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Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible
for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe
and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardio-
vascular complications (CVCs) associated with infection. The reported CVCs include myocarditis,
heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in
part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin—
Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking
of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2).
The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis.
The key routes for the development of CVCs and the recently described long COVID have been
hypothesised as the direct consequences of the viral S protein/ ACE2 axis, downregulation of ACE2
and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19
on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can
occur following virus infection and the future implications for pharmacological therapies.

Keywords: COVID-19; renin—angiotensin-aldosterone system; kinin-kallikrein system; cardiovascu-
lar system; long COVID

1. Introduction

A novel coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), was first identified at the end of 2019 [1]. SARS-CoV-2 is responsible for the
coronavirus disease 2019 (COVID-19) pandemic [1]. An array of clinical manifestations
that vary in severity, from asymptomatic to acute respiratory distress syndrome (ARDS)
and total organ failure are associated with COVID-19 [2,3]. Presently, over 180 million
people worldwide have contracted COVID-19 and more than 3.9 million have died as a
result of infection with SARS-CoV-2 [4].

Populations most at risk of hospitalisation have been found to be the elderly and those
suffering from comorbidities such as cardiovascular disease and hypertension [5,6]. In
many cases, underlying cardiovascular comorbidities were potentiated by SARS-CoV-2
infection and the resulting cardiovascular complications (CVCs) produced a greater mor-
tality [7]. However, adverse cardiovascular events, such as arrhythmia were also reported
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in individuals who were young and did not have existing cardiovascular disease [8]. This
suggests that the COVID-19 CVCs may result from the impact of the infection on the
cardiovascular system independently of underlying conditions. Furthermore, an increasing
number of recovered individuals report a multitude of symptoms that persist for months
after the initial infection has cleared [9]. This has been termed “long COVID”. Strikingly,
approximately 70% of a young, low risk population who experienced long COVID were
found to have impairment of one or more organs [10]. Therefore, it has been hypothesised
that direct and indirect SARS-CoV-2 mediated organ damage drives long COVID [10].

Due to the ubiquitous nature of long COVID and CVCs, it is important to identify
the mechanisms underlying their occurrence in order to implement strategies to lessen the
impact on overall health and future risk of chronic diseases. It is also crucial to consider
the pathogenesis of SARS-CoV-2 and identify the homeostatic systems that are disrupted
during progression of infection. Predominantly, the route of SARS-CoV-2 cellular entry
has been considered to be key to this. A major route by which SARS-CoV-2 and the related
coronavirus SARS-CoV-1 gain cellular entry is via the docking of the viral spike (S) protein
to the membrane bound angiotensin converting enzyme 2 (ACE2) [11-14]. A number of
scaffold proteins that facilitate virus internalisation alongside ACE2, such as neuropilin-1
and transmembrane protease serine 2 (TMPRSS2) have also been described [15]. Con-
comitantly, the roles of ACE2 within the cardiovascular and immune systems are vital to
ensure homeostasis due to its involvement in the Renin-Angiotensin—Aldosterone System
(RAAS) and the Kinin-Kallikrein System (KKS) [16]. The key routes for the development
of CVCs and the recently described long COVID have been hypothesised as the direct
consequences of the viral S protein/ACE2 axis and the resulting damage inflicted by the
immune response. In particular, cytokine and bradykinin storms have been implicated in
the worsened outcomes relating to COVID-19 [17,18].

A better understanding of the biological features of SARS-CoV-2 infection relevant
to the cardiovascular system should enable us to delve deeper into the mechanisms re-
sponsible for CVCs and long COVID. This will be particularly important for identifying
the risk of mortality in patients and identifying those at risk of developing long-term
cardiovascular implications. Here, we have reviewed the cardiovascular consequences of
SARS-CoV-2-induced ACE2 downregulation for the development of CVC and long COVID.
The role of the RAAS in cardiovascular homeostasis has been extensively reviewed (see for
example [19-21]) and, as a consequence, our focus is very much on the specific role of ACE2
in both the RAAS and KKS where it has a key role in regulating the metabolism of both
angiotensin II (Ang II) and bradykinin (BK). As a consequence, we have also considered
the implications of cytokine and bradykinin storms, as well as the co-morbidities that
can lead to severe SARS-CoV-2 infections and CVCs. Finally, we consider the therapeutic
potential of targets found within these pathological mechanisms. These discoveries have
the potential to lead to pharmacological advancements that may result in the development
of treatment/management strategies that could reduce COVID-19-related fatality rates.
This will be particularly important in cases where patients are unable to receive vaccines or
vaccination is ineffective [22].

2. The Role of ACE2 in the RAAS and KKS

The importance of ACE2 in the pathogenesis of SARS-CoV-2 infection and COVID-19
has been of particular interest in recent months [11]. The location of ACE2 within the
body is thought to be key to determining the progression of disease by viruses that target
this receptor [23]. Measurements of ACE2 mRNA levels have revealed high expression in
the intestines, kidneys, heart and adipose tissues [24,25], with moderate and low levels
discovered in the lungs and blood vessels, respectively [26]. If ACE2 endocytosis is the
mechanism by which SARS-CoV-2 infiltrates host cells then by definition, high viral loads
will lead to a reduction in ACE2 on the surface of cells [27,28]. There is strong evidence
to support SARS-CoV-1 downregulation of ACE2 and/or shedding of ACE2 from the
cell surface [12,13,29,30]. Given the fact that SARS-CoV-1 and SARS-CoV-2 both rely on
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the binding of the viral S glycoprotein to ACE2 for viral entry into cells it was therefore
highly likely that ACE2 would also be downregulated by SARS-CoV-2 in COVID-19. This
has now been confirmed by Lei et al. (2021) [31], Pedrosa et al. (2021) [32] and Sui et al.
(2021) [33]. For example, Pedrosa et al. (2021) showed that the S protein can cause a 50%
reduction in the 120KDa membrane-bound form of ACE2 in human alveolar type 2 A549
cells. This was also accompanied by a significant increase in the levels of soluble ACE2
(105 KDa) which is likely to be a consequence of ADAM17 [32]. A very large increase in the
internalisation of both ACE2-GFP and SARS-CoV-1 S protein RBD-Fc was also observed
in A549 cells on addition of the S protein [32]. These data, taken together, suggest that
decreased levels of membrane-bound ACE2 may have a major role in the development
of extra-pulmonary symptoms of COVID-19 and long COVID. Further, this reduction in
ACE?2 cell surface expression can cause a down regulation of the homeostatic roles of ACE2
in healthy individuals and may be responsible for the plethora of symptoms observed in
COVID-19 [27].

ACE2 has many roles in normal physiology, particularly in terms of counter-regulation
of the RAAS. Vital for long-term homeostatic maintenance of blood pressure (BP), fluid
and electrolyte balance and cardiac function, the RAAS has been implicated in the disease
progression of numerous viral infections and cardiovascular diseases [34-37].

In normal physiology the RAAS is tightly regulated with appropriate feedback loops
and mechanisms to regulate the expression of key components. Nevertheless, the RAAS
can be upregulated under pathological circumstances leading to dysregulation of inflam-
mation, cell proliferation, apoptosis, angiogenesis and other cardiovascular responses
(Figures 1 and 2) [19].
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Figure 1. Effects of Ang II and its metabolite Ang (1-7). Ang II facilitates the “vasoconstrictive
arm” of the RAAS via activation of angiotensin II type 1 receptors (AT R). The “vasorelaxant arm”
counteracts these effects via angiotensin II type 2 receptors (AT,Rs) and Mas receptors. Headed
arrows show activation; flat-headed lines represent inhibition (created with Biorender.com).
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Figure 2. A summary of the action of enzymes involved in the RAAS. ACE, Angiotensin converting
enzyme (ACE); AP, aminopeptidases. Figure created with Biorender.com.

As outlined in Figure 1, the RAAS is comprised of receptor signalling components
that may enhance vasoconstriction and cardiac fibrosis (e.g., via Ang II type 1 receptor
(ATR) activation) or inhibit this change in vasoactive tone and provide cardio-protection
(via activation of Ang II Type 2 receptors (AT,Rs) and Mas receptors) [38,39].

It is therefore unsurprising that the “Angll/AT R axis’ has been implicated in a
number of diseases and consequently there are many clinically available therapies that
block signalling via AT;Rs [40]. Conversely, activation of AT;R by Ang II has been reported
to produce opposing actions that attenuate the “Angll/ AT R axis’. In healthy individuals,
these two components of the RAAS work synergistically to maintain homeostasis. However,
RAAS dysregulation is associated with obesity, cardiovascular disease, hypertension and
diabetes, all of which produce an elevated risk of mortality in COVID-19 patients [5,6].
Therefore, it is important to understand the regulation of the RAAS, as it could be key to
determining mechanisms for SARS-CoV-2 mediated CVCs, severe COVID-19 and long
COVID [5,6].

2.1. Angiotensin 1I Type-1 Receptor Activation

Activation of the RAAS involves multiple enzymatic reactions that synthesise and
degrade angiotensin peptides, derived from angiotensinogen (Figure 2). The first step in
the cascade is initiated by the release of renin from renal juxtaglomerular cells [40]. Renin
release is triggered by sympathetic activation of 3; adrenoceptors, reduced renal perfusion
pressure, and/or a decrease in blood sodium/chloride ion content [41,42].

Once in the circulation, this enzyme exerts local actions in a variety of tissues, includ-
ing the liver, where angiotensinogen is hydrolysed by renin to angiotensin I (Ang I) [40].
The biological role of Ang I is not fully understood, although it is the known precursor to
Ang II, which has been characterised extensively. A further enzyme, angiotensin convert-
ing enzyme (ACE), which is found in high concentrations in lung vascular endothelium,
catalyses the conversion of Ang I to Ang II [43]. Ang II facilitates the physiological actions
of the RAAS via interactions with the Ang II receptor subtypes, AT;R and AT,R, both of
which are G protein-coupled receptors (GPCRs). When bound to AT Rs, Ang II causes
constriction of arterioles, elevated BP, facilitates cardiac hypertrophy and an increase in
pulse rate (Figure 2) [40]. ACE2 cleaves Ang I and Ang II to form Ang(1-9) and Ang(1-7),
respectively. Ang(1-7) induces vasodilatation, anti-inflammatory, and antifibrotic media-
tors via AT,R and Mas Receptors. Aminopeptidases (AP) convert Ang Il into Ang Il and
IV which continue to exert cardiovascular and inflammatory effects [44].
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The Ang II/AT¢R axis is also implicated in oxidative stress which stimulates en-
dothelial dysfunction, vessel inflammation, thrombosis, cardiac remodelling and insulin
resistance [45,46]. In critically ill COVID-19 patients, Ang Il levels are elevated and since
the Ang II/AT R axis is linked to cardiovascular dysregulation, this could contribute to
COVID-19 CVCs [47]. For example, upregulated AT{R expression has been shown in
patients with cardiovascular dysregulation, with notable links to arrhythmias and cardiac
remodelling [48]. A global survey has demonstrated the association of COVID-19 and the
development of arrhythmias in hospitalised patients, which is linked to high morbidity
and mortality [49]. Although the development of arrhythmias is multifactorial and often ac-
companied by myocardial injury, cardiac remodelling, co-morbidities and pro-arrhythmic
inflammation in COVID-19 [50], evidence suggests that Ang Il and AT;R could be impli-

cated in the development of these CVC through their involvement in calcium signalling
(Table 1) [51,52].

Table 1. G-protein coupling associated with the receptors found within the RAAS and KKS.

Receptor G Protein Cellular Physiological
P Signalling Actions Response
Vascular constriction, renal
G DAG, PKC, tNO, 1Ca2*, sodium retention (TH™*
*q NHES3 activation secretion, TNa* absorption),
AT1R TROS
. arasympathetic pathways,
Gui2 Gais JcAMP, activates GIRKs P y fHR, iBPp Y
Rho GTPase. TKs Tactin stress fibres, 1focal
G NADPH oxi;iases’ adhesions, Tcell growth,
12 . .
Barrestin2 Receptor desensitisation, Mibrosis, Thypert.r ophy
internalisation Dampens AT; physiological
effects
Gus TcAMP 1eNOS |TKs Muscle repair, vasorelaxation,
AT,R Gai/0 Gai2 Guis 1BK/cGMP/NO Tparacrine signalling
Non-canonical +
S, TIITSS,)iE&OATPase, Inhibition of AT1 responses
NO-dependant vasorelaxation,
o ) Exact role of ligand mediated protects endothelial
Const1tut1vely. activates G G protein coupling not yet function, |thrombosis
MasR proteins known. linflammation
Gagq No measurable effect of Ca?*
Barr eo;ti 2 Receptor Internalisation, Attenuates
1ERK1/2, AKT, PLA2 Ang((1-7)-)mediated activity
JCAMP at
. Vasorelaxation
B G PLC, AKE&;I;I?S’ TNO, Release of arachidonic acid
1 xq .
receptor Gai JcAMP, activates GIRKs, an.d prosta.glar}dms
PLA Sustained activation-long
term inflammation
PLC, AKT, iNOS, Vasorelaxation
B Guq 1NO, 1Ca2* Release of arachidonic acid
rece2 tor «d LcAMP, activates GIRKs, PLA and prostaglandins
P Barrestin Internalisation/receptor Desensitisation- short term

recycling

effects

Gagq, Gai2, Gaiz, Gaijo, Ga12, and Barrestin have been found to interact with AT1R, AT>R, MasR, and bradykinin receptors (B;R and B;R) at
varying intensities. These couplings result in distinct cellular signalling and physiological responses [39,53-59].
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The distinct pathophysiological features of AT1Rs are a result of their specific G-protein
coupling and their differential expression levels in certain cell types [39,53] (Table 1).

Primarily in vascular smooth muscle cells (VSMCs) and in renal proximal tubules
(RPTs), Ang II facilitates Gxq coupling via AT1Rs. This induces VSMC contractions and
vessel constriction, which increases BP; this is associated with enhanced sodium water
retention via Gyq coupling in RPTs (Table 1) [38,39]. Additionally, G«12/13 -mediated
oxidative stress in cardiac fibroblasts and vascular endothelial cells has been implicated
in cardiovascular disease and heart failure [60-62]. This highlights the significant role of
AT1R activation of Gyq and Gy12/13 signalling in the progression of cardiovascular and
kidney dysfunction.

Although key to the vasoconstrictive arm of the RAAS, AT;Rs also activate protec-
tive mechanisms by signalling via G;y/3, and receptor desensitisation is achieved via
the recruitment of Barrestin2 [53]. For example, G4; and Barrestin2 attenuate G«q and
Gx12/13 signalling and downregulate the negative consequences of Ang II. The coupling of
the various G protein subtypes facilitates distinct physiological responses that could be
modulated by pharmacological intervention. Therefore, the suitability for AT;Rs as targets
for COVID-19 CVCs should be investigated further.

Another component of the Angll/AT1R axis involves the steroid hormone aldosterone.
Following stimulation of AT{Rs by Ang Il and Guq coupling, aldosterone synthesis is
stimulated in the zona glomerulosa of the adrenal cortex [63,64]. Aldosterone secretion is
also initiated by circulating potassium and adrenocorticotropic hormone levels [63]. Similar
to Ang II, excess aldosterone has been implicated in hypertension and CVCs due to its
regulatory role on cardiovascular and kidney function (Figure 2) [65]. In particular, through
the activation of mineralocorticoid receptors, aldosterone modulates intravascular volume
and BP through sodium retention in the kidney [66]. Therefore, it has been suggested that
pharmacological modulation of ATR and aldosterone signalling pathways may attenuate
the deleterious effects of Ang II in cardiovascular diseases and COVID-19 CVCs [64].

2.2. Angiotensin 1I Type-2 Receptor Activation

In contrast to the vascular and cardiac effects described above, AT;Rs primarily
generate opposing actions to the Ang II/ AT} R axis, including vasodilatation, reduced BP,
decreased platelet aggregation, increased insulin sensitivity and cardio-protection [67].
In normal physiology, the counter-regulatory role of AT;Rs on the Ang II/ATR axis can
prevent the development of cardiovascular dysfunction.

AT;R signalling is not well characterised, however, the opposing actions of AT;Rs may
be a result of their differential G protein-coupling (Table 1). AT;Rs have been shown to sig-
nal via G s which activates mechanisms that result in cardiac regeneration, vasorelaxation,
paracrine signalling, and protection from cardiac fibrosis, through bradykinin/cGMP/NO
production (Table 1) [68]. There is also evidence of G4 coupling [54]. However, studies
investigating the definitive role of G4; coupling in AT,R signalling remain inconclusive.
Contrastingly, several studies suggest a non-canonical signalling route that bypasses G
protein and (-arrestin pathways to directly activate ERK1/2 and NOS [55,56]. As such,
further work is required to elucidate the exact mechanisms responsible for AT,R physiolog-
ical responses. Utilising new technologies such as the G protein and signalling biosensors
described by Namkung et al., for the AT;R may be key to improving our understanding
of AT,R function [53]. This could culminate in the identification of ligands that stimulate
AT,Rs to reduce BP and protect against Ang Il mediated cardiovascular dysfunction [69].
It should be noted however, that in a diseased state AT,Rs have been shown to amplify
bradykinin-mediated inflammation and there is conflicting evidence of the involvement
of AT,Rs in left ventricular hypertrophy [58]. Therefore, it is important to understand
AT,R signalling as over stimulation of AT;Rs, potentially by Ang II, could contribute to
COVID-19 CVCs.

Another important component of the cardiovascular response is ACE2. The role of
ACE2 within SARS-CoV-1 and SARS-CoV-2 pathogenesis has been highlighted, demon-
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strating similarities with the associated symptoms [11]. However, ACE2 is also important
for normal RAAS regulation. In the RAAS, ACE2 downregulates Ang II by degrading
Ang I into Ang(1-9) and degrading Ang II to Ang(1-7) (Figures 1 and 2). Ang(1-9) medi-
ates its actions via the AT;R and produces the protective responses such as anti-fibrotic
and anti-inflammatory effects [70]. Moreover, Ang(1-7) has been reported to bind to an-
other GPCR, the Mas receptor (MasR), which can exert NO-dependent vasorelaxation and
protect against cardiac remodelling; Ang(1-7) also acts as a (3-arrestin biased agonist at
AT Rs [71-73]. This induces AT{R desensitisation and internalisation, which attenuates
the Ang II mediated cardiovascular dysfunction [57]. There is a report, however, that
Ang(1-7) does not bind to MasR or elicit MasR-mediated signalling [74]. Instead, these
authors provided evidence that Ang(1-7) was able to bind to AT and AT, receptors (Ki
values of 233nM and 288nM, respectively) and elicit potent inhibition of Ang II-stimulated
inositol phosphate accumulation and ERK/2 activation in rat aortic endothelial cells [74]. In
addition, as ACE2 cleaves Ang II and its precursor Ang I, it indirectly downregulates Ang
II mediated pathophysiological effects. The cleaved metabolites then facilitate protection
of endothelial function, prevention of thrombosis, inflammatory responses and cardiac
remodelling via their respective receptors [16,72,75].

Similar to the AT,R, the MasR has not been extensively characterised and there are
many conflicting theories surrounding its function. Initially, the MasR was postulated
to stimulate the cardiovascular protective functions of Ang(1-7) [76]. However, more
recent studies suggest that MasR is constitutively active and there is no observable G
protein activation upon Ang(1-7) binding [71]. Interestingly, ACE2 and MasR are expressed
in the same tissues, which could imply that together they co-ordinate tissue specific
protection [58]. Clearly, the balance between Ang II, Ang(1-7) and Ang(1-9) dictates the
physiological effects of RAAS, hence why modulation is central to cardiovascular disease
management [16]. Targeting elements of the RAAS may also be key to correcting the
cardiovascular dysfunction observed in COVID-19 patients.

3. Bradykinin Signalling: The Kinin-Kallikrein System

Considered an extension of the RAAS, the Kinin—Kallikrein system (KKS) also reg-
ulates BP [77]. The KKS mediates opposing actions to the RAAS by inducing arterial
vasodilation [78]. The KKS is also involved in the regulation of tissue repair, inflammation,
cell proliferation and platelet aggregation.

The KKS is comprised of kallikreins serine proteases which cleave kininogens to
release the vasoactive peptides bradykinin (BK) and kallidin (KD) (Figure 3). The peptidase
Kininase I further cleaves BK and KD into the active metabolites des-Arg’-bradykinin
(DABK) and des-Arg!%-kallidin (DAKD) [79]. These kinins transmit their biological effects
by activating the GPCRs, bradykinin-1 (B;) and bradykinin-2 (B;) receptors.

BK and KD bind to B, receptors, while DABK and DAKD bind to B; receptors. Both
BK receptors mediate indirect cardio-protection, vasodilatation, coronary flow increase,
reactive oxygen species (ROS) release and anti-thrombogenic effects [78]. To achieve these
physiological effects, By and B; receptors couple to G«; and Guq proteins. G; facilitates
the release of locally acting vasodilators and inflammatory mediators such as, arachidonic
acid and prostaglandin (Table 1), whereas G «q protein coupling increases intracellular Ca?t
and NO-dependant vasorelaxation (Table 1) [78].
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Figure 3. The Kallikrein-Kinin/Bradykinin System. Kallikrein serine proteases cleave kininogens
to release the vasoactive peptides bradykinin (BK) and kallidin (KD). The peptidase Kininase I
(carboxypeptidase M, CPM) further cleaves BK and KD into the active des-Arg’-bradykinin (DABK)
and des-Arg!-kallidin (DAKD). Kininase IT or ACE, inactivates the KKS by degrading BK, KD,
DABK and DAKD into inactive metabolites. Similarly, ACE2 metabolizes DABK to BK (1-7) and
DAKD to KD (1-8) [79] (created with Biorender.com).

B, receptors are ubiquitously expressed in all tissues. In contrast, By receptors are
not usually expressed in normal physiology, and instead are upregulated during cellular
stress and inflammation, particularly, in response to elevated COX-2 and iNOS levels [59].
There is evidence of cross talk between B; and B, receptors, as continuous stimulation
of B, receptors results in upregulation of Bj receptors. Additionally, B; receptors do not
internalise or desensitise; therefore, their stimulation can induce sustained Ca?* elevations
and long-term inflammation and inflammatory pain [59]. As such, excessive stimulation of
B; receptors has been implicated in hyper-inflammation and may be linked to the cytokine
storm observed in severe cases of COVID-19 disease.

Fortunately, there are intrinsic regulatory components of the KKS that are linked to
the RAAS. Firstly, located in endothelium, Kininase II, also known as ACE, inactivates the
KKS by degrading BK and KD into inactive metabolites (Figure 3). This rapid degradation
in local blood vessels causes the actions of the KKS to remain tissue specific. Secondly, in
the lungs, ACE2 degrades DABK to BK (1-7) and therefore attenuates DABK mediated
inflammation via B; receptor activation [79,80]. The actions of ACE and ACE2 effectively
down regulate the KKS and permit the return of homeostasis [81].

In a diseased state, such as hypertension, over activation or expression of ACE consti-
tutes downregulation of the KKS and upregulation of the RAAS. This not only prevents
the cardioprotective and antihypertensive actions of the KKS, but also results in over
stimulation of RAAS, which potentiates cardiovascular adverse events and organ dam-
age [82]. Many ACE Inhibitors (ACEi) have a higher affinity for the BK binding pocket of
ACE [83]. This prevents the breakdown of BK and therefore the downregulation of the KKS
by ACE. The accumulation of BK in upper and lower respiratory tracts sensitise sensory
neurones that release inflammatory mediators, such as neurokinin A and substance P. This
stimulates contraction of the smooth muscles within the airway, which is postulated to be a
mechanism responsible for the dry cough often observed during ACEi treatment [84].

Accumulation of BK or upregulation of KKS signalling has also been postulated as
a mechanism causing the symptom of the COVID-19 dry cough. During SARS-CoV-2
infection, ACE2 activity is depleted as a result of virus internalisation mechanisms [27].
Loss of ACE2 function prevents DABK degradation and results in prolonged activation of
Bj receptors (Figure 4). This enhances smooth muscle contraction, lung injury and inflam-
mation, all of which contribute to pulmonary symptoms, including a dry cough [27,80]. It
should also be noted that many other symptoms of COVID-19, including, fatigue, vomiting,
diarrhoea and headaches are found in conditions where BK levels and vascular permeabil-
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ity are elevated, such as pulmonary angio-oedema [85,86]. It has been suggested that a
combination of a cytokine and a BK storm may constitute severe COVID-19 symptoms and
may be linked to the observed CVCs [77].

Kininase |

—
Des-Arg®-Kallidin
Bradykinin (Des-Arg’-Bradykinin)

T

Induced by
inflammation

Figure 4. Receptor stimulation of B; and B, receptors. Kallidin (KD) and Bradykinin (BK) act

B:R

principally on B, receptors, while Des—Arg9—Kallidin and Des—Argg-Bradykinin act on By receptors.
As shown in the figure, the By receptor is induced by inflammation. ACE2 plays a role in the
degradation of Des-Arg’-Kallidin and Des-Arg’-Bradykinin (created with BioRender.com).

4. Cytokine Storm

Early reports and evaluation of clinical data suggested that a cytokine storm is associ-
ated with COVID-19 severity and may be a cause of increased mortality [18]. A cytokine
storm has been described as a potentially fatal systemic inflammatory syndrome that in-
volves accumulation of immune cells and hyper-inflammation, facilitated by cytokines and
chemical mediators [18]. Clinical manifestations of the cytokine storm present as ARDS,
hypoxaemia, hypotension, thrombosis, haemorrhages; and can induce renal failure, liver
injury, encephalopathy and cardiomyopathy [18]. Transcriptomic and proteomic analysis
of bronchoalveolar lavage fluid from COVID-19 patients confirmed robust chemokine,
cytokine and interferon (IFN) responses, which were accompanied by neutrophil and
monocyte-derived macrophage infiltration [87,88].

The mechanisms responsible for this cytokine storm have been proposed to initially
arise following SARS-CoV-2 infection of respiratory epithelial cells and the release of viral
nucleic acid, which provoked elevations in pro-inflammatory cytokines and IFN release
by CD4" T cells [89]. During viral infections, pattern recognition receptors (e.g., Toll-like
receptors) can sense a variety of pathogen-associated molecular patterns displayed by
viruses (e.g., envelope glycoproteins, single and double-stranded nucleic acids), which
stimulate transcription of Interleukin-6 (IL-6) and other pro-inflammatory cytokines [90,91].
IL-6 and tumour necrosis factor « (TNF«x) are implicated in the progression of the cytokine
storm as they activate the cytokine producing pathway, Nuclear factor-«B (NF-«B), which
recruit immune cells such as neutrophils, monocytes and macrophages [92,93].

This cytokine-mediated regulation of immune responses functions to protect tissues
from infection related injury by modulating the release of chemokines, adhesion molecules
and apoptotic regulators [94]. However, during a cytokine storm, these processes become
dysregulated [18]. Subsequently, as the virus replicates and viral load increases, the
immune cell recruitment, cytokine and chemokine release intensifies. The exponential
growth of the resulting inflammation corresponds to the localised tissue and blood vessel


BioRender.com

Int. J. Mol. Sci. 2021, 22, 8255

10 of 25

damage [18]. The inflammation thereby cascades and amplifies the inflammatory response
further. The damage inflicted on the lungs by hyper-inflammation causes hypotension and
hypoxaemia, which in turn can contribute to hypoxia-mediated myocardial injury [95].

Approximately, 7-28% of COVID-19 patients were reported to have acute myocar-
dial injury, defined by elevated troponin levels [3,96,97]. A proportion of these patients
demonstrated evidence of SARS-CoV-2 mediated myocarditis, an acute inflammation of
the myocardium [95]. This myocarditis caused an upregulation of inflammatory medjiators,
suggested to be associated with a cytokine storm. A combination of the cytokine storm
and myocardial injury increases the metabolic rate and oxygen demand of the heart. This
creates a supply and demand imbalance that intensifies myocardial load. The resulting
hypoxia, metabolic acidosis and cardiac injury increases the risk of arrhythmias and cardiac
arrest [95]. Meta-analysis of COVID-19 patients from 11 countries has shown that 20.3% of
those who were hospitalised and developed arrhythmia resulted in fatality [98]. In other
viral infections, consequences of inflammation-derived cardiac injury include dysfunc-
tional repolarisation and action potential conduction [99]. These are a result of altered
intracellular coupling, contribute to abnormal calcium ion handling and downregulation
of K* channels [51,52,99,100]. Myocardial injuries have also been observed in mild cases of
COVID-19 and have been thought to contribute to long COVID occurrence [10]. Therefore,
it is important to consider the impact of the cytokine storm on the cardiovascular effects of
COVID-19 as all patients could be at risk of developing long COVID.

Recognition of the COVID-19 cytokine storm has led to the investigation of cytokine-
directed therapies [101]. For example, the IL-6 monoclonal antibody, Tocilizumab, tested
in phase 1II trials, has been shown to reduce COVID-19 lethality rate [102]. Although
potentially effective, a caveat to this approach is that IL-6 and other cytokines are essential
for a healthy response to both SARS-CoV-2 and other pathogens. Thus, inhibition of
cytokine signalling could impair the clearance of secondary infections that may also result in
poor outcomes [102]. It is also important to consider the appropriate time for administration
as if given too early, cytokine directed therapies could limit COVID-19 recovery.

In addition to a virus driven cytokine storm, inflammatory mediators are indirectly
upregulated in response to Ang II accumulation resulting from ACE2 downregulation by
SARS-CoV-2 [27,103]. Activation of AT1Rs by Ang II can stimulate the NF-«kB pathway,
which amplifies TNFx and IL-6 release. Increased levels of circulating aldosterone have
also been suggested to elevate IL-6 levels and this has been linked to lung injury in COVID-
19 [104]. Therefore, it has been proposed that dysregulation of elements of the RAAS and
KKS by SARS-CoV-2 could potentiate the cytokine storm or generate a bradykinin storm
(see below) that may facilitate cardiovascular dysregulation and increase the risk of long
COVID, irrespective of pre-existing cardiovascular disease.

5. Bradykinin Storm

Although a cytokine storm is often cited as the leading cause of the severe COVID-19
symptoms, recent findings suggest that BK and the KKS may play a more prominent role
via a newly described bradykinin storm [17]. Downregulation of ACE2 by SARS-CoV-2
coupling and internalisation facilitates the depletion of ACE2's catalytic products, such
as Ang(1-7) and Ang(1-9) [103]. These catalytic products facilitate vasodilatation and
have anti-inflammatory roles [17]. Perhaps unsurprisingly, through a reduction in these
activities the bradykinin storm is associated with BP dysfunction and inflammation [17].
Additionally, there is an increase in the levels of ACE2 substrates, such as Ang II and
DABK, which are pro-inflammatory mediators and could contribute to the acute lung
damage observed in COVID-19 [17]. Therefore, the bradykinin storm could be result of the
SARS-CoV-2 mediated reduction in ACE2 availability and the down regulation of DABK
degradation [17]. The effect of increased levels of DABK will be further exacerbated by the
increase in By receptor expression that results from cellular stress and inflammation [59].
An accumulation of BK has been detected in bronchoalveolar lavage fluid from COVID-19
patients and this has been linked to the symptoms associated with COVID-19 [77]. As the



Int. J. Mol. Sci. 2021, 22, 8255

11 of 25

proteins described above are also major components of the RAAS and KKS, they have been
linked to both the pathophysiology of SARS-CoV-2 and the corresponding CVCs.

As detailed in Figure 5, within the RAAS, Ang II mediates some of the pathophys-
iological effects of SARS-CoV-2 through the binding to AT;Rs (Figure 5) [17,40]. These
pathophysiological effects can increase AT,R expression. Additionally, AT,Rs are also
highly expressed in the lungs in late adulthood and are upregulated in all areas in response
to inflammation and tissue damage [105]. Although generally regarded as a counter-
regulator to the pathophysiological effects of Ang II, AT,Rs also facilitate the upregulation
of B, receptor signalling [68]. Consequently, this induces vasodilatation, increased vascular
permeability and inflammation in these tissue specific areas [54]. In muscles, the common
symptom of myalgia could be linked to prostaglandin E2 release by B, receptors [106].
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Figure 5. RAAS and Bradykinin Systems in SAR-CoV-2 infection. SARS-CoV-2 infection results in
interaction with transmembrane protease, serine 2 (TMPRSS2) and ACE2, leading to subsequent
down regulation of ACE2 [27]. This loss of ACE2 function leads to decreased metabolism of Ang
IT to Ang(1-7) and Ang(1-9). This leads to an increased activation of AT{R by Ang II and reduced
activation of MasR. The resulting increased inflammation also leads to an increased expression
of BjRs. As a consequence, AT1R and B receptor stimulation facilitates the pathophysiological
responses associated with COVID-19, such as ARDS and CVCs (Figure adapted from [107]; created
with Biorender.com).

Furthermore, accumulation of DABK promotes increased activation of By receptors
(Figure 5). By receptors promote sustained inflammation and therefore contribute further
to this BK receptor-mediated inflammation via the upregulation of pro-inflammatory
cytokines such as IL-1 and IL-6 [59]. Notably, expression of B; receptors is also upregulated
in response to localised inflammation [59]. A major impetus for the development of the
bradykinin storm hypothesis was the study of Garvin et al. (2020) [77] who undertook a
differential gene expression analysis of RAAS genes in cells from bronchoalveolar lavage
samples taken from severely affected COVID-19 patients. They found that expression
(RNA-Seq) of all kallikreins and kininogens were upregulated and this was accompanied
by a 2945-fold and a 207-fold increase in B; and B, receptors, respectively [77]. However, it
is worth noting that this will be partly mediated by the infiltration of inflammatory cells
into the lungs as a consequence of the ongoing COVID-19 infection. The work from Garvin
and colleagues builds on a study that proposed that depletion of ACE2 in COVID-19
patients, and upregulation of By /B, receptors, might lead to vascular leakage in the lungs
leading to angio-oedema [86]. Interestingly, the selective B, receptor antagonist icatibant
and the monoclonal antibody lanadelumab (which inhibits plasma kallikrein activity; [108])
are in clinical use for hereditary angio-oedema.
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Studies have also shown that regulators of the KKS are down regulated in COVID-19.
For example, in intensive care unit (ICU) COVID-19 patients there is evidence of a reduction
in serpin family A member 12 (SERPINA12) and dipeptidyl peptidase 4 (DPPD-4), which
are down regulated by IL-6 [109-111]. SERPINA12 and DPPD-4 are also tissue kallikrein
and BK suppressors, subsequently, the down regulation of SERPINA12 corresponds to an
increase in bradykinin activity [111]. This can result in the development of tissue specific
angio-oedema which is a theorised mechanism for pulmonary angio-oedema [85] and the
loss of taste and smell, a common symptom of COVID-19 [112].

In severe cases of COVID-19 infection, the initial over-stimulation of the BK receptors
could potentiate inflammation that becomes progressively worse and leads to more severe
symptoms and worse patient outcomes [80,111]. Increased vascular permeability allows
neutrophil infiltration and the subsequent release of inflammatory mediators, including
IL-6 and TNF«. In the lungs, this can lead to pulmonary angio-oedema which has dele-
terious effects on blood oxygen saturation levels [80,85]. In the heart and blood vessels,
this bradykinin storm increases myocardial and endothelial dysfunction due to fibrotic
accumulations; cardiac and vascular remodelling can also lead to severe cardiovascular
symptoms that will be described in more detail later. Therefore, the bradykinin storm has
been implicated in a decreased efficiency of the cardiovascular system. A culmination of
all of these processes may be responsible for COVID-19 fatalities.

It is possible that in addition to a virus-mediated cytokine storm, dysregulation of the
RAAS and KKS by SARS-CoV-2/ACE2 contribute to the hyper-inflammation observed
in severe cases of COVID-19 and to the development of CVCs [113]. Indeed, the clinical
manifestation of pulmonary angio-oedema in hospitalised COVID-19 patients could imply
that bradykinin signalling has been upregulated to pathophysiological levels [86,111].
Therefore, the implications of a bradykinin storm and RAAS dysregulation could also
delineate the cumulative risk of developing severe COVID-19 in elderly populations and
in particular, those with cardiovascular comorbidities.

6. RAAS Involvement in Severe COVID-19 in Patients with Co-Morbidities

Severe COVID-19 is characterised by significant hypoxaemia associated with pro-
gressive respiratory failure [114]. Patients often require ventilation, and their risk of
mortality is extremely high [114]. Throughout the pandemic, COVID-19 related fatalities
have been linked to pre-existing health conditions [115,116]. Reports demonstrated that
underlying conditions were present in 94% of COVID-19 deaths (CDC COVID-19 Response
Team, 2020) [96]. The most common comorbidities of severe COVID-19 were hypertension
(33—43%), diabetes (14-19%) and cardiovascular disease (8%) [96]. As these comorbidities
are more prevalent in the aging population, they could be a factor in the higher fatality rates
observed in the elderly [115]. It is important to investigate the implications of comorbidities
in COVID-19 so that preventative care can be established to identify those patients most at
risk of developing severe COVID-19 and reduce fatality rates in vulnerable populations.

6.1. Thromboembolism

Prior venous thromboembolism is reported to occur in approximately 7.5% of COVID-
19 incidents and of those the mortality rate was over 1% [117]. Moreover, it has been
suggested that COVID-19 may induce thrombotic and coagulation abnormalities that
promote a hypercoagulable state [118]. In 25-43% of ICU patients, arterial and venous
thromboembolic events were a severe CVC of COVID-19, demonstrating a strong link
between the development of thrombotic complications and severe COVID-19 [119-122].

Endothelial injury has been the most theorised mechanisms for COVID-19 mediated
aggravated thrombotic and coagulation abnormalities [123]. Several modalities of endothe-
lial injury have been hypothesised and these include an imbalance of ACE2 regulation as a
result of SARS-CoV-2 interactions; and inflammation mediated by pericyte dysfunction,
activation of the complement system and a cytokine storm [123,124].
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As mentioned previously, ACE2 is expressed throughout the cardiovascular system,
particularly in vascular regulatory cells such as pericytes and endothelial cells [26]. Since
ACE?2 is the established route for SARS-CoV-2 cellular internalisation and host cell death
typically occurs in most viral infections, COVID-19 can therefore result in a decline in
vasculature regulatory cells, culminating in vascular injury and dysfunction [124]. Vascular
endothelial injury has been shown to causes thrombocytopoenia and reduction of natural
anticoagulants, in addition to thrombotic disseminated intravascular coagulopathy [124].

Furthermore, virus-mediated cellular death promotes the formation of the NOD-,
LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome [125]. The NLRP3
inflammasome regulates the release of pro-inflammatory cytokines, which can lead to a
systemic response [126]. The accumulation of inflammatory mediators (including IL-6 and
IL-8) and the subsequent cytokine storm has been shown to lead to a hypercoagulable state
via a reduction in fibrolysis and stimulation of the tissue factor pathway [127]. Tissue factor
expression has been shown to be upregulated in macrophages, neutrophil extracellular
traps (NETs) and platelets, and its activation has been linked to the upregulation of coagu-
lation factors VII to VIla which promote clot formation [128]. Activation of tissue factor has
also been associated with the down regulation of ACE2 and the subsequent accumulation
of Ang II, thus indicating links to the COVID-19 induced pro-thrombotic state and RAAS
dysregulation [129].

It should also be noted that similar mechanisms to those detailed above have been
considered as a cause for the recently reported thrombotic events associated with COVID-19
adenovirus expressing spike protein vaccinations [130]. Specifically, capture of adenovirus
by heparin sulphate chains could activate a compliment mediated cytokine storm, resulting
in coagulation cascades [131]. Alternatively, S protein expressed by adenovirus-infected
endothelial cells and subsequent interactions with ACE2 could downregulate ACE2 and
increase the risk of thrombotic events [131]. However, the exact mechanisms of vaccine
related thrombotic events are yet to be fully characterised.

Fortunately, antithrombotic treatments, such as statins and antiplatelet therapies in
high risk COVID-19 patients have demonstrated potential benefits and decreased the risk
of both venous thromboembolism and mortality [117]. Alongside this, the monitoring
and management of prior thrombotic events and RAAS dysregulation should also be
considered in hospitalised COVID-19 patients and those receiving vaccines.

6.2. Hypertension

There is a clinically significant risk for hypertensive patients who contract COVID-19.
During the peak of the initial outbreak in Italy, approximately 49% of COVID-19 related ICU
admissions had hypertension, and of those 38% did not recover [132]. Several theories have
been proposed for the positive correlation between hypertension and COVID-19 severity.

There is a strong consensus that ACE2 has a regulatory role in the development of
hypertension and the severity of COVID-19. As described earlier, ACE2 downregulates the
Ang II/AT1R pathway and BK signalling and therefore indirectly reduces the mediated
pathophysiological effects of the RAAS and KKS [133-135]. The down regulation of ACE2
that accompanies the uptake of SARS-CoV-2 into the cell prevents the counter-regulatory
role of ACE2. Concomitantly, many patients with hypertension already possess elevated
Ang II levels [37,40]. This may be contributed to by phenotypic variations in ACE2 that
predispose individuals to hypertension. For example, several ACE2 polymorphisms result
in the downregulation of ACE2 [135]. Therefore, SARS-CoV-2 infection in these individuals
could potentiate the pre-existing pathological levels of Ang II which leads to worsened
symptoms of hypertension and increases the risk of stroke and heart failure [136].

Moreover, underlying hypertension is often accompanied by multiple morbidities
such as obesity, diabetes and kidney disease, all of which contribute to reduced longevity
in general and worse clinical outcomes of COVID-19 [137]. The poor outcomes can be
partly attributed to the ability of COVID-19 to facilitate a bradykinin and cytokine storm.
Underlying inflammation or aberrant immune responses associated with these conditions
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may be accelerated by this hyper-inflammation in multiple organs. The resulting organ
damage increases the risk of total organ failure and mortality [136].

In addition, immune cell infiltration of blood vessels, kidneys, heart and nervous
system can promote hypertension [138]. Therefore, the immune response generated by
SARS-CoV-2 could potentially exacerbate the existing hypertension. Additionally, hy-
pertension predisposes individuals to chronic kidney disease, coronary artery disease,
stroke, left ventricular hypertrophy, and heart failure [139]. These conditions are primarily
observed in elderly hypertensive patients; therefore, the additional risks of hypertension
and COVID-19 can be life limiting. This could explain why elderly hypertensive patients
had the highest mortality rates during the COVID-19 pandemic [47,140,141].

Fortunately, patients with controlled hypertension have shown improved outcomes
following SARS-CoV-2 infection in comparison to those with uncontrolled hyperten-
sion [142]. In many cases, the use of ACEi and angiotensin receptor blockers (ARBs) effec-
tively re-establish RAAS homeostasis by reducing Ang II pathophysiological signalling and
unsurprisingly, these mechanisms may reduce the progression of severe COVID-19 [40].

However, a confounding argument for the use of ACEi and ARBs during the pandemic
has generated much controversy. These hypotheses suggested that ACEi and ARBs could
potentiate SARS-CoV-2 infection. This argument was based on evidence of ACEi and ARBs
increasing ACE2 expression [32,142]. It has been suggested that an abundance of alveolar
ACE2 might facilitate increased SARS-CoV-2 cellular entry and viral replication. This
would increase viral load and therefore COVID-19 severity [142,143]. In contrast to this,
studies have shown that high levels of ACE2 expressing cells, particularly in children, can
mediate protective effects against COVID-19 [28]. Interestingly, the study by Pedrosa et al.
(2021) also showed that treatment with candesartan or captopril could prevent the depletion
of ACE2 induced by S protein [32]. Withdrawal of ACEi and ARB treatment can result
in a complete reversal of antihypertensive and cardio-protective effects in patients with
heart failure and reduced ejection fraction [142,144] and so withdrawal of RAAS is clearly
not recommended. A recent meta-analysis in animal models of human disease confirmed
that ACE2 overexpression as a consequence of inhibition of the RAAS was rare [145]. This
finding was confirmed in a meta-analysis of the risk of mortality in hospitalised patients
with COVID-19 [146].

6.3. Cardiovascular Disease

The third comorbidity that is closely related to the fatal outcomes of COVID-19 is car-
diovascular disease [147]. Previous studies demonstrated that patients with cardiovascular
diseases were both more susceptible to SARS-CoV-2 infection and had an increased risk of
developing severe COVID-19 [148].

It has been suggested that increased susceptibility to SARS-CoV-2 infection in cardio-
vascular diseases is associated with ACE2 expression. Following myocardial infarction and
heart failure, ACE2 expression is upregulated in cells including macrophages, endothelial
cells, smooth muscle cells, and cardiomyocytes [143]. As discussed above, elevated ACE2
levels may present increased opportunities for SARS-CoV-2 to gain cellular entry [149].
Sequentially, this increases the level of viral replication and subsequently, viral load, which
has been implicated in COVID-19 severity [143,149].

Conversely, polymorphisms that downregulate ACE2 have also been identified in
cardiovascular disease [135]. Theoretically, this reduced ACE2 activity could be potentiated
by the indirect down regulation of ACE2 by SARS-CoV-2 cellular internalisation and this
could impair clearance of Ang Il as ACE2 is unable to metabolise Ang II [136]. The resulting
accumulation of Ang II could further exacerbate impaired cardiac function, arrhythmia
and hypertrophy [24,150-152].

In addition, dysregulated KKS may potentiate cardiovascular diseases. For example,
Ang IT upregulation in cardiovascular disease has been associated with DABK-B; receptor
mediated cardiac hypertrophy [153]. Additionally, excess BK has been implicated in
hypokalaemia, which can lead to arrhythmia and sudden cardiac death [36,154]. Hyper-
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inflammation of the myocardium by the cytokine and bradykinin storms can further
contribute to pre-existing myocardial injury. As such, the pathogenic impact of SARS-CoV-
2 on ACE2, Ang II, BK and DABK in cardiovascular disease may be a mechanistic pathway
for worsened outcomes of COVID-19 [86].

6.4. Diabetes

Diabetes is another highly prevalent comorbidity of COVID-19 that has been reported
as the strongest predictor of mortality out of the most common co-morbidities [155,156].
Specifically, patients with poorly controlled blood glucose levels (determined by glycated
haemoglobin) have an increased risk of developing severe COVID-19 symptoms [157,158].
Alarmingly, cases of new onset diabetes or diabetic ketoacidosis have also been reported in
patients [159]. This can be explained by the recent data from COVID-19 patient samples
indicating SARS-CoV-2-mediated inflammation of the pancreas accompanied by acute
damage to B cells and reduced expression of insulin [160]. It has been suggested that
the level of ACE2 expression in the pancreas also correlates with the extent of pancreatic
damage following SARS-CoV-2 infection [161]. A further explanation for the SARS-CoV-2
mediated pancreatic damage could be the amplification of a cytokine storm by the hy-
perglycaemic environment, since elevated inflammatory cytokine levels were detected in
patient samples [160].

Patients with diabetes chronically suffer from disproportionate hyperglycaemic re-
sponses, which can lead to a hindered immune system [162] and the development of both
micro- and macro-vascular complications [163]. These include retinopathy, neuropathy and
nephropathy and ischaemic heart disease, peripheral vascular disease, and cerebrovascular
disease. Subsequently, diabetic patients have a significant risk of developing COVID-19
related CVCs such as acute myocarditis, acute heart failure, acute myocardial infarction
and new on-set atrial fibrillation, compared to non-diabetics [164].

7. Long COVID

The evolving critical care treatments of severe COVID-19 have drastically reduced
mortality rates in comparison to the start of the pandemic [165]. Additionally, the successful
roll-out of the various COVID-19 vaccines has seen declines in COVID-19 related hospital
admissions [22]. However, there is still a high prevalence of recovered individuals reporting
ongoing symptoms or long COVID [166]. While the majority of people recover within
approximately 2 weeks, recent findings show that around one in ten people suffer with
multi-organ symptoms, including the cardiovascular system, and complications that persist
for more than 12 weeks, post the initial onset of acute infection [9]. The list of long
COVID symptoms includes dyspnoea, chronic cough and extreme fatigue. With particular
relevance to this review, long COVID has been associated with numerous CVCs such as
myocarditis, microvascular angina, cardiac arrhythmias and BP abnormalities [166].

Strikingly, there are large variations in the estimated prevalence of long COVID in
different populations and COVID-19 severities [167]. Recent retrospective large cohort data
have shown that approximately 29.4% of recovered COVID-19 patients were readmitted to
hospital and 12.3% died following discharge as a consequence of COVID-19 related adverse
events [167]. Many studies have predicted that recovered COVID-19 ICU patients will
endure similar long-lasting symptoms that may remain for years to come [167,168]. Further
evidence suggests that patients are at risk of developing serious chronic conditions in the
future, as indicated by post COVID-19 diagnoses of major adverse cardiovascular events,
including chronic kidney disease, chronic liver disease and respiratory diseases [169,170].

Moreover, long COVID sequelae have also become apparent in individuals with
asymptomatic, mild and moderate COVID-19 [171,172]. Before acquiring the disease, many
of these individuals reported a healthy state without underlying conditions. A multi-centre
study found that within these low risk individuals, there was evidence of mild organ
impairment, particularly in the heart (32%) and lungs (33%) [171]. While evidence of long
COVID in adults has been systematically reviewed, details of paediatric cases are beginning
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to emerge. Findings suggest that children may experience similar long COVID symptoms
to adults and female children were more at risk than males of the same age [172]. As such,
the level of organ damage experienced by younger healthy adults and children with long
COVID is a major concern, since the development of long COVID could greatly impact
future quality of life by predisposing otherwise healthy people to chronic ailments. The
challenge therefore lies in determining the mechanisms responsible for the development of
long COVID, so that pharmacological intervention can be established. This is particularly
important in cases where the vaccine has not yet been administered or is not effective. As
in general, COVID-19 vaccines have the potential to attenuate the severity of infection and
also reduce transmission [22]. In particular, therapeutics that target aspects of the RAAS
and the KKS described above may present as a viable option for the attenuation of long
COVID symptoms.

8. Therapeutic Potential

Unsurprisingly, the plethora of signalling pathways and physiological responses
associated with RAAS and KKS dysregulation has led to a number of pharmacological
agents effective in treating cardiovascular disease (Table 1). Drugs that target the AT{R
(ARBs and ACEis) are successfully used to attenuate symptoms of hypertension by reducing
the pathogenic actions of Ang II. In addition, biased AT{R ligands that signal via (3-
arrestin or G,; have shown promise in alleviating the adverse cardiovascular effects
associated with RAAS dysfunction [57,173]. These ligands may be an interesting avenue
to explore for prospective COVID-19 treatments. Additionally, it has been proposed that
stimulation of AT,Rs could be an effective approach to counteract the imbalance of RAAS
during COVID-19 [174]. A small molecule AT,R agonist, C21, has been shown to reduce
fibrosis, hypertrophy and the release of pro-inflammatory cytokines; as well as improving
heart function [175]. In addition, it has been suggested that C21 may reduce prolonged
pulmonary dysfunction in COVID-19. Targeting AT,Rs to alleviate severe pulmonary
symptoms and CVCs of COVID-19 may be an effective strategy [176]. Particularly as C21 is
currently undergoing phase 2 clinical trials for the safety and efficacy evaluation in patients
with COVID-19. Further understanding of AT,R signalling could lead to improvement of
AT,R drug development which may have future implications for COVID-19 CVCs, long
COVID and cardiovascular diseases.

Furthermore, ACE2 and MasR agonists have shown promise in counterbalancing
aberrant RAAS signalling. For example, xanthenone, an ACE2 activator, reduces BP in
spontaneously hypertensive rats; attenuated myocardial, renal and pulmonary fibrosis and
stimulated vascular repair [177-179]. Whereas the MasR agonist CGEN-856S effectively
induces vasorelaxation, improves endothelial function and induces cardio-protection [180].
Although these compounds show potential for the treatment of hypertension, cardiovascu-
lar diseases and COVID-19 CVCs, they have demonstrated a lack of efficacy in different
preclinical models due to their solubility or rapid metabolism and low bioavailability
in vivo [133]. To overcome these issues, the hydrophobicity and stability of ACE2 and
MasR agonists needs to be considered during the drug development process.

Similar to the RAAS, small molecules that target components of the KKS have been
hypothesised as useful agents for the treatment of both respiratory and cardiovascular
symptoms of COVID-19 [77]. For example, a small cohort study demonstrated that the B, re-
ceptor antagonist icatibant did not improve the mortality of severe COVID-19 patients [181].
However, it did promote significant improvements in lung health and eosinophil blood
counts, which are indicative of clinical improvement [181]. This KKS antagonistic approach
for COVID-19 treatment may highlight a potential avenue for drug development. However,
currently, few drugs that target kinin receptors have been approved for clinical use and
only a limited number of studies have begun to investigate kinin receptors in COVID-
19. Therefore, a significant amount of research into the KKS and COVID-19 needs to be
conducted so that clear conclusions can be drawn.
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9. Conclusions

Here, we have reviewed the potential impact of SARS-CoV-2 on the RAAS and KKS as
a consequence of the virus using ACE2-mediated endocytosis as a viral entry mechanism,
leading to a loss of this enzyme from the cell surface. ACE2 has an important role in
regulating the metabolism of both Ang II and DABK and the subsequent formation of
angiotensin and bradykinin metabolites. It is therefore not surprising that the severity of
COVID-19 has been linked to cardiovascular co-morbidities and that long COVID manifests
itself with many CVCs. As a consequence, therapeutic targets have been identified within
the RAAS and KKS that could potentially offer novel approaches to the prevention and
management of CVCs associated with COVID-19. The use of AT{R antagonists and ACEi is
the current mainstay of the treatment of hypertension and associated disorders, and there
is evidence that the use of ACEi and ARBs, despite initial concerns, can re-establish RAAS
homeostasis in severe COVID-19. Unfortunately, there is limited information available
for the role of AT;R, MasR and ACE2-directed molecules and further research is required.
This is also true for drugs targeted at the KKS, although a B, receptor antagonist and
monoclonal antibody that inhibits plasm kallikrein activity is in clinical use for the treatment
of hereditary angio-oedema. It is clear, therefore, that despite the extensive history of
research into both the RAAS and KKS, there is still more to do from the context of ACE2
which has been, and is likely to continues to be, targeted by existing and new coronaviruses.
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ACE2 angiotensin converting enzyme 2
ACEi angiotensin converting enzyme inhibitor
Ang Il angiotensin II

AP aminopeptidases

ARB angiotensin receptor blockers
ARDS acute respiratory distress syndrome
ASA aldosterone synthase antagonist
ATiR/AT,R  angiotensin type 1/2 receptor
BiR/B;R bradykinin type 1/2 receptor

BP blood pressure

BK bradykinin

COVID-19 coronavirus disease 2019

CVCs cardiovascular complications
CPM carboxypeptidase M

DABK des-Arg?-bradykinin

DAKD des-Arg!%-kallidin

DPPD-4 dipeptidyl peptidase 4

GPCRs G protein-coupled receptors

ICU intensive care unit

IFN interferon

IL-6 interleukin-6

KD kallidin

KKS kinin—kallikrein system

NETs neutrophil extracellular traps
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NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
RAAS renin-angiotensin—aldosterone system
ROS reactive oxygen species
SARS-CoV-2  severe acute respiratory syndrome coronavirus 2
TMPRSS2 transmembrane protease serine 2
TNF«x tumour necrosis factor o
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