoperfusion [28]. Impaired LTP in the
dentate gyrus, reduced dendritic spines, and memory dysfunction in a fear conditioning
test were observed in aquaporin-4 knockout mice with a decreased expression level of
GLT1, all of which were rescued by 7-day CTX administration (200 mg/kg) [29].

The effects of GLT1 overexpression in control animals on synaptic transmission, synap-
tic plasticity, and cognitive function have been studied less thoroughly. We can assume that
the impact of GLT1 overexpression on hippocampal synaptic transmission will be more
pronounced under intensive stimulation, e.g., during LTP-inducing stimulation protocols,
due to the specific morphological features of these synapses. For example, astrocytic pro-
cesses contact less than half of Schaffer collateral-CA1 synapses [30]. Therefore, glutamate
released from neighboring terminals might pool and spill over to adjoining synapses and
extrasynaptic receptors [31]. According to previous studies, glutamate-mediated cross-talk
is likely to be particularly important for 30–50% of hippocampal synapses [32,33]. It should
also be noted that simulations predict that only NMDARs but not AMPARs localized
at neighboring synapses are likely to be activated [32]. In contrast, an increase in GLT1
expression diminishes spillover and cross-talk between neighboring synapses due to more
effective buffering and removal of glutamate [33] (Figure 7). For example, a postembedding
immunogold study performed at MF–CA3 synapses demonstrated an increased density
of membrane-associated GLT1 [20]. Its presence closer or within glutamate release sites
indicates that glutamate clearance is more efficient in CTX-treated rats [20].

In line with these data, the present results revealed decreased NMDAR-dependent
currents during the train stimulation in the CTX-treated animals. The reduced activation of
NMDARs can likely explain the difference in the effect of MK-801 on synaptic plasticity
between HFS and TBS protocols. Since MK-801 is an activity-dependent channel blocker,
NMDARs activation is necessary for its effective action. However, since the TBS protocol
causes only partial activation of NMDARs, the blocking efficacy of MK-801 is reduced, and
therefore no effect of MK-801 on LTP was detected.

In our previous study, using the same model, we detected no difference in the prop-
erties of AMPAR-mediated eEPSP trains in control and CTX-treated rats [14]. The data
from the PCR analysis in the present study support the assumption of spillover reduction.
Despite the decrease in the amplitude of NMDAR-mediated currents during burst stimula-
tion, the expression level of the obligate GluN1 receptor subunit did not change. Therefore,
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the reduced amplitude of the train response can be attributed to a decrease in the number
of involved neighboring synapses and extrasynaptic NMDARs.
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SC-Schaffer collateral, GLT1-glutamate transporter 1.

In addition, the PCR analysis pointed to increased expression of GluN2b-containing
NMDARs, which are characterized by longer tau decay [1,34]. Interestingly, in our elec-
trophysiological experiments, we found a tendency toward decreased tau decay, which
does not agree with the data from the PCR analysis. However, the kinetics of NMDARs
depend not only on their subunit composition but also on the activity of glutamate trans-
porters [35]. Thus, GLT upregulation may have a marked influence on response kinetics in
CTX-treated animals.

As reported previously, LTP attenuation might be directly attributed to a decrease in
NMDA-dependent signaling during LTP induction protocols, as LTP in CA3-CA1 synapses
is an NMDAR-dependent process [36]. However, the mechanism of LTP attenuation may be
more complex and depend on the spatial arrangement of NMDARs with different subunit
compositions. Numerous studies have shown that NMDARs with different subunit com-
positions are unevenly distributed and have different functions (for review see [37]). While
GluN2a-containing NMDARs are localized mainly at synaptic sites, GluN2b-containing
NMDARs are relatively more common peri-synaptically or extrasynaptically [37,38]. In ad-
dition, GluN2b-containing NMDARs exhibit higher sensitivity to glutamate than GluN2a-
containing NMDARs [1,39,40]. Therefore, an increase in GLT1 activity can affect the activity
of NMDARs with different subunit compositions during the LTP induction protocol to
varying degrees.

In terms of synaptic plasticity, several lines of evidence point to differential roles
of GluN2A and GluN2B subunits in triggering LTP and LTD. In previous research, LTP
decreased in GluN2A knockout mice at CA3-CA1 synapses [41], whereas GluN2B loss
abolished LTD [42]. Ifenprodil, a selective GluN2B antagonist, specifically inhibited LTD,
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and NVP-AAM077, a GluN2A antagonist, suppressed LTP but not LTD [43]. However,
this idea is an over-simplification, as other studies have shown that GluN2A and GluN2B
subunits play significant roles in LTP and LTD [43–45]. Xu et al. (2009) suggested that
the production ratio of GluN2A and GluN2B subunits is more critical than either subunit
alone in determining the sign of synaptic plasticity (LTP vs. LTD) [46]. Thus, changes in
metaplasticity can also be assumed [39].

It should be noted that we examined synaptic plasticity the day after the administra-
tion of CTX for 5 days. Therefore, we do not know how long the observed decrease in
LTP may continue. A previous study indicated that increased GLT1 expression may be
observed for up to 3 months after CTX treatment [13]. Therefore, long-term disturbances in
synaptic plasticity due to CTX cannot be ruled out.

In addition, it is important to note that we did not detect any obvious behavioral
abnormalities in our study, with the behavior of the CTX-treated rats in the open field test
and Morris water maze no different from that of the control animals, except for the rate of
failed trials in the maze during the first day of learning.

Only a few published studies have estimated the impact of CTX treatment on rodent
behavior. In one study, 9-day administration of CTX (200 mg/kg) did not alter either
the distance traveled to the platform during the learning phase or the time spent in
the target quadrant in the Morris water maze, despite a significant increase in GLT1
expression in CA1 and CA3 synapses and the dentate gyrus in mice [47]. However, another
study demonstrated impaired memory in rats in a new object recognition test after CTX
administration for 8 days [19]. It should also be noted that CTX treatment can restore
hippocampus-dependent behavioral disorders in various models of disease. For example,
learning and memory ability in the Morris water maze was rescued by CTX administration
during the phase of epileptogenesis in the lithium-pilocarpine model of temporal lobe
epilepsy [48]. Administration of CTX for 7 days and 14 days during hypoxic exposure
ameliorated hypobaric hypoxia-induced cognitive impairment in the Morris water maze
and GLT1 expression [49]. Therefore, the effect of CTX treatment on memory function also
depends on the expression level of GLT1.

Overall, our data provide further evidence that synaptic plasticity is critically de-
pendent on NMDAR-mediated signaling. Changes in NMDAR-mediated signaling due
to GLT1 gain-of-function lead to impaired plasticity. The ability of CTX to enhance the
expression and functional activity of GLT1 may likely negatively affect learning in some
cases. This phenomenon can be considered a potential side effect of CTX treatment.

4. Materials and Methods
4.1. Animals and CTX Administration

The experiments were carried out on three-week-old male Wistar rats. Rats were bred
at the animal facility of the Sechenov Institute of Evolutionary Physiology and Biochemistry
of the Russian Academy of Sciences (Saint Petersburg, Russia). The animals were kept
under standard conditions with free access to food and water. All animal procedures fol-
lowed the guidelines of the European Community Council Directive 86/609/EEC and the
guidelines on the treatment of laboratory animals of the Sechenov Institute of Evolutionary
Physiology and Biochemistry. CTX (200 mg/kg, i.p.) was freshly dissolved in sterile saline
immediately before administration. The drugs were administered at an injection volume of
2 mL/kg/day for five days.

4.2. Slice Preparation

Rats were sacrificed via decapitation, and their brains were removed rapidly. The brain
slice preparation was described previously [23]. Horizontal 350–400-µm-thick slices were
cut with a vibrating microtome (Microm HM 650 V; Microm, Walldorf, Germany). Artificial
cerebrospinal fluid (ACSF) with the following composition (in mM) was used: 126 NaCl,
24 NaHCO3, 2.5 KCl, 2 CaCl2, 1.25 NaH2PO4, 1 MgSO4, and 10 dextrose. The ACSF was
aerated with the gas mixture of 95% O2 and 5% CO2. The slices were then transferred
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to oxygenated ACSF and incubated for one hour at 35 ◦C before electrophysiological
recordings. One to five slices from each rat were used in the experiment.

4.3. Field Potential Recordings

After incubation, the slices were placed in a recording chamber and perfused with
a constant flow of ACSF at a rate of 5–7 mL/min. The electrophysiological experiment
began 15–20 min after placing the slices in a chamber. Field excitatory postsynaptic
potentials (fEPSPs) were recorded from CA1 stratum radiatum using glass microelectrodes
(0.2–1.0 MΩ) filled with ACSF. Synaptic responses were evoked by local extracellular
stimulation of afferent fibers using tungsten bipolar electrodes placed in the stratum
radiatum at the CA1–CA2 border, approximately 1 mm from the recording electrode [50].
Test stimuli were delivered as constant voltage rectangular paired pulses (duration, 0.1 ms;
interstimulus interval, 50 ms) every 20 s via an A365 stimulus isolator (World Precision
Instruments, Sarasota, FL, USA). Responses were amplified using a Model 1800 amplifier
(A-M Systems, Carlsborg, WA, USA) and digitized and recorded to a personal computer
using ADC/DAC NI USB-6211 (National Instruments, Austin, TX, USA) and WinWCP
v5.x.x software (University of Strathclyde, Glasgow, UK). The electrophysiological data
were analyzed using Clampfit 10.2 program (Axon Instruments, San Jose, CA, USA).
The amplitude and slope of the rising phase at a level of 20–80% of the peak amplitude
were measured.

4.4. LTP of Excitatory Synaptic Transmission

LTP was assessed 1 d after the last administration of CTX. The stimulation ’current’s
value was adjusted to elicit a response with a magnitude of 40–50% of maximal. Once fEPSP
amplitudes were stable for 20–25 min (baseline), theta-burst stimulation (TBS, 5 trains
applied five times every 10 s consisting of 5 bursts of 5 100-Hz pulses; interburst interval-
200 ms) or high-frequency stimulation (HFS, 3 trains of 100 pulses at 100 Hz applied every
20 s) protocols were used to induce LTP. The LTP magnitude was defined as the average
slope of the fEPSP 48–60 min after the induction protocols normalized to the slope’s mean
value for the 10-min period immediately before the protocol.

4.5. Patch-Clamp Recordings

Whole-cell patch-clamp recordings were performed using the cesium-methanesulfonate-
based pipette solution (in mM: 127 cesium methanesulfonate (CsMeSO4), 10 NaCl, 5 ethylene
glycol-bis (β-aminoethyl ether)-N,N,N 0,N 0-tetraacetic acid (EGTA), 10 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 6 QX314, 4 ATP-Mg, and 0.3 GTP, pH 7.25, adjusted
with CsOH). No correction for series resistance was applied. The EPSCs were elicited by
applying electrical stumuli to Schaffer collateral axons with the bipolar woven wolfram
wire electrode. Repeated recordings were acquired with 20 s intervals.

4.6. Drugs

MK-801 (10 µM), an uncompetitive NMDAR antagonist, QX314 (6 µM), voltage-gated
Na+ channel blocker, bicuculline (10 µM), a competitive GABAa receptor antagonist, CGP
55845, a selective GABAb receptor antagonist (5 µM), and DNQX (20 µM), a competitive
AMPA and kainate receptor antagonist, were obtained from Sigma (St. Louis, MO, USA).
These drugs, used for the electrophysiology experiments, were diluted in distilled water
and applied via a bath.

4.7. Quantitative PCR (qRT-PCR)

Rats were decapitated 24 h after the last injection of CTX or saline. Brains were
quickly isolated, frozen, and stored at −80 ◦C until dissection. The dorsal hippocampus
was dissected using a cryostat-microtome OTF5000 (Bright Instrument, Huntingdon, UK)
according to the rat brain atlas [51]. Total RNA was isolated using the acid guanidinium
thiocyanate-phenol-chloroform extraction method [52] with ExtractRNA reagent (Evro-
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gen, Moscow, Russia) according to the ’manufacturer’s instructions. RNA concentration
was assessed spectrophotometrically using NanoDrop™ Lite (Thermo Fisher Scientific,
Wilmington, DE, USA) at 260 nm.

Total RNA (2 µg), oligo-dT-primers (0.5 µg per 1µg RNA), (DNA Synthesis Ltd.,
Moscow, Russia) and MMLV reverse transcriptase (100 units per 1 µg RNA; Evrogen,
Moscow, Russia) were used for reverse transcription. The reaction was conducted in
a total volume of 20 µL: we mixed primers and 8 µL of RNA solution and incubated
10 min at 70 ◦C and quickly cooled to 4 ◦C for primer annealing. Then we added reverse
transcriptase-containing reaction mix, and samples were incubated 2 h at 42 ◦C and 10 min
at 65 ◦C. After this step, all samples were diluted 10-fold before the PCR step.

qPCR was performed in a total volume of 10 µL with 0.8 µL cDNA, 0.75 units of
TaqM-polymerase (Alkor Bio, St. Petersburg, Russia), 3.5 mM Mg2+, specific forward,
reverse primers, and hydrolysis (TaqMan) probes (see Table 1). Nucleotides were syn-
thesized by DNA Synthesis Ltd. (Moscow, Russia). PCR reactions were performed in a
C1000 Touch thermal cycler combined with a CFX96 Touch™ Real-Time PCR Detection
System (BioRad, Hercules, CA, USA) in triplets, simultaneously with no template and
no reverse transcription control samples. To determine the relative expression of genes
Grin1, Grin2a, Grin2b, Gria1, and Gria2, method 2−∆∆Ct was used [53]. Actb and Gapdh were
used as reference genes. Their stability in the reported experiments was confirmed in the
preliminary experiments with the approach suggested earlier [54].

Table 1. Primers and probes used in qRT-PCR.

Gene Symbol
RefSeq Accession Number

Nucleotide Sequences
(Forward, Reverse, TaqMan-Probe) Reference

Actb
NM_031144

TGTCACCAACTGGGACGATA [55] (primers)
[54] (probe)GGGGTGTTGAAGGTCTCAAA

FAM-CGTGTGGCCCCTGAGGAGCAC-BHQ1

Gapdh
NM_017008

TGCACCACCAACTGCTTAG
[56]GGATGCAGGGATGATGTTC

R6G-ATCACGCCACAGCTTTCCAGAGGG-BHQ2

Grin1
NM_017010

GTTCTTCCGCTCAGGCTTTG
[57]AGGGAAACGTTCTGCTTCCA

FAM-CGGCATGCGCAAGGACAGCC-BHQ1

Grin2a
NM_012573

GCTACACACCCTGCACCAATT
[58]CACCTGGTAACCTTCCTCAGTGA

FAM-TGGTCAATGTGACTTGGGATGGCAA-BHQ1

Grin2b
NM_012574

CCCAACATGCTCTCTCCCTTAA
[58]CAGCTAGTCGGCTCTCTTGGTT

FAM-GACGCCAAACCTCTAGGCGGACAG-BHQ1

Gria1
NM_031608

TCAGAACGCCTCAACGCC
[59]TGTAGTGGTACCCGATGCCA

ROX-TCCTGGGCCAGATCGTGAAGCTAGAAAA-BHQ1

Gria2
NM_017261

CAGTGCATTTCGGGTAGGGA
[59]TGCGAAACTGTTGGCTACCT

FAM-TCGGAGTTCAGACTGACACCCCA-BHQ1

4.8. Behavioral Tests

Behavioral tests started the next day after the last CTX (CTX group, n = 10) or saline
(Control group, n = 10) administration. The open field test was performed to evaluate
the locomotor activity and the anxiety level. Rats were placed into a round arena with a
diameter of 1 m, the height of the wall of 30 cm, and a lightness of 8 Lx. Rat movements
were video recorded, and tracks were analyzed software "Round and Cross" (Institute of
Experimental Medicine, St. Petersburg, Russia) [60]. Distance traveled during 3 min of
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testing was used to estimate the locomotor activity and time spent in the center of the arena
(1/4 of the arena’s radius) and thigmotaxis (less than 7 cm from the wall) for estimation of
the anxiety level.

Two days after the last injection of CTX, a Morris water maze test was performed to
evaluate the spatial memory. The maze was a round pool with a diameter of 150 cm and
walls of 70 cm height with opaque water (22 ± 1 ◦C). The walls were marked with four
different signs as spatial landmarks. During three consecutive days, rats were taught to
find the 10 × 10 cm platform located 15 cm from the wall and hidden 1 cm under the water.
Each day rats had four 90-s trials with a 2-min break. During each attempt, the rat had to
find the platform and then stay there for 30 s before being moved to the cage. If the rat
failed to find the platform, it was directed to the platform manually. Such trial was marked
as failed, and the distance passed during 90 s was taken into the analysis. Rat movements
were video recorded, and tracks were analyzed with “Round and cross” software.

4.9. Statistics

The statistical analysis and graphical representation of the results were performed
using OriginPro 8 (OriginLab Corp., Northampton, MA, USA) and Statistica 8.0 (StatSoft
Inc., Tulsa, OK, USA). Dixon’s Q test (at a 90% confidence level) was used to identify and
reject outliers. The normality of the sample data was evaluated using the Shapiro-Wilk
test or Kolmogorov–Smirnov test. The equality of variance was assessed using the Levene
median test. Statistical significance was assessed using Student’s t-test and ANOVA as
stated in the text. All data are presented as mean ± standard error of the mean. p < 0.05
was considered statistically significant.
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