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Abstract: Endometriosis is a common gynecological disorder characterized by ectopic growth of
endometrium outside the uterus and is associated with chronic pain and infertility. We investigated
the role of the long intergenic noncoding RNA 01133 (LINC01133) in endometriosis, an lncRNA
that has been implicated in several types of cancer. We found that LINC01133 is upregulated in
ectopic endometriotic lesions. As expression appeared higher in the epithelial endometrial layer, we
performed a siRNA knockdown of LINC01133 in an endometriosis epithelial cell line. Phenotypic
assays indicated that LINC01133 may promote proliferation and suppress cellular migration, and
affect the cytoskeleton and morphology of the cells. Gene ontology analysis of differentially expressed
genes indicated that cell proliferation and migration pathways were affected in line with the observed
phenotype. We validated upregulation of p21 and downregulation of Cyclin A at the protein
level, which together with the quantification of the DNA content using fluorescence-activated
cell sorting (FACS) analysis indicated that the observed effects on cellular proliferation may be
due to changes in cell cycle. Further, we found testis-specific protein kinase 1 (TESK1) kinase
upregulation corresponding with phosphorylation and inactivation of actin severing protein Cofilin,
which could explain changes in the cytoskeleton and cellular migration. These results indicate that
endometriosis is associated with LINC01133 upregulation, which may affect pathogenesis via the
cellular proliferation and migration pathways.

Keywords: endometriosis; long noncoding RNAs; lncRNAs; epithelial to mesenchymal transition;
EMT; proliferation; migration; cytoskeleton

1. Introduction

Endometriosis is a disorder characterized by the presence of endometrial tissue outside
of the uterine cavity, most often attached to organs of the peritoneal cavity [1]. As a common
gynecological disorder affecting 6–10% of reproductive age women, endometriosis presents
a significant burden on affected patients and society. However, the pathogenesis of the
disease is still not well defined. The most accepted explanation for the origin of the
cells from which endometriosis lesions develop is retrograde menstruation, whereby
endometrial cells flow out into the peritoneal cavity via the fallopian tubes [1]. In order
to establish a lesion, endometrial cells in the peritoneal cavity must adhere, implant, and
differentiate while avoiding the immune system. Thus, complex interactions between
molecular, humoral, immune, genetic and epigenetic signals must occur to support the
development, growth and persistence of a lesion [2].

The advent of next-generation sequencing has accelerated identification of changes in
the transcriptome, genome and epigenome in the pathogenesis of human diseases including
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endometriosis. In recent years, it has become clear that interactions between protein-
coding (mRNA) and non-coding transcripts such as long-non-coding RNAs (LncRNAs)
can influence the development of disease.

LncRNAs are a class of RNAs greater than 200 nucleotides in length that show similar
RNA biology features to mRNAs but do not code for a protein [3]. LncRNA can be
transcribed from different genomic regions, including introns, exons, and intergenic regions.
Around 30,000 lncRNAs have been identified in humans and mice [4], but only a fraction
of these have so far been demonstrated to be functional. LncRNAs are less evolutionally
conserved than mRNA [5], and are thought to form a complex tertiary structure when
binding DNA, RNA and proteins that may be required for their function [6]. They may
act as epigenetic gene regulators by affecting biological functions in the cell such as the
assembly and function of nuclear bodies, the stability and translation of cytoplasmic
mRNAs, and signaling pathways [7,8]. LncRNAs have been reported to regulate gene
expression in a number of different ways, including targeting chromatin modifiers such as
Polycomb repressive complex 2 (PRC2), or by acting as so-called miRNA sponges to bind
miRNAs that would otherwise bind other targets thereby affecting their expression [9].
Several studies using patient samples and animal models have reported aberrant expression
of long non-coding RNAs in endometriosis [10,11]. A growing body of evidence has
identified lncRNAs that can alter cell proliferation, migration, invasion and apoptosis of
endometriosis cells [12–14]. The molecular mechanism by which these lncRNAs cause
these phenotypes has not been shown in all cases. LncRNAs have also been associated with
endometriosis-associated angiogenesis [15], infertility [12] and epithelial to mesenchymal
transition (EMT) [16]. EMT is a cellular process where epithelial cells acquire a more
invasive mesenchymal phenotype and is associated with the loss of E-cadherin (CDH1)
and a gain of N-cadherin (CDH2), and the presence of EMT promoting factors such as
TWIST1, SNAIL, SLUG and TGFβ [17,18]. In a pathogenic context, it has been established
that EMT is a key process in carcinogenesis, but also plays a less well-characterized role in
endometriosis lesion development [19]. Hence, clarifying the role of EMT in endometriosis,
and its regulation by pathways that may include lncRNAs remains an important issue in
the field.

LINC01133 is an lncRNA that has recently been identified as a putative prognostic
marker for endometrial cancer [20]. It has also been associated with the regulation of EMT
in several cancers including cervical [21], breast [22], colorectal [23] and gastric [24]. Given
that EMT is also a feature of endometriosis [25] we reasoned that LINC01133 may also be
involved in the pathogenesis of endometriosis, and sought to investigate this in our study.

2. Results
2.1. LINC01133 Is Upregulated in Ectopic Endometriosis Lesions

In order to identify changes that may occur in LINC01133 expression levels during
endometriosis pathogenesis, we compared control eutopic endometrium from women
without endometriosis with eutopic endometrium from endometriosis patients, and ec-
topic endometriosis lesions using quantitative reverse transcription PCR (qRT-PCR). This
showed that LINC01133 expression is significantly upregulated in endometriosis lesions
compared to eutopic tissue of both patients and controls (Figure 1A). These changes were
independent of disease stage and menstrual cycle phase (Figure 1B,C). We next used
RNA Scope in situ hybridization to determine LINC01133 spatial localization within en-
dometrium tissue. We found that LINC01133 is expressed in both stromal and epithelial
cells of the eutopic endometrium of women with endometriosis, but appeared to show
higher levels in glandular epithelial cells (Figure S1A). Quantification confirmed this ob-
servation, with positive glandular epithelial cells around five times more frequent than
positive stroma cells (p = 0.0012) (Figure S1B).
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Figure 1. LINC01133 expression is upregulated in endometriosis lesions. (A) Relative expression of LINC01133 is signifi-
cantly increased in ectopic endometriotic lesions compared to the eutopic endometrium of women with and without en-
dometriosis. Expression in the eutopic endometrium does not differ between women with and without the disease. (B) In 
endometriosis patients, LINC01133 expression does not significantly differ between mild (rAF I+II) and more severe (rAF 
III+IV) disease stages, in either the eutopic endometrium or ectopic lesions. (C) LINC01133 expression does not signifi-
cantly differ between the proliferative and secretory stages of the menstrual cycle in control eutopic endometrium, eutopic 
endometrium from patients, or ectopic lesions. Data in (A–C) are presented as dot plots including the mean relative ex-
pression levels and standard deviation in each group As the sample sizes were not equal, data were analyzed by fitting a 
mixed model, rather than repeated measures ANOVA (which requires equal sample size). Adjusted p-values values (adjp) 
< 0.05 were considered significant with non-significant differences indicated by ns. Control: endometrial tissue of women 
without endometriosis, Eutop: endometrial tissue of women with endometriosis, Ectop: endometriosis lesions. 

2.2. LINC01133 siRNA Knockdown in 12Z Endometriosis Epithelial Cells Leads to 
Transcriptional Deregulation of 1210 Genes 

To evaluate the role of LINC01133 within the epithelial cell compartment of endome-
triosis lesions, we performed transient siRNAs-based knockdown of LINC01133 in the 12Z 
endometriosis epithelial cell line, followed by RNA- sequencing. First, using qRT-PCR we 
confirmed the efficiency of LINC01133 knockdown using three independent siRNA oligos. 
Significant knockdown was achieved for all 3 oligos (p ≤ 0.0001), with the most efficient 

Figure 1. LINC01133 expression is upregulated in endometriosis lesions. (A) Relative expression of LINC01133 is significantly
increased in ectopic endometriotic lesions compared to the eutopic endometrium of women with and without endometriosis.
Expression in the eutopic endometrium does not differ between women with and without the disease. (B) In endometriosis
patients, LINC01133 expression does not significantly differ between mild (rAF I + II) and more severe (rAF III + IV) disease
stages, in either the eutopic endometrium or ectopic lesions. (C) LINC01133 expression does not significantly differ between
the proliferative and secretory stages of the menstrual cycle in control eutopic endometrium, eutopic endometrium from
patients, or ectopic lesions. Data in (A–C) are presented as dot plots including the mean relative expression levels and
standard deviation in each group As the sample sizes were not equal, data were analyzed by fitting a mixed model, rather
than repeated measures ANOVA (which requires equal sample size). Adjusted p-values values (adjp) < 0.05 were considered
significant with non-significant differences indicated by ns. Control: endometrial tissue of women without endometriosis,
Eutop: endometrial tissue of women with endometriosis, Ectop: endometriosis lesions.

2.2. LINC01133 siRNA Knockdown in 12Z Endometriosis Epithelial Cells Leads to Transcriptional
Deregulation of 1210 Genes

To evaluate the role of LINC01133 within the epithelial cell compartment of en-
dometriosis lesions, we performed transient siRNAs-based knockdown of LINC01133
in the 12Z endometriosis epithelial cell line, followed by RNA- sequencing. First, using
qRT-PCR we confirmed the efficiency of LINC01133 knockdown using three independent
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siRNA oligos. Significant knockdown was achieved for all 3 oligos (p ≤ 0.0001), with
the most efficient siRNA LINC01133a reducing LINC01133 expression by more than 90%
72 h after transfection (Figure 2A). In order to identify any genes and pathways affected
by LINC01133 knockdown, we then conducted RNA-sequencing comparing LINC01133a
knockdown cells with non-targeting siRNA control cells 72 h after transfection (3 biological
replicates each). We identified four LINC01133 transcript isoforms that are expressed in
12Z cells and confirmed that all were efficiently targeted by the LINC01133a siRNA oligo
(Figure 2B). Further, analysis revealed 1210 differentially expressed (DE) transcripts in 12Z
knockdown cells, compared to controls using a fold change cutoff of >1.5 and adjp < 0.05.
From those DE genes, 703 were down-regulated and 507 up-regulated in knockdown
cells (Table S4). These transcriptional changes enabled a clear separation of LINC01133
knockdown and control samples by unsupervised hierarchical clustering (Figure 2C).
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Figure 2. LINC01133 knockdown leads to the deregulation of hundreds of genes in an endometriosis epithelial cell line. 
(A) qRT-PCR shows relative expression of LINC01133 is significantly reduced in 12Z cells for all 3 siRNA oligos that were 
used. (B) Tissue-specific LINC01133 isoforms are efficiently knocked down in 12Z cells. Top: A UCSC genome browser 
screenshot shows RNA sequencing reads mapping to LINC01133 are dramatically reduced in a knockdown with siRNA 
oligo LINC01133a. Bottom: Genome assembly using Cufflinks reveals multiple LINC01133 isoforms in 12Z cells that differ 
from the annotated GENCODE and Refseq transcripts. (C) Left: Hierarchical clustering of differentially expressed genes 
from RNA sequencing biological replicates shows that the control and LINC01133a siRNA samples cluster separately. 
Right: Hundreds of genes are up- or down-regulated in the LINC01133a knockdown in 12Z cells. 

Figure 2. LINC01133 knockdown leads to the deregulation of hundreds of genes in an endometriosis epithelial cell line.
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(A) qRT-PCR shows relative expression of LINC01133 is significantly reduced in 12Z cells for all 3 siRNA oligos that were
used. (B) Tissue-specific LINC01133 isoforms are efficiently knocked down in 12Z cells. Top: A UCSC genome browser
screenshot shows RNA sequencing reads mapping to LINC01133 are dramatically reduced in a knockdown with siRNA
oligo LINC01133a. Bottom: Genome assembly using Cufflinks reveals multiple LINC01133 isoforms in 12Z cells that differ
from the annotated GENCODE and Refseq transcripts. (C) Left: Hierarchical clustering of differentially expressed genes
from RNA sequencing biological replicates shows that the control and LINC01133a siRNA samples cluster separately. Right:
Hundreds of genes are up- or down-regulated in the LINC01133a knockdown in 12Z cells.

2.3. The Knockdown of LINC01133 in 12Z Cells Effects Genes and Pathways with a Known
Function in Endometriosis Lesion Formation

To gain insight into the function of the genes being regulated by LINC01133, we carried
out gene ontology enrichment analysis (GOEA) (http://bioinformatics.sdstate.edu/go/)
(accessed on 2 December 2020) [26] and gene set enrichment analysis (GSEA) (http://
www.gsea-msigdb.org/gsea) (accessed on 2 December 2020) [27,28]. The GOEA showed
enrichment in genes that control cell proliferation, migration and angiogenesis (Figure
S2A and Table S5), all processes to be involved in the pathogenesis of the disease. GSEA
enrichment in targets of the mammalian histone methyltransferase EZH2, adult tissue stem
cells and mesenchymal cells (Figure S2B and Table S6), Together these results suggest that
LINC01133 may be involved in the regulation of epithelial cell proliferation, invasion and
cell fate conversion (EMT), processes that are known to support ectopic lesion growth.

2.4. LINC01133 Regulates Proliferation and Invasion of Endometriosis Epithelial Cells In Vitro

To determine if the phenotypic changes predicted by GOEA and GSEA analysis fol-
lowing LINC01133 knockdown in 12Z cells occur, we evaluated changes in cell proliferation
and invasion in 12Z cells 72 h post knockdown. The results showed that LINC01133 knock-
down leads to a slight, but significant downregulation of 12Z proliferation (Figure 3A) and
significantly enhances the invasion phenotype of knockdown cells (Figure 3B). The relative
proliferation rate of LINC01133 knockdown cells was 30% lower (adjp < 0.0001), and the
invasion rate was 1.5 times higher (adjp < 0.05) when compared to cells transfected with
the siRNA control oligo.
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(A) Relative number of proliferating cells is significantly reduced in LINC01133 knockdowns using 3 different siRNA oligos.
Data are presented as bar plots of mean values from three biological replicates +SD. (B) Invading cells are significantly
increased following LINC01133 knockdown using 2 different siRNA oligos. Left: Quantification of the number of invading
cells after LINC01133 knockdown analyzed by the trans-well method. Right: Representative images of control and
knockdown cells at 10× magnification stained with CyQuant fluorescence dye (green), which shows fluorescence enrichment
when bound to cellular nucleic acids. Data are presented as a box plot ranging from minimum to maximum, including the
median and box boundaries at the 25th and 75th percentiles from three biological replicates. Six independent fields were
counted and the mean values taken for analysis. Statistical analysis of the data between the groups in A and B was done
using Kruskal–Wallis ANOVA test with Dunn’s test for multiple comparison. Adjp < 0.05 were considered significant.

2.5. LINC01133 Regulates Cell Cycle and the Levels of Expression of Cell Cycle Regulatory
Proteins p21 and Cyclin A

We further examined the viability of 12Z cells following LINC01133 knockdown using
an AnnexinV/Propidium Iodide FACS assay. We found that LINC01133 knockdown did
not influence the survival of the cells (Figure 4A). The mean percent of early apoptotic An-
nexinV positive cells was about 25% for both cells transfected with a control or LINC01133a
oligo. Analysis of the DNA profiles of the LINC01133 siRNA transfected cells showed a
slight but significant enrichment of the number of cells in the G1 phase (7%, adjp < 0.005),
and a concomitant down-regulation of the number of cells entering S-phase of the cell cycle
(5%, adjp < 0.05), compared to control siRNA transfected cells (Figure 4B). This effect on
cell cycle in knockdown cells was associated with significant up-regulation of the levels
of expression of the cell cycle checkpoint regulatory protein p21 (~2.5-fold, adjp < 0.005)
and down-regulation of Cyclin A (~2-fold, adjp < 0.05) (Figure 4C), compared to control
oligo transfected cells. These findings were consistent with the results of our RNA-seq (see
Table S4), further indicating that changes in expression of these genes may be responsible
for the cell cycle phenotype.
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(left) and cyclin A (right) levels from Western blots normalized to the α-tubulin loading control. Data are displayed as bar 
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Figure 4. LINC01133 knockdown leads to an increase in cells in the G1 phase and a decrease in cells in the S phase associated
with an increase in p21 and a decrease in Cyclin A levels. (A) No significant changes in the number of apoptotic cells are seen
72 h after LINC01133 knockdown. Top: Representative flow cytometry scatter plots for AnnexinV+ versus 7-AAD+ cells.
Bottom: No significant change in the number of AnnexinV+ or 7AAD+ cells was observed between LINC01133a knockdown
and control siRNA transfected cells. Mean values + SD of three biological replicates are shown. (B) LINC01133 knockdown
leads to an increase in cells in the G1 phase and a decrease in cells in the S phase. Top: Representative DNA profiles
obtained from flow cytometry analysis of PI stained 12Z cells 72 h after transfection with LINC01133b siRNA or control
siRNA (brown G1 peak, blue S phase, purple G2 + M). Bottom: The percentage of cells in each cell cycle phase are plotted
as mean + SD of three independent experiments. Statistically significant differences between the groups in A and B are
indicated with a star on the top of each panel. *—adjp < 0.05 (two-way ANOVA test with Sidak’s for multiple comparison),
ns-not significant. (C) p21 protein is significantly upregulated and Cyclin A protein significantly down-regulated following
LINC01133 knockdown. Top: Representative examples of Western blot analysis following LINC01133 knockdown of p21
(left) and Cyclin A (right) together with the α-tubulin loading control. Bottom: Densitometric analysis of p21 (left) and
cyclin A (right) levels from Western blots normalized to the α-tubulin loading control. Data are displayed as bar graphs
with the level from the control siRNA set to 1, and mean and + SD of biological triplicates shown. Statistically significant
differences between the groups are indicated with adj p-values on the top of each graph (ANOVA, with Dunnett’s multiple
comparison test).
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2.6. LINC01133 Is Not a Regulator of EMT in 12Z Endometriosis Epithelial Cells

The enrichment of differentially expressed genes associated with a mesenchymal phe-
notype (Figure S2, Table S6A,B) and an increased invasion of 12Z cells following LINC01133
knockdown (Figure 3B) indicated that these cells may be converted to a more mesenchymal
phenotype. To evaluate the role of LINC01133 in epithelial to mesenchymal transition
(EMT) in endometriosis, we further investigated expression of selected EMT regulatory
proteins indicated to be differentially expressed in our RNA-seq data (Table S7). qRT-PCR
and Western blot analysis confirmed the loss of CDH1 (E-cadherin) following LINC01133
knockdown (Figure S3A). The levels of CDH1 transcription correlated with the efficiency
of the LINC01133 knockdown in 12Z cells (Figure 2A, Figure S3A left panel), further sup-
porting the involvement of LINC01133 in its regulation. Specifically, a knockdown of
LINC01133 to about 10% of the levels of controls (LINC01133a siRNA, adjp < 0.0001), led to
reduction of the relative levels of CDH1 expression to 20% of the controls (adjp < 0.0001),
whereas LINC01133 knockdown to 35% (LINC01133b siRNA, adjp < 0.0001) led to a 30%
reduction of CDH1 transcript (p = 0.007) compared to controls. However, we did not see a
classical EMT-associated Cadherin switch in LINC01133 knockdown cells. The levels of
CDH2 (N-cadherin) transcript were downregulated to 53% of normal level in cells with high
efficiency of LINC01133 knockdown (LINC01133a oligo, adjp = 0.002), but were not changed
in cells with a less efficient knockdown of LINC01133 (LINC01133b siRNA oligo, adjp > 0.05)
(Figure S3A, left panel). Further, we validated the significant downregulation of VCAM-1
(p = 0.029, Figure S3B), and significant upregulation of SOX4 (p = 0.02, Figure S3C) and
TGFβ2 (p = 0.0014, Figure S3D) in LINC01133 knockdown cells compared to controls for
both the LINC01133a and LINC01133b oligos. However, we could not validate the reduction
of KRT7 and KRT19 (Figure S3E,F) in cells with LINC01133 knockdown, when compared
to siRNA controls. Given that we did not see a classic E-cadherin to N-cadherin switch,
and that expression changes for some EMT markers could not be validated, these data
suggest that LINC01133 does not play a significant role in regulating EMT in endometriosis
epithelial cells.

2.7. Active Cytoskeleton Remodeling in 12Z Cells Following LINC01133 Knockdown

LINC01133 knockdown led to the deregulation of genes involved in cell adhesion and
EMT, and was associated with changes in the cellular phenotype of 12Z knockdown cells,
which appeared to have a more flattened, larger phenotype with an increased number of
actin stress fibers (Figure 5A). This was supported by analysis of cell area and fluorescence
intensity in LINC01133 knockdown cells compared to controls. We confirmed that the
cross-sectional cellular area of LINC01133 knockdown cells was greater, with knockdown
cells 1.7 fold the size of control siRNA treated cells (adjp = 0.006, Figure S4A). Further,
analysis of Phalloidin fluorescence intensity showed that LINC01133 knockdown cells had
4.5-fold higher corrected total cell fluorescence (CTCF) than cells transfected with control
siRNA oligo (p < 0.0001) (Figure S4B). This data indicated that active actin remodeling may
occur following LINC01133 knockdown. Therefore, we further evaluated the expression
and/or activity of some proteins involved in the regulation of actin filaments, stress
fibers formation and focal adhesions such as TESK1 and Cofilin. TESK1 phosphorylates
and thereby inactivates the Actin severing protein Cofilin at Ser3, thus regulating the
organization of the Actin cytoskeleton [29]. We identified TESK1 as being differentially
expressed in 12Z knockdown cells by RNA-seq (Table S4) and confirmed that the protein
was significantly increased following LINC01133 knockdown (1.5-times higher, adjp < 0.05)
(Figure 5B). These changes in TESK1 expression were associated with a significant increase
in Cofilin phosphorylation to 2.2-fold higher (adjp < 0.05) following LINC01133 knockdown
(Figure 5C). Together this data indicates that LINC01133 may regulate actin remodeling in
endometriosis epithelial cells via this pathway.
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Dunnett’s multiple comparison test).
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3. Discussion

LncRNAs are epigenetic regulators that have been implicated in development and
disease, but whose role in the pathogenesis of endometriosis remains relatively unknown.
Endometriosis shares some features with cancer, including EMT, therefore we chose to
investigate the role of LINC01133 in endometriosis, a well-characterized lncRNA that has
been associated with EMT in cervical [21], breast [22], colorectal [23] and gastric [24] cancer.
We found that LINC01133 is significantly upregulated in ectopic endometriosis lesions,
and that knockdown in an epithelial endometriosis cell line indicates that it promotes
cell proliferation and suppresses cell migration and invasion in endometriosis, but that
it does not regulate EMT in this disease. Our results indicate that LINC01133 affects cell
proliferation by affecting the cell cycle via the p21/cyclin pathway, and cellular invasion
and cytoskeleton remodeling due to Cofilin phosphorylation and inactivation by the TESK1
kinase. A caveat of our study is that we used the immortalized endometriosis epithelial
cell line 12Z for our functional experiments, although this cell line is widely accepted in
the field as a cell model of endometriosis [30].

The effects on cell proliferation were associated with cell cycle arrest in G1 and im-
paired S-phase entry due to significant up-regulation of cell cycle checkpoint protein p21
and concomitant downregulation of Cyclin A. The mechanism by which LINC01133 may
regulate these genes in endometriosis remains unclear. In non-small cell lung carcinoma
LINC01133 suppresses the transcription of CDKN1A (p21) via a direct EZH2-mediated
chromatin remodeling mechanism [31]. In another context, LINC01133 promotes the pro-
gression of cervical cancer by sponging miR-4784 to cause the up-regulation of AT-hook
DNA-binding motif-containing protein 1 (AHDC1) promoting EMT [21]. The high basal
level of p21 expression and moderate transcriptional activation upon LINC01133 knock-
down (~2.5-fold) indicates that sponging rather than an EZH2 mediated p21 activation
may be a more likely mechanism of regulation, although this remains to be tested.

Impaired expression of LINC01133 has been associated with the regulation of EMT
in cancer [23,31,32]. EMT is a multi-stage process leading to the gradual remodeling of
the epithelial into a mesenchymal phenotype. This includes the loss of epithelial markers
and concomitant acquisition of mesenchymal markers, an increase in cell migration and
invasion, disruption of cell-cell contacts, impaired adhesion and the remodeling of the
cytoskeleton [19]. This molecular remodeling also takes place during the establishment of
endometriosis lesions [17]. However, although we saw an enrichment of some mesenchy-
mal gene sets among differentially expressed genes in 12Z endometriosis epithelial cells
following LINC01133 knockdown, we found little phenotypic evidence for EMT. Our data
showed a significant upregulation of TGFβ2 following LINC01133 knockdown is associated
with an increase in the levels of expression of the master regulator of EMT, SOX4 [33,34]
and subsequent down-regulation of CDH1 and CDH2. However, expression of the ep-
ithelial markers KDR7 and KDR19 [35], along with the EMT regulators TWIST, SNAIL,
ZEB1 and ZEB2 [36] were not significantly affected by LINC01133 knockdown. CDH1 is a
tumor suppressor and cell polarity regulator [37] and the loss of CDH1 promotes motility
and invasion. There is also some evidence that in endometriosis lesions the loss of CDH2
expression may be associated with increased invasive capacity of endometrial epithelial
cells. Matsuzaki et al. [38] have shown that deep infiltrating endometriosis lesions express
less CDH2, compared to early peritoneal lesions. In normal endometrial tissue high levels
of CDH2 were associated with the proliferative phase of the cycle [39]. However, whether
activation of CDH2 by LINC01133 is responsible for the loss of proliferation capacity and
increased invasiveness of endometriosis epithelial cells needs to be tested.

Recently, we have shown that the levels of expression of VCAM-1 are increased in
tissue samples of women with endometriosis, compared to women without the disease [40].
The loss of VCAM-1 was shown to attenuate the TGF-β1 induced proliferation, migration
and invasion of endometriosis stroma cells derived from ovarian endometriomas [41]. Our
data showed that the function of the protein as a regulator of cell invasion of epithelial
endometriosis cells might differ from those in stroma, while downregulation of VCAM-1
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following LINC01133 knockdown was associated with an increase of cellular invasion.
As up-regulation of VCAM-1 in malignant cells is associated with recruitment of tumor-
associated monocytes and macrophages and immune escape of the tumors [42,43], we
postulate that LINC01133 dependent VCAM-1 regulation in endometriosis epithelial cells
may be related to immune surveillance of the lesions.

A central event in cellular invasion is the dynamic cytoskeleton remodeling leading to
changes in cellular morphology. We [44] and others [45,46] have shown that the dysregula-
tion of cytoskeleton dynamics and related signaling pathways are linked to pathogenesis
of endometriosis and disease-associated infertility. Actin filaments, microtubules, and
intermediate filaments involved in the formation of cytoskeletal structures, such as stress
fibers and pseudopodia promote the invasion of normal cells and invasion and metastasis
of tumor cells. Here we showed that the increase in the invasion capacity of 12Z cell under
LINC01133 knockdown is associated with changes in cellular morphology to more flattened
and larger phenotype with an increased number of stress fibers, provoked by the activa-
tion of TESK1 expression and inactivation of Cofilin. TESK1 is a serine/threonine kinase
with kinase domain similar to those of LIM-kinases and a unique C-terminal proline-rich
domain [47] known to phosphorylate Cofilin at Ser-3 [29]. Cofilin plays an essential role
in actin filament dynamics by enhancing depolymerization and severance of actin fila-
ments [48]. These activities of Cofilin are abolished by phosphorylation at Ser-3. Therefore,
the changes in Cofilin phosphorylation at Ser-3 are regarded as one of the most important
mechanisms for regulating Cofilin activity and actin filament dynamics. It has been shown
that induction of stress fibers require an active Rho-ROCK signaling pathway independent
of TESK1 [29]. Several studies also indicate that the balance between Rho and Rac activity
in cells determines the patterns of actin organization, cell morphology and motility [49].
Thus, the effects of LINC01133 on the cellular filament and cytoskeleton dynamics may not
be restricted only to the TESK1/Cofilin pathway.

Overall, in this study, we found that LINC01133 is overexpressed in ectopic en-
dometriosis lesions compared to the eutopic endometrium of women both with and without
the disease. By knocking down LINC01133 in endometriosis epithelial cells we were able
to show that the lncRNA promotes cellular proliferation and inhibits cell invasion in these
cells, and to identify components of these pathways that were affected, including p21,
Cyclin A and TESK. These results indicate that LINC01133 may be a clinically relevant
player in endometriosis, although this remains to be tested in vivo.

4. Materials and Methods
4.1. Study Population

For this study, tissue samples were collected in accordance with the protocols of the
Endometriosis Marker Austria (EMMA) study, a prospective cohort study conducted at the
Tertiary Endometriosis Referral Center of the Medical University of Vienna. Premenopausal
women 18–50 years of age undergoing a laparoscopic procedure due to suspected en-
dometriosis, infertility, chronic pelvic pain, benign adnexal masses or uterine leiomyoma
were invited to participate in the EMMA study. Women who had acute inflammation,
known or suspected infectious disease, chronic autoimmune disease or malignancy were
excluded from the study. Ethics approval for this study was provided by the institutional
ethics committee of the Medical University of Vienna (EK 545/2010). Verbal and written
informed consent was obtained from each participant prior to inclusion into the study. The
detailed baseline characteristics of the participants are summarized in Table S1. Briefly,
from a total number of n = 95 participating women, n = 42 were defined as controls and
n = 53 were patients suffering from endometriosis. The control group consisted of women
undergoing laparoscopy for uterine fibroids, benign ovarian cysts, fallopian tube disorders
or diagnostic laparoscopy due to unexplained infertility or chronic pelvic pain. Each
participating woman contributed only one sample of eutopic endometrium and some of
the women with endometriosis contributed samples of diverse types of endometriotic
lesions. All tissue samples were collected during laparoscopic surgical intervention for
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diagnosis and/or therapy of endometriosis. All samples were collected in accordance to
Endometriosis Phenome and Biobanking Harmonization Project guidelines [50].

4.2. Cell Line for In Vitro Evaluation of LINC01133 Function

Endometriotic epithelial cell line 12Z established and characterized by the labora-
tory of Professor Starzinski-Powitz [51,52] was kindly provided for our in vitro studies.
The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM-F12) containing
penicillin/streptomycin in final concentrations of 50 U/mL and 50 µg/mL, respectively
and 10% v/v fetal calf serum (FCS). The cells were maintained in a 37 ◦C CO2-humified
incubator. Cells were tested and found to be negative for mycoplasm infection. All cell
culture reagents were purchased from Thermo Fisher Scientific (Waltham, MA, USA) or
Sarstedt (Nümbrecht, Germany).

4.3. RNA-Scope

To visualize the subcellular localization of LINC01133 RNA in tissue samples of women
with endometriosis we used the RNAscope® 2.5 HD Red assay on formalin-fixed paraffin-
embedded eutopic endometrial tissues of women with endometriosis (n = 5), according
to the manufacturer’s protocol (Advanced Cell Diagnostics (ACD), Hayward, CA, USA).
This method uses a signal amplification method and double Z probe design provides high
sensitivity and specificity suitable for detecting relatively lowly expressed RNAs, such as
lncRNAs. The system visualizes target RNA as a single dot, where each dot is an amplified
signal of an individual RNA molecule. We used the probe Hs-LINC01133 designed by ACD
to specifically detect LINC01133, and probe dapB (bacterial dihydrodipicolinate reductase,
PN310043) as a negative control.

4.4. LINC01133 Knockdown

The 12Z cells were seeded in complete culture cell medium 12 h prior to transfection
on 6-well culture plates (Nunc, Thermo Fisher Scientific, Waltham, MA, USA) at a con-
centration of 1 × 105 cells/well and allowed to grow to approximately 40% confluency.
The cells were then transfected with one of three different LINC0133 targeting siRNA
oligos at a final concentration of 10 nM (Table S2A) or a non-targeting control siRNA oligo
(Cat.4390846, Ambion, Austin, Texas, USA) using Lipofectamine RNAiMAX transfection
reagent according to the manufacturer’s protocol (Invitrogen by Life Technology, Waltham,
MA, USA). Phenotypic analysis of LINC01133 knockdown cells for changes in cellular pro-
liferation and invasion/migration was conducted 48 h post-transfection. RNA-sequencing,
qRT-PCR and Western blot analysis were conducted 72 h post-transfection. The 3 siRNAs
had similar LINC01133 knockdown efficiencies (Figure 2A). Therefore, for each experiment,
we first checked LINC01133 knockdown efficiency by qRT-PCR, and then proceeded with
the 2 siRNAs that showed the greatest knockdown efficiency.

4.5. RNA Isolation

Frozen tissue samples were homogenized with a Precellys 24 homogenizer (PEQLAB,
Erlangen, Germany). Subsequently, total RNA was isolated from eutopic and ectopic
endometrium using the Agilent Absolutely RNA kit in accordance with the manufacturer’s
instructions (DNase I treatment included), and total RNA from the 12Z cell line was isolated
using the RNeasy mini kit (Qiagen). To remove DNA contamination the RNA samples
were subsequently treated with DNAseI using RapidOut DNA removal Kit (Thermo
Fisher Scientific, Waltham, MA, USA). RNA concentration and purity were determined
by measuring optical density using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). We defined the quality of the RNA samples to be
sufficient when the ratios of OD260/280 and OD260/230 were around 2.00. Additionally,
for RNA-sequencing we confirmed that RNA integrity was RIN > 7 on a Bio Analyzer
(Agilent Technologies, Santa Clara, CA, USA).
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4.6. RNA-Sequencing and Data Analysis

RNA sequencing was performed by the Next Generation Sequencing Facility at Vienna
BioCenter Core Facilities (VBCF), a member of the Vienna BioCenter (VBC), Austria. From
the total RNA, we provided they conducted poly-A enrichment for mRNAs and prepared
libraries using the Illumina TruSeq RNA kit. The six libraries (3 control oligo, 3 LINC01133
knock-down) were multiplexed on a single lane and subjected to 125 bp paired-end se-
quencing on an Illumina HiSeq2500 machine. The facility provided de-multiplexed BAM
files containing the raw reads, which we converted to fastq using Samtools (v1.10) for align-
ment with STAR using the parameters: –outFilterMultimapNmax 1 –outSAMstrandField
intronMotif –outFilterIntronMotifs RemoveNoncanonical –outSAMtype BAM SortedBy-
Coordinate –quantMode GeneCounts. On average 38M reads (94% of all reads) mapped
uniquely to the human genome (Table S2B). Annotation files and genome sequences were
downloaded from https://www.gencodegenes.org (accessed on 2 December 2020). Index
for alignments was prepared using STAR (2.7.6a_patch_2020-11-17) [53] with FASTA files
from the GRCh38.p13 assembly and Gencode (v36) gene annotation in GTF format.

Differential gene expression analysis was performed in the R statistical computing en-
vironment (v4.0.3) [54] using the DESeq2 package (v1.30.0) [55] with count tables produced
by STAR during alignment (*ReadsPerGene.out.tab files).

4.7. Assembly of LINC01133 Isoforms Expressed in the 12Z Cell Line

Aligned reads from the genomic positions chr1:159955239-15998963, were extracted
using Samtools for all downstream analyses [56]. For that region, read coverage was
calculated using bam2wig (v4.0.0) (https://github.com/MikeAxtell/bam2wig) accessed
on 3 December 2020. Read coverage at each informative genomic position was normal-
ized for sequencing depth and averaged over all control siRNA transfected and knock-
down LINC01133a siRNA samples. Transcript assembly was performed using Cufflinks
(v2.2.1) [57] with the parameter: -F 0.05. Note that for transcript assembly only the control
siRNA samples were used and the resulting GTF files were merged using Cuffmerge to
obtain the final LINC01133 annotation.

4.8. Gene Set Enrichment Analysis (GSEA) and Gene Ontology Enrichment Analysis (GOEA)

To test whether the differentially expressed genes identified by our cutoff criteria
(fold change > 1.5, adjusted p-value (adjp) < 0.05) are associated with specific biological
functions we performed gene ontology enrichment analysis (GOEA http://bioinformatics.
sdstate.edu/go/) (accessed on 25 November 2020) [26] and gene set enrichment analysis
(GSEA, Broad Institute http://www.gsea-msigdb.org/gsea) [27] accessed on 26 December
2020) [28]. For GOEA annotation Fisher’s exact test is used to determine if different
annotation terms are enriched among the differentially expressed genes. Gene ontology
(GO) terms showing a Fisher’s exact p-value < 0.05 were considered significantly enriched.
To calculate GSEA we used the Molecular Signature Database (MSigDB) to investigate the
overlap between our gene lists and known annotated gene sets. Gene sets showing a false
discovery rate (FDR) <0.05 were considered as significantly enriched among differentially
expressed genes. We considered the biological processes associated with significantly
enriched GO terms or MSigDB gene sets as being potentially relevant for endometriosis.

4.9. Quantitative Reverse Transcription PCR (qRT-PCR) for Measuring mRNA Expression

Total RNA was reverse transcribed with SuperScript® III First-Strand Synthesis Re-
verse Transcriptase using a mixture of oligo-d (T) and random hexamer primers (Life
Sciences Advance Technology, St. Petersburg, FL, USA). These cDNA preparations were
then diluted 2 fold with water before being assayed. qRT-PCR was performed in triplicate
in 96-well optical plates with 6 biological replicates. Each reaction contained 1X TaqMan
PCR master mix (Applied Biosystems, Waltham, MA, USA with ROX reference dye) and
0.2 µM of each specific primer pair-probe set listed in Table S3. qRT-PCR was performed
using a 7500 Fast Real-Time PCR System (Applied Biosystems, Waltham, MA, USA), with

https://www.gencodegenes.org
https://github.com/MikeAxtell/bam2wig
http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
http://www.gsea-msigdb.org/gsea
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an initial denaturation for 10 minutes at 95 ◦C, primer annealing at 50 ◦C for 2 min, fol-
lowed by 40 cycles of 15 seconds at 95 ◦C and 1 minute at 60 ◦C. The relative expression of
target genes was calculated using the delta-CT method as described [58], and normalized
to GAPDH expression. The average Ct values were ≤ 30 except for SOX4 transcripts that
showed an average Ct-value of 35 cycles.

4.10. Protein Isolation and Western Blot

Cells for Western Blot analysis were harvested and lysed in a whole-cell lysis buffer
composed of 1% Triton-X 100, 10 mM Tris-HCl, pH7.4, 150 mM NaCl and 5 mM EDTA.
Prior to use, the lysis buffer was supplemented with phosphatase and protease inhibitor
cocktail (phosStop, cOmplete mini, EDTA free, Thermo Fisher Scientific, Waltham, MA,
USA). The protein concentration was determined by the standard Bradford assay. The
normalized samples were immunoblotted as previously described [59] and incubated with
primary antibodies for the proteins of interest (Table S3). The secondary antibodies were
diluted in a Tris pH 8.0, 0.1% Tween 20 buffer and incubated for 1 h at room temperature.
Bound antibodies were detected by the horseradish peroxidase chemiluminescent substrate
LuminataTM (Millipore Corporation, Burlington, MA, USA). X-ray films (GE Healthcare,
Frankfurt am Main, Germany) were used for chemiluminescence detection. The levels of
protein expression on the blot were quantified using ImageJ Software (http://rsbweb.nih.
gov/ij) (accessed on 15 March 2021).

4.11. Analysis of Cell Cycle and Cell Death Using Fluorescence-Activated Cell Scanning (FACS)
Flow Cytometry

For FACS based analysis of the cell cycle changes upon LINC01133 knockdown, we
used standard propidium iodide (PI) DNA staining protocol. In brief, transfected cells
were harvested 72 h after siRNA knockdown and 1 × 106 cells were fixed in 70% precooled
ethanol for 2 h on ice. After washing with PBS (Thermo Fisher Scientific, Waltham, MA,
USA) the cells were re-suspended in 0.5 mL PI/RNAse containing staining buffer (550825),
BD Pharminogen™, Heidelberg, Germany) supplemented with 10 µL PI staining solution
(51-6621-1E, BD Pharmingen™, Heidelberg, Germany). After incubation for 15 minutes
at room temperature, the number of PI positive cells was measured by flow cytometry.
The effect of LINC01133 on cellular apoptotic rate was evaluated using staining with
AnnexinV (FITC-conjugated antibody (640906), BioLegend, San Diego, CA, USA; Annexin
V Binding Buffer, (422201), BioLegend, San Diego, CA, USA) in conjunction with the vital
dye 7-amino-actomycin D (00-6993-50) eBioscience, San Diego, CA, USA) followed by flow
cytometry measurement. A total of 1 × 106 cells 72 h after transfection was used in the
analysis, with a total of 10,000 events recorded for each sample, and unstained cells being
used as assay control.

4.12. Proliferation Assay

The proliferation rate of 12Z cells 72 h after LINC01133 knockdown was analyzed
using the CyQuant direct cell proliferation Assay (Invitrogen, Waltham, MA, USA) accord-
ing to the manufacture’s protocol. Prior to the assay, transfected cells were trypsinized
48 h after transfection with targeting and control siRNA oligos, seeded on 96 flat-bottom
cell culture plates (Thermo Fisher Scientific, Roskilde, Denmark) at a concentration of
15,000 cells/well and allowed to grow for an additional 12 h. The level of fluorescence was
accessed with the Clariostarplus microplate reader (BMG Labtech, Ortenberg, Germany)
with filters appropriate for 480 nm excitation and 520 nm emission maxima. The observed
fluorescence values were first corrected for the background fluorescence determined with
a cell- free sample, and a standard curve was used to estimate cell number. All measure-
ments were performed in technical triplicates, and the average number of proliferating
cells relative to control siRNA-treated cells was set to 1.

http://rsbweb.nih.gov/ij
http://rsbweb.nih.gov/ij
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4.13. Matrigel-Invasion Assay

The ability of cells to migrate or invade through a Matrigel barrier was measured in a
Boyden chamber assay with polycarbonate membranes. After 48 h of siRNA knockdown,
an equal number of 12Z cells (2 × 104) were re-suspended in 100 µL of growing media
supplemented with 1% v/v FCS and antibiotics and plated on top of matrigel coated
filter (Corning Matrigel growth factor reduced (354230); Corning Incorporated, Corning,
NY, USA, 1% matrigel solution in PBS, filter: 6.5 mm diameter, 8 µm-pores, Corning
Incorporated, Corning, NY, USA). The cells were allowed to migrate/invade for 12 h
toward the bottom of the well, which contained media supplemented with 10% FCS. Cells
on the lower surface of the filter were fixed with 4% PFA and stained with CyQUANT™
Direct Red nucleic acid stain (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) and
photographed with an ×10 objective under the microscope. The values for invasion were
taken as the average number of invaded cells per photographic field over five independent
fields per experiment and expressed as averages of triplicate experiments.

4.14. Immunofluorescence, Cell Size and Stress Fiber Analysis

12Z cells were seeded in 6-well plates and subject to siRNA knockdown for a non-
targeting control, LINC01133a and LINC01133b oligos, as described above. The cells were
trypsinized 48 h after transfection, 20,000 cells from each treatment re-plated on 8-well
chamber slides, and then 24 h later the cells were fixed and processed for immunofluores-
cence as previously described [60]. Cells were stained for F-actin (Rhodamine conjugated
Phalloidin, Invitrogen Cat. R415) and counterstained for DAPI. Cells were then imaged
with a Leica SP8 confocal microscope using an ×63 glycerol objective and images processed
using ImageJ.

We measured cell area in ImageJ using a previously described protocol (https://www.
youtube.com/watch?v=IeicxaeMUwA) (accessed on 15 March 2021). First, we used the
line tool to draw a line over a scale bar on one image and selected “measure” under the
analyze menu. Next, we selected “set scale” under the analyze menu, and entered the
number of pixels for 20 µM, a known distance of 20, and µM as the unit of length, and
ticked the “Global” box so that this scale would be applied to all images. To measure the
cross-sectional area of cells we chose the free-hand selection tool, mapped the outline of
the first cells with the computer mouse, and pressed “measure” under the analyze menu.
We then repeated this for all cells in each image.

We used ImageJ to measure fluorescence intensity in control and LINC01133a knock-
down cells followed an established technique https://theolb.readthedocs.io/en/latest/
imaging/measuring-cell-fluorescence-using-imagej.html (accessed on 15 March 2021) [61].
Briefly, we used drawing tools to select cells, chose “area integrated intensity” and “mean
grey value” in the “set measurements” menu, and then “measure” from the analyze menu.
We then measured an area near the cell with no fluorescence as a background control. We
then repeated this process until all cells in the field had been measured. We then calculated
the corrected total cell fluorescence (CTCF) for each cell in each image using the following
formula (Equation (1)):

CTCF = Integrated Density − (area of selected cell × mean fluorescence background) (1)

4.15. Statistics

All statistical tests were performed using SPSS version 27.0 (IBM, SPSS statistics 27.0,
Armonk, NY, USA: IBM Corp.) for patient cohort characterization and Prism (GraphPad
Prism 9.0 software, La Jolla, CA, USA) for the remaining experimental settings. The exact
statistical procedures for each analysis are described in the corresponding figure legends.

https://www.youtube.com/watch?v=IeicxaeMUwA
https://www.youtube.com/watch?v=IeicxaeMUwA
https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html
https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html


Int. J. Mol. Sci. 2021, 22, 8385 16 of 19

4.16. Websites and Software

The following websites were used for analysis and to download software for this
study: http://bioinformatics.sdstate.edu/go/, http://www.gsea-msigdb.org/gsea, https:
//www.gencodegenes.org, https://github.com/MikeAxtell/bam2wig, https://www.
R-project.org/ (accessed on 25 November 2020).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168385/s1.
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