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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disease and accounts for
most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and
contributes to a heavy burden on families and society. Despite the profound impact of AD, current
treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease.
Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeu-
tic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory
therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and
brain stimulation. The trend of therapeutic development is shifting from a single pathological target
to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes.
While drug repositioning may accelerate pharmacological development, non-pharmacological in-
terventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct
current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible
for physicians to choose appropriate interventions individually on the basis of precision medicine.

Keywords: Alzheimer’s disease; amyloid; tau; NMDA; neuroinflammation; neuroprotection; brain
stimulation; rTMS; tDCS; precision medicine

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the leading
cause of dementia in the elderly [1]. Worldwide, around 50 million people have dementia,
and 50–70% of cases are attributed to AD [2,3]. Both the prevalence and incidence of AD
increase with age. Globally, the population aged 65 years or older is expected to increase
from 9.3% in 2020 to around 16.0% in 2050 [4]. In the United States, the prevalence of AD
is approximately 3% in people aged 65–74, 17% in people aged 75–84, and 32% in people
aged 85 or older [5]. The incidence of AD doubles every 10 years in those aged older than
60 [6]. Currently, about 5.8 million American adults suffer from AD, and the number is
predicted to reach nearly 14 million by 2050 [7].

AD causes functional disability in the elderly. Typical characteristics of AD are
progressive memory loss and functional impairment. AD not only impacts the individual
but also their families and society. In 2016, the Global Burden of Disease classification
system listed AD as the fourth highest disease for premature death and the sixth most
burdensome disease [8]. Patients with AD develop behavioral and psychological symptoms
of dementia (BPSD), including delusions, misperceptions, mood disorders, and behavioral
disturbances [9]. The presentation of BPSD increases the burden on caregivers [10]. Patients
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with AD or other dementia types require about 170 h of informal care per month, which is
a twofold increase compared to those without dementia [11]. The heavy care burden of AD
leads to physical, psychological, and financial impacts on both families and society.

Despite the profound and chronic effects of AD, current treatments are unable to
achieve satisfactory therapeutic effects or stop disease progression. Today, only five drugs
have been approved by the FDA for AD treatment: donepezil, rivastigmine, galantamine,
tacrine, and memantine. The first four drugs are acetylcholinesterase inhibitors (AChEIs),
while the last one is an N-methyl-D-aspartate receptor (NMDAR) antagonist [12]. American
and European guidelines list AChEIs as first-line pharmacotherapies for mild to moderate
AD. However, AChEIs only show modest efficacy on cognitive deficits and non-significant
efficacy on functional capacity in mild to moderate AD [13]. Memantine shows very
limited efficacy on cognitive symptoms without functional improvement [14]. Finding
novel treatments for AD has become urgent.

Understanding AD pathogenesis may guide the development of novel treatments.
Traditionally, the pathological hallmarks of AD include two misfolded proteins: β-amyloid
(Aβ) and tau. Aβ deposition links to tau accumulation [15]. Tau accumulation is associated
with glucose hypometabolism, brain atrophy, and neurodegeneration [16,17]. Some biolog-
ical mechanisms also drive protein aggregation, including carriage of the apolipoprotein
E type 4 allele (APOE4), neuroinflammation, sleep disturbance, and autophagy dysfunc-
tion [18,19].

This article aims to review novel therapeutic approaches to AD, including pharmaco-
logical interventions (Table 1) and non-pharmacological interventions (Table 2).

Table 1. Summary of pharmacological interventions against AD.

Class of Drugs Compounds Mechanism Subjects Status Summary [Ref]

1. Anti-amyloid therapy

Secretase
inhibitor

Verubecestat BACE1 inhibitor Prodromal to moderate AD Phase II/III Lack of efficacy [20,21]

Atabecestat BACE1 inhibitor Prodromal AD Phase II/III Cognitive worsening,
psychiatric disorder [22]

Lanabecestat BACE1 inhibitor MCI to mild AD Phase III Cognitive worsening, weight
loss, psychiatric disorder [23]

LY3202626 BACE1 inhibitor Mild AD Phase III Lack of efficacy [24]

Umibecestat BACE1 inhibitor Cognitively healthy APOE4
carriers Phase II/III

Completed, failed analysis
due to small number

of events
[25]

Elenbecestat BACE1 inhibitor MCI to moderate AD Phase III Lack of efficacy, nightmare [26,27]

Semagacestat γ-secretase inhibitor Mild to moderate AD Phase III
Lack of efficacy, skin cancer,

weight loss, hematologic
disorder, infection

[28]

Avagacestat γ-secretase inhibitor MCI Phase II
Lack of efficacy,

non-melanoma cancer,
gastrointestinal symptoms

[29]

Tarenflurbil γ-secretase modulator Mild AD Phase II Lack of efficacy,
anemia, infection [30]

Aβ
aggregation

inhibitor

PBT1 MPAC MCI to moderate AD Phase II

Rescue of cognitive decline in
severely affected patients

(ADAS-cog ≥25),
visual impairment

[31]

PBT2 MPAC Mild to moderate AD Phase II Lack of efficacy, large
individual variance [32,33]

Aβ im-
munotherapy

ACI-24 Aβ vaccine Adults with Down syndrome Phase II Lack of immunogenicity [34]
CAD106 Aβ vaccine Mild AD Phase II Lack of efficacy [34]
UB-311 Aβ vaccine Mild AD Phase II No published data [34]

ABVac40 Aβ vaccine MCI to mild AD Phase II Ongoing [34]

BAN2401 Monoclonal antibody MCI to mild AD Phase III Modest efficacy among
APOE4 carriers [35]

Gantenerumab Monoclonal antibody Prodromal to mild AD Phase III Lack of efficacy [36]

Aducanumab Monoclonal antibody Monoclonal antibody Phase III
Termination, little change

in efficacy
FDA approval for now

[37,38]
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Table 1. Cont.

Class of Drugs Compounds Mechanism Subjects Status Summary [Ref]

2. Anti-tau therapy

Phosphatase
modifier Selenate PP2A activator Mild to moderate AD Phase II Lack of efficacy [39,40]

Kinase
inhibitor

Roscovitine CDK5 inhibitor 5XFAD mice In vivo Prevention of tau
phosphorylation [41,42]

Flavopiridol CDK5 inhibitor CD1 mice In vivo Rescue of cognitive decline [41,42]

Tideglusib GSK3β inhibitor Mild to moderate AD Phase II Lack of efficacy,
transaminase increase [43]

Lithium GSK3β inhibitor MCI Phase II Rescue of cognitive decline [44–46]

Tau
aggregation

inhibitor

MB Disrupts
polymerization Mild to moderate AD Phase II Cognitive improvement [47]

LMTX Disrupts
polymerization Mild to moderate AD Phase III Lack of efficacy [48]

Curcumin Decreases β-sheet
formation in tau Cognitively healthy elderly Phase II

Improvement in
working memory

(short-term course)
[49,50]

Microtubule
stabilizer

EpoD Enhances microtubule
bundling Mild AD Phase I

Discontinuation, frequent
adverse effects without

published data
[51]

NAP
Protects microtubules

from katanin
disruption

MCI Phase II Cognitive and
functional improvement [52,53]

TPI-287 Stabilizes
microtubules Mild to moderate AD Phase I Rescue of cognitive decline,

anaphylactoid reactions [54]

Tau im-
munotherapy

AADvac1 Tau vaccine Mild AD Phase II Completed, no
published data [55]

ACI-35 Tau vaccine Mild to moderate AD Phase I Safe and tolerated [56]
Aβ 3–10-KLH Tau vaccine 3×Tg-AD mice In vivo Cognitive improvement [57]

BIIB092 Monoclonal antibody Early AD Phase II Ongoing [58]
ABBV-8E12 Monoclonal antibody Early AD Phase II Ongoing [59,60]
RO7105705 Monoclonal antibody Prodromal to moderate AD Phase II Ongoing [61,62]

BIIB076 Monoclonal antibody Healthy volunteers, MCI Phase I Safe and tolerated [63]
LY3303560 Monoclonal antibody Early AD Phase II Completed, no available data [64]

JNJ-63733657 Monoclonal antibody Early AD Phase II Ongoing [65]
UCB0107 Monoclonal antibody Healthy volunteers Phase I Ongoing [66,67]

3. Anti-neuroinflammatory therapy

Microglia
modulator

Thymoquinone TLR4 inhibitor AD mice induced by AlCl3 In vivo Rescue of
cognitive impairment [68]

Ethyl pyruvate TLR4 inhibitor AD mice induced by AlCl3 In vivo Rescue of
cognitive impairment [68]

TAK-242 TLR4 inhibitor APP/PS1 mice In vivo Cognitive improvement [68]

GW2580 CSF1R inhibitor APP/PS1 mice In vivo
Recovery of short-term

memory and
behavioral deficit

[69]

JN-J527 CSF1R inhibitor P301S mice In vivo Functional improvement [70]

PLX3397 CSF1R inhibitor 5XFAD mice In vivo Recovery of spatial and
emotional memory deficit [71]

Astrocyte
modulator

Stattic STAT3 inhibitor 5XFAD mice In vivo Rescue of learning and
memory impairment [72,73]

FK506 Calcineurin/NFAT
inhibitor MCI to AD Phase II Not yet recruiting [74]

SB202190 P38 MAPK inhibitor Wip1-deficient mice In vivo Rescue of learning and
memory impairment [75]

PD169316 P38 MAPK inhibitor Aβ-injected mice In vivo Rescue of spatial memory
and learning impairment [75]

MW108 P38 MAPK inhibitor hTau mice In vivo Rescue of
cognitive impairment [76]

NJK14047 P38 MAPK inhibitor 5XFAD mice In vivo Cognitive improvement [77]

MRS2179 P2Y1R inhibitor APPPS1 mice In vivo Spatial learning
improvement [78]

BPTU P2Y1R inhibitor APPPS1 mice In vivo Spatial learning
improvement [78]

Insulin
resistance

management

Intranasal
insulin therapy Intranasal supplement MCI to moderate AD Phase II

Cognitive improvement,
modulation by

APOE4 genotype
[79,80]

MCI to AD Phase II/III Lack of efficacy [81]

Liraglutide Incretin receptor
agonist Mild AD Phase II Delay of

cognitive impairment [82,83]

Metformin Biguanide MCI Phase II Reduction in recall
memory decline [84]

MCI to early AD Phase II Executive functional
improvement [85]
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Table 1. Cont.

Class of Drugs Compounds Mechanism Subjects Status Summary [Ref]

Gemfibrozil PPAR-α agonist MCI Phase I Completed, no published
data [86]

Pioglitazone PPAR-γ agonist Mild AD Phase II Cognitive improvement [87]
MCI Phase III Lack of efficacy [88,89]

T3D-959 Hybrid PPAR-δ/γ
agonist STZ-induced AD mice In vivo Reduction in

neuroinflammation [90]

Microbiome
therapy

Sodium
oligomannate

Dysbiosis of gut
microbiota Mild to moderate AD Phase III Cognitive improvement [91,92]

4. Neuroprotective agents

Antiepileptic
drug

Levetiracetam SV2A receptor MCI Phase III Ongoing [93]
Gabapentin VGCCs inhibitor Moderate to severe AD Phase IV Ongoing [94]

NMDAR
modification

Sodium
benzoate DAAO inhibitor

MCI to mild AD Phase II Cognitive improvement [95]

MCI Phase II Cognitive and
functional improvement [96]

Moderate to severe AD
with BPSD Phase II Cognitive benefit in

female gender [97]

Riluzole Glutamate modulator Mild AD Phase II Completed, no
published data [98]

Troriruzole Glutamate modulator Mild to moderate AD Phase II Ongoing [99]

Omega 3 polyuns-
aturated fatty

acid supplements

DHA Anti-oxidative effect
Mild to moderate AD Phase III Lack of efficacy [100]

Cognitively healthy elderly Phase II Ongoing [101]
Icosapent ethyl Anti-oxidative effect Cognitively healthy elderly Phase III Ongoing [102]

BACE1—β-secretase1, APOE4—apolipoprotein E type 4, PBT1—clioquinol, PBT2—second-generation clioquinol, MPAC—metal protein
attenuating compound, ADAS-cog—Alzheimer’s Disease Assessment Scale–Cognitive Subscale, MB—methylene blue, EpoD—Epothilone
D, NAP—davunetide, TPI-287—abeotaxane, DHA—docosahexaenoic acid.

Table 2. Summary of non-pharmacological interventions against AD.

Methods Targeted Region Protocol Subjects Status Summary [Ref]

1. Deep-brain stimulation

DBS

Fornix Forneceal DBS
Mild AD Phase II Slight cognitive benefit in

the elderly [103,104]

Mild AD Phase III Ongoing [105]

NBM NBM-DBS Mild to moderate AD Phase I
Cognitive stabilization and

improvement, response
rate 67%

[106]

2. Vagus nerve stimulation

VNS

Tenth cranial
nerve Invasive VNS Probable AD Phase I

Cognitive stabilization and
improvement, response rate

70%
[107,108]

Tenth cranial
nerve Non-invasive VNS MCI Not Applicable Ongoing [109]

3. Transcranial magnetic stimulation

High-
frequency

rTMS

Left DLPFC

10 Hz/120% MT/3000 pulses per
session/10 sessions/2 weeks * MCI Phase IV Executive functional

improvement [110]

10 Hz/120% MT/2000 pulses per
session/20 sessions/4 weeks * MCI Not Applicable Ongoing [111]

20 Hz/100% MT/2000 pulses per
session/20 sessions/4 weeks * Moderate AD Not Applicable Improved language

performance [112]

20 Hz/80% MT/1200 pulses per
session/20 sessions/4 weeks *

AD patients
with BPSD Not Applicable Cognitive and functional

improvement [113]

20 Hz/100% MT/2000 pulses per
session/20 sessions/4 weeks * Mild to moderate AD Not Applicable

Improvement in trained
associative memory,

add-on effect
[114]

20 Hz/80–100% MT/1000 pulses
per session/20 sessions/4 weeks * Mild to moderate AD Not Applicable Cognitive and functional

improvement, add-on effect [115]

5 Hz/100% MT/1500 pulses per
session/15 sessions/3 weeks * Probable AD Not Applicable Cognitive and functional

improvement [116]

Bilateral DLPFCs
20 Hz/90% MT/2000 pulses per

session/5 sessions/5 days * Mild to severe AD Not Applicable
Cognitive and functional
improvement in mild to

moderate AD
[117]

20 Hz/90–100% MT/2000 pulses
per session/13 sessions/4 weeks * Mild to moderate AD Not Applicable Cognitive improvement [118]



Int. J. Mol. Sci. 2021, 22, 8208 5 of 29

Table 2. Cont.

Methods Targeted Region Protocol Subjects Status Summary [Ref]

Right IFG
10 Hz/90% MT/2250 pulses per

session/single session * MCI Not Applicable Improvement in attention and
psychomotor speed [119]

10 Hz/90% MT/2250 pulses per
session/single session * MCI to moderate AD Not Applicable Cognitive improvement [120]

Right STG 10 Hz/90% MT/2250 pulses per
session/single session * MCI to moderate AD Not Applicable Cognitive improvement [120]

Left parietal lobe 20 Hz/100% MT/1600 pulses
per session/10 sessions/1 week * Early AD Not Applicable Improvement in

episodic memory [121]

Bilateral parietal
lobes

20 Hz/Unavailable MT/1 h
per session/30 sessions/6 weeks * Mild to moderate AD Not Applicable Better performance in memory

and language in mild AD [122]

Low-
frequency

rTMS
Bilateral DLPFCs

1 Hz/90% MT/600 pulses per
session/2 sessions/1 day *

Healthy
individuals-MCI Not Applicable Improvement in

recognition memory [123]

1 Hz/100% MT/2000 pulses
per session/5 sessions/5 days * Mild to severe AD Not Applicable Less cognitive efficacy than

high-frequency rTMS [117]

4. Transcranial electrical stimulation

Transcranial
direct

current
stimula-

tion

Left DLPFC

2 mA/30 min per session/single
session ** Mild to moderate AD Not Applicable Improved recognition memory [124]

2 mA/25 min per
session/10 sessions/2 weeks ** Mild to moderate AD Not Applicable Cognitive improvement [125]

2 mA/20 min per
session/6 sessions/2 weeks ** Moderate AD Phase II

No cognitive or behavioral
improvement, no change in

apathy symptoms
Requirement of more than

6 sessions

[126]

2 mA/30 min per session/daily
session/6 months ** Early AD Not Applicable

Cognitive and functional
improvement, rescue of

executive function
[127]

1.5 mA/15 min per
session/single session ** MCI Not Applicable Enhanced free recall and

recognition of memory [128]

2 mA/30 min per
session/1–5 sessions ** MCI Not Applicable

Improvement in selective
attention, processing speed,
and planning ability tasks

Optimal frequency of
3 sessions/week

[129]

Left parietal lobe
2 mA/30 min per session/single

session ** Mild to moderate AD Not Applicable Improvement in
recognition memory [124]

2 mA/30 min per
session/6 sessions/10 days ** Mild to moderate AD Not Applicable No improved verbal

memory function [130]

Bilateral
temporoparietal

lobe

1.5 mA/15 min per
minute/2 sessions (anodal and

cathodal) **
Mild AD Not Applicable

Improved word recognition in
anodal group, cognitive

worsening in cathodal group
[131]

2 mA/30 min per
session/5 sessions/1 week ** Mild to moderate AD Not Applicable Improvement in visual

recognition memory [132]

2 mA/20 min per
session/10 sessions/2 weeks ** Early AD Not Applicable Improved cognitive

performance [133]

Left
temporoparietal

lobe

2 mA/20 min per
session/10 sessions/2 weeks ** Advanced AD Not Applicable

Stabilized neuropsychological
performance, long-term

protective effect
[134]

Transcranial
alternating

current
stimulation

Left DLPFC 40 Hz/1.5 mA/30 min per
session/40 sessions/4 weeks *** MCI to moderate AD Not Applicable Improved cognitive

performance [135]

Superior parietal
cortex

40 Hz/3 mA/30 min per
session/single session *** AD patients Not Applicable Completed, no published data [136]

Left angular
gyrus

40 Hz/unavailable intensity/20
min per session/3 sessions ***

Healthy individuals to
mild AD Not Applicable Ongoing [137]

NBM—nucleus basalis of Meynert, DLPFC—dorsolateral prefrontal cortex, MT—motor threshold. * Protocol of rTMS: Frequency/Intensity/
Number of pulses per session/Total number of sessions/Duration. ** Protocol of tDCS: Current intensity/Stimulation duration/Total
number of sessions/Duration. *** Protocol of tACS: Frequency/Intensity/Stimulation duration/Total number of sessions/Duration.

2. Novel Therapeutic Approach
2.1. Anti-Amyloid Therapy

Amyloid plaques are composed of Aβ peptides in the extracellular space. Aβ is
derived from the amyloid precursor protein (APP), a transmembrane protein. β-secretase
and γ-secretase cleave the APP and generate pathological Aβ [138]. Accumulation of
Aβ results in neurotoxicity [139,140]. Reducing the accumulation of Aβ has become
a therapeutic purpose of AD [141]. Anti-amyloid therapy consists of three strategies:
secretase inhibitors, Aβ aggregation inhibitors, and Aβ immunotherapy.

2.1.1. Secretase Inhibitors

Secretase inhibitors target the catalytic activities of β-secretase and γ-secretase, which
is the rate-limiting step in Aβ production. These strategies have been studied for the past
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two decades. Inhibitors of β-secretase (BACE)1 decreased the Aβ levels in AD patients’
cerebrospinal fluid (CSF) [20,142]. Several BACE1 inhibitors have reached phase III clinical
trials, such as verubecestat [21], atabecestat [22], lanabecestat [23], LY3202626 [24], and
umibecestat [25], but these drugs have failed due to a lack of efficacy or worse cognitive
function in patients with mild cognitive impairment (MCI), and mild to moderate AD [143].
The last BACE inhibitor, elenbecestat, was discontinued in phase III trials because it showed
an unfavorable risk/benefit ratio in early AD [26,27]. The inhibition and modulation of
γ-secretase were both therapeutic straggles. Double-blind randomized controlled trials
(RCTs) of the γ-secretase inhibitors, including semagacestat [28] and avagacestat [29], were
discontinued. Cognitive deterioration was noted in patients with MCI and mild to moder-
ate AD. The γ-secretase modulator tarenflurbil also worsened cognition in patients with
mild AD [30]. Therefore, the role of secretase inhibitors remains under debate [144,145].

2.1.2. Aβ aggregation Inhibitors

Several natural compounds have Aβ aggregation inhibitory properties [146]. However,
multiple obstacles blocked these compounds from entering into clinical use. First, some
compounds have poor permeability through the blood–brain barrier (BBB). Second, these
compounds are small molecules and produce insufficient steric effects to disrupt Aβ
aggregation. Third, the protein–protein binding regions are relatively featureless to small
molecules without specific pockets or grooves [147,148].

One strategy is to target the chaperones in the brain, such as metals. Disrupting the
interaction between Aβ peptides and metals provides a barrier against Aβ oligomerization.
Metal protein attenuating compounds (MPACs) chelate copper and zinc ions and inhibit
Aβ aggregation [149–151]. One such example is clioquinol (PBT1), a hydroxyquinoline
ionophore. In patients with MCI to moderate AD, clioquinol showed no significant im-
provement in cognition or clinical global impression between the active treatment and
placebo groups. Subgroup analysis showed that clioquinol treatment rescued cognitive
decline in the more severely affected patients (The Alzheimer’s Disease Assessment Scale–
Cognitive Subscale (ADAS-cog) ≥ 25). The adverse effect of visual impairment was
reported in the treatment group [31]. Second-generation clioquinol (PBT2) had appeared
to be safe and well tolerated in people with mild AD. However, the double-blind RCTs of
PBT2 demonstrated no overall significant effect on cognition or function in treating MCI
and mild to moderate AD [32,33].

Recently, advanced biophysical and structural biology experimental approaches have
been used to investigate chemical features and identify potential compounds. Some com-
pounds with binding epitopes or planar hydrophobic structures increase Aβ aggregation
inhibitory activities, including tanshinone and uncarinic acid C. A few compounds, namely,
epigallocatechin gallate (EGCG) and resveratrol, interact with the toxicity determinants
of Aβ, the N-terminus and β1-turn regions. Epigallocatechin gallate (EGCG), oleuropein
aglicone (OleA), and quercetin are potential therapeutic compounds for AD [147].

2.1.3. Aβ Immunotherapy

Aβ immunotherapy actively or passively decreases the Aβ burden. The active anti-
Aβ vaccine AN1792 was first tested in humans, but the trial was discontinued because
meningoencephalitis was developed in 6% of immunized AD patients [152]. Further-
more, although four second-generation active Aβ vaccines reached phase II trials: ACI-24,
CAD106, UB-311, and ABVac40, none of them were proven to be clinically beneficial in
treating AD at that time [34]. Passive immunotherapy promotes Aβ clearance by targeting
neurotoxic Aβ oligomers [153]. Three humanized monoclonal antibodies underwent phase
III trials, including BAN2401, gantenerumab, and aducanumab. Studies involving these
agents were confirmed to engage amyloid oligomers and decrease downstream tau levels.
BAN2401 has demonstrated modest cognitive and functional efficacy in APOE4 carriers
with MCI to mild AD [35]. Gantenerumab has shown no clinical efficacy thus far in phase
III trials in prodromal to mild AD [36]. Two double-blind phase III RCTs of aducanumab
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were terminated halfway through in March 2019. The futility determination was based
on the low chance of therapeutic efficacy for AD. However, the company gathered addi-
tional data and announced that the final result of aducanumab showed positive treatment
effects [37,38]. In June 2021, the U.S. Food and Drug Administration (FDA) approved
aducanumab to treat AD patients [154]. The argument about this approval seems to be
continued. Next-generation oral-form small-molecule agents targeting Aβ oligomers, such
as CT1812, PQ912, and ALZ-801, are also in development [35].

2.2. Anti-tau Therapy

The tau protein is associated with microtubules and stabilizes microtubules in axons
and dendrites. Tau undergoes the process of post-translational modifications, especially
hyper-phosphorylation [155,156]. Hyper-phosphorylated tau proteins accumulate and
form intracellular neurofibrillary tangles (NFTs). NFTs induce inflammatory responses
and cause neurotoxicity. Unlike Aβ, the development of tau pathology correlates with the
severity of cognitive deficit in AD [157]. The strategies for anti-tau therapy include phos-
phatase modifiers, kinase inhibitors, tau aggregation inhibitors, microtubule stabilizers,
and tau immunotherapy.

2.2.1. Phosphatase Modifiers

Phosphatase modifiers decrease phosphorylation by activating phosphatases, such as
protein phosphatase 2A (PP2A) [158]. Sodium selenate is a PP2A activator and an essential
molecule in neurological functions [159]. Sodium selenite deficiency was related to oxida-
tive damage and cognitive impairment [160]. A phase II trial on sodium selenate did not
find any change in cognitive performance in mild to moderate AD [39]. A supranutritional
supplement of sodium selenate increased selenium uptake in the CNS, but the clinical
efficacy was minor for AD [40].

2.2.2. Kinase Inhibitors

Kinase inhibitors decrease post-translational modifications and limit the hyper-
phosphorylation of tau. The degree of phosphorylation is related to the activity of protein
kinases: cyclin-dependent-like kinase 5 (CDK5) [161] and glycogen synthase kinase-3β
(GSK3β) [162]. Selective inhibitors of CDK5 have been reported in cancer therapy, including
roscovitine [163] and flavopiridol [164]. In animal models of AD, roscovitine prevented tau
phosphorylation, while flavopiridol reduced memory decline [41,42]. None of these agents
have reached clinical trials in AD. Two types of GSK3β inhibitors, tideglusib and lithium,
have been researched in AD. Tideglusib showed no clinical benefit in phase II trials of
mild to moderate AD, and its short-term administration resulted in an adverse effect of a
reversible transaminase increase [43]. Lithium, a mood stabilizer, was identified as a GSK3β
inhibitor. One double-blind RCT revealed that a microdose of lithium prevented cognitive
decline in AD patients [44]. The participants received a 15-month lithium treatment, with a
daily dose of 300 mg. Meta-analyses concluded that lithium inhibited the progression of
cognitive decline in AD patients, with a moderate effect size [45,46]. Whether lithium is
effective in treating AD needs further verification.

2.2.3. Tau Aggregation Inhibitors

Methylene blue (MB) is a synthetic phenothiazine dye and the earliest tau aggregation
inhibitor. MB blocks interactions between tau molecules and disrupts polymerization
in vitro [165,166]. In a phase II double-blind RCT, 50-week administration of MB in which
the participants received 138 mg of MB treatment showed a cognitive benefit in mild
to moderate AD [47]. Methylthioninium chloride (LMTX), the MB derivative, failed to
improve cognitive or functional performance in a phase III double-blind RCT in mild to
moderate AD [48]. An advanced study demonstrated that MB inhibited tau fibril formation
but accelerated the formation of neurotoxic tau oligomers [167]. Therefore, the role of MB
remains ambivalent in AD therapy.
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Curcumin is a coloring agent and food additive. Curcumin inhibits tau aggregation by
decreasing β-sheet formation in tau and disintegrating tau oligomers in vitro [168]. Several
phase II double-blind RCTs of curcumin displayed no clinical or biomarker improvement
after a 6-month treatment in AD patients [169,170]. The failure of previous studies of
curcumin was attributed to its low bioavailability [171]. In the cognitively healthy elderly,
a bioavailability-improved formulation of curcumin administration improved working
memory in an acute and short-term course (<4 weeks) [49,50]. However, a long-term
course of curcumin treatment did not delay cognitive decline [172]. A recent systematic
meta-analysis indicated that curcumin treatment worsened cognitive performance in AD
patients [173].

2.2.4. Microtubule Stabilizers

Epothilone D (EpoD) is an anti-fungal agent and a microtubule stabilizer. Epothilone
D induces tubulin’s polymerization into microtubules and enhances microtubule bundling
in vitro [174]. In animal studies, EpoD rescued working and spatial memory deficits in
aged tau transgenic mice [175–177], but the phase I trial of EpoD failed due to intolerable
adverse effects [51].

NAP (davunetide), an activity-dependent neuroprotective protein (ADNP) derivative,
protects microtubules from katanin disruption in vitro [178,179]. In a phase II double-blind
RCT, NAP showed cognitive and functional improvement in MCI, when MCI patients
received a 12-week intranasal NAP administration [52,53]. The clinical effect of NAP has
not been researched in AD patients yet [180].

TPI-287 (abeotaxane) is a synthetic taxane derivative for central nerve system (CNS)
malignancy or metastasis treatment [181,182]. A phase I double-blind RCT of TPI-287
showed less decline in Mini-Mental State Examination (MMSE) scores in the treated group
compared to placebo in mild to moderate AD. Three serious adverse events (15%) with
anaphylactoid reactions were reported [54]. In addition to EpoD, NAP, and TPI-287, the
development of a peptide with the taxol-binding pocket of β-tubulin has become another
innovative strategy [183].

2.2.5. Tau Immunotherapy

Active tau vaccines have been developed to trigger antibodies against tau proteins.
Two tau vaccines have reached clinical trials: AADvac1 and ACI-35 [184]. The antibodies
from AADvac1 target the microtubule-binding region of tau, decrease tau aggregation, and
promote tau clearance [185]. In a phase I double-blind RCT in mild to moderate AD, almost
all the patients receiving the AADvac1 injection (29/30) showed an IgG immune response
within 12 weeks [186]. No case of meningoencephalitis or vasogenic edema was reported
at a 72-week follow-up assessment [187]. One phase II double-blind RCT of AADvac1
was performed to evaluate its clinical efficacy in patients with mild AD [55]. ACI-35 is a
liposome-based vaccine against phosphorylated tau. In animal studies, ACI-35 induced a
rapid immune response and decreased phosphorylated tau in tau transgenic mice within
12 weeks [188]. One phase I double-blind RCT is underway in patients with mild to
moderate AD to assess the tolerability and safety of the ACI-35 vaccine [56]. One novel
tau vaccine, Aβ 3–10-keyhole limpet hemocyanin (KLH), reduced the phosphorylated tau
level and improved cognitive functions in animal studies [57].

Passive immunotherapy is being developed for tau pathology. Several agents have
achieved clinical trials for AD: BIIB092, ABBV-8E12, RO7105705, BIIB076, LY3303560,
UCB0107, and JNJ-63733657 [189]. Three such agents are humanized lgG4 monoclonal
antibodies BIIB092, ABBV-8E12, and RO7105705. Gosuranemab (BIIB092) was safe and well
tolerated in healthy participants [190]. One large phase II double-blind RCT of BIIB092 is
ongoing in patients with early AD [58]. ABBV-8E12 showed an acceptable safety profile in
a phase I study [191]. Phase II double-blind RCTs of ABBV-8E12 are being continued with
regard to the efficacy of treating patients with early AD [59,60]. Semorinemab (RO7105705)
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showed a fair safety profile in healthy individuals. Two phase II double-blind RCTs of
RO7105705 are ongoing in prodromal to mild AD [61] and moderate AD [62].

Two agents belong to humanized lgG1 monoclonal antibodies: BIIB076 and LY3303560.
BIIB076 was both safe and tolerable in healthy participants and MCI patients [63]. An
advanced clinical trial of BIIB076 is not yet available. LY3303560 appeared to be tolerable in
healthy individuals and AD patients [192,193]. One phase II triple-blind RCT of LY3303560
has ended in early AD, but the efficacy is currently not available [64]. JNJ-63733657, a
monoclonal antibody, completed two phase I trials in healthy participants and patients with
AD [194,195]. In early AD, the phase II double-blind RCT of the efficacy of JNJ-63733657
is still being studied [65]. UCB0107, a humanized version of antibody D, is undergoing a
phase I investigator-blind RCT in a healthy population [66,67].

2.3. Anti-neuroinflammatory Therapy

Neuroinflammation contributes to the progression of AD and correlates with the sever-
ity of the disease [196]. Anti-neuroinflammatory strategies include microglia modulators,
astrocyte modulators, insulin resistance management, and microbiome therapy.

2.3.1. Microglia Modulators

Microglial activation is recognized as a hallmark of neuroinflammation. Microglia
interact with Aβ and the tau protein in the pathogenesis of AD [197,198]. Glial activation
is associated with the signaling pathways of apolipoprotein E (ApoE), thus triggering
the receptor expressed on myeloid cells 2 (TREM2), Toll-like receptor (TLR), and colony-
stimulating factor-1 receptor (CSF1R) (Figure 1, panel A) [199].

Figure 1. Signaling pathways of microglia modulators and astrocyte modulators. (A) Signaling pathways in microglia;
(B) signaling pathways in astrocytes. Created with BioRender.com. * TREM2—triggering the receptor expressed on myeloid
cells 2, TLR—Toll-like receptor, CSF1R—colony-stimulating factor-1 receptor, JAK—Janus kinase, STAT3—signal transducer
and activator of transcription 3, NFAT—nuclear factor of activated T cells, NFκB—nuclear factor-kB, NLRP3—nod-like
receptor family pyrin domain containing 3, MAPK—mitogen-activated protein kinase, P2Y1R—P2Y1 purinoreceptor.

Mutations of ApoE and TREM2 are considered strong risk factors of AD. The ApoE-
TREM2 pathway shares similar mechanisms in regulating Aβ pathology in AD [200]. APOE
is a primary cholesterol carrier and identified as a ligand for human TREM2 in microglia.
The interaction increases TREM2-mediated phagocytosis of apoptotic neurons [201,202]. In
an AD mouse model, increased TREM2 expression led to improved memory performance
in 5xFAD mice [203]. The deficiency of TREM2 decreased plaque deposition during the
early stage of AD but enhanced amyloid-β pathology in the advanced stage [204]. No
agent targeting ApoE or TREM2 has reached clinical trials for AD treatment.
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Multiple TLR pathways respond to the accumulation of Aβ and induce neuronal
injuries in AD pathogenesis, especially TLR4 and TLR2. The TLR4 pathway interacts with
NLRP3 inflammasomes and sustains neuroinflammation [205]. Furthermore, the TLR4
pathway is activated by lipopolysaccharide (LPS) and induces memory impairment in
animal models of AD [206]. Several TLR4 inhibitors improved cognitive deficits in AD
animal models, including thymoquinone, ethyl pyruvate, and TAK-242 [68]. TLR2 binds
to Aβ and mediates the Aβ phagocytosis by microglia [207]. Dysregulation of the TLR2
pathway accelerated memory impairment in AD mice, either through inhibition [208–210]
or activation [207]. None of these agents have reached clinical trials for AD therapy.

The CSF1R pathway drives microglial proliferation in animal models of AD. Selective
CSF1R inhibitors were applied in transgenic AD mice, such as GW2580, JN-J527, and
PLX3397. The efficacy of GW2580 blocked microglial proliferation and recovered the short-
term memory and behavioral deficit in APP/PS1 mice [69]. Administration of JN-J527
improved tau-mediated neurodegeneration and functional impairment in P301S mice [70].
Long-term treatment of PLX3397 reversed spatial and emotional memory deficits in 5XFAD
mice [71].

2.3.2. Astrocyte Modulators

The astrocyte reaction impairs the clearance of Aβ at the BBB. The astrocyte reac-
tion in AD involves several signaling pathways: the Janus kinase/signal transducer and
activator of transcription 3 (JAK/STAT3), the calcineurin/nuclear factor of activated T
cells (calcineurin/NFAT), the nuclear factor-kB/nod-like receptor family pyrin domain
containing 3(NFκB/NLRP3), the mitogen-activated protein kinase (MAPK), and the P2Y1
purinoreceptor (P2Y1R) pathways (Figure 1, panel B) [211].

The JAK/STAT3 pathway has been activated in reactive astrocyte transgenic mouse
models of AD [212]. Stattic is a selective STAT3 inhibitor, and its intraperitoneal injection
rescued learning and memory impairment in 5XFAD mice [72,73]. The calcineurin/NFAT
pathway promotes the production of proinflammatory cytokines [213]. FK506 (Tacrolimus)
inhibited the calcineurin/NFAT pathway and improved cognitive deficit in APP/PS1
mice [214,215]. An open-label phase II study of FK506 is underway to investigate the
efficacy in MCI and AD. No results have yet been published [74]. The NFκB/NLRP3 path-
way is activated by Aβ and promotes the production of proinflammatory cytokines [216].
Eliminating NLRP3 reduced brain Aβ levels in AD animal models [217,218]. Inhibition of
the NFκB/NLRP3 pathway is a potential treatment, but no agents have yet entered clinical
trials of AD [219].

P38 MAPK, a class of MAPKs, responds to inflammatory cytokines, mediates Aβ-
induced neurotoxicity, and is correlated with tau phosphorylation [220]. Several p38 MAPK
inhibitors were investigated in vivo, including SB202190 and PD169316 [75]. Two highly
selective p38 MAPK inhibitors were investigated in animal studies of AD: MW181 and
NJK14047. MW181 blocked tau phosphorylation and rescued cognitive impairment in aged
hTau mice [76]. Meanwhile, NJK14047 decreased Aβ deposits, decreased neuron death,
and improved cognitive functions in 5XFAD mice [77]. The P2Y1R pathway increases
the frequency of spontaneous astroglial calcium events. The process promotes down-
stream p38 activity and glutamate-induced neuronal death in AD mice [221,222]. Several
P2Y1R inhibitors have been involved in AD studies: MRS2179 and BPTU. Treatment of
P2Y1R inhibitors normalized astrocyte activity and improved cognitive deficits in APPPS1
mice [78].

2.3.3. Insulin Resistance Management

AD features deficits in cerebral glucose utilization with progressive cognitive im-
pairment [223]. The deficits in cerebral glucose utilization in human AD include insulin
deficiency, insulin-like growth factor 1 (IGF-1) deficiency, and insulin resistance. Insulin
resistance promotes oxidative stress, triggers inflammation, and increases tau phosphoryla-
tion and toxic Aβ levels [224].
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Insulin therapy is applied when treating AD with an intranasal device. A double-blind
RCT reported that intranasal insulin administration improved memory impairment in MCI
and AD. The participants received intranasal regular insulin at 40 IU daily for 4 months [79].
A systematic review of RCTs indicated that patients with MCI and AD displayed improved
verbal memory after insulin therapy. The patients without an APOE4 gene had more
consistent cognitive benefits than the APOE4 carriers [80]. A recent RCT of intranasal
insulin therapy also failed in treating MCI and AD. After 12 months of treatment, the
treated group demonstrated no significant difference in cognition and function compared
to the placebo group [81]. Intranasal insulin therapy is a relatively safe option of treatment
without serious adverse events in the treated group [80].

Incretins are gut-derived hormones that stimulate insulin secretion, including glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Several
incretin receptor agonists showed a potential therapeutic effect in animal models of AD and
Parkinson’s disease: liraglutide, lixisenatide, exendin-4, semaglutide, peptide 17, peptide
18, peptide 20, DA-JC4, and DA-CIB [82]. A double-blind RCT of liraglutide was examined
in AD treatment. The 12-month liraglutide treatment delayed cognitive impairment in the
treated group compared to the placebo group [83]. Another phase II double-blind RCT of
liraglutide is ongoing in patients with mild AD [225].

Metformin is the first-line therapy for diabetes mellitus. In diabetic patients, met-
formin demonstrated a neuroprotective effect and reduced the risk of developing demen-
tia [226,227]. One study of metformin involved non-diabetic, overweight (BMI over 25)
populations with MCI. The treated group received 500–2000 mg of metformin daily. After
a 12-month intervention, the treated group showed a reduction in recall memory decline
compared to the placebo group [84]. One pilot crossover RCT of metformin was tested in
non-diabetic and non-overweight adults with MCI and early AD. The participants were
randomized to receive an 8-month metformin or a placebo intervention. The daily dose of
metformin was as high as 2000 mg. The results showed that the metformin administration
improved executive functions in the treated group compared to placebo [85].

Peroxisome proliferator activator receptors (PPARs) mediate the anti-inflammatory
process and metabolic pathways [228]. Three isotypes of PPARs have been identified:
PPAR-α, PPAR-β/δ, and PPAR-γ. Four PPAR-α agonists showed therapeutic potential
in animal models of AD: WY-14643, GW7647, fenofibrate, and gemfibrozil. A phase I
trial of gemfibrozil in MCI patients has been completed, and advanced clinical studies
are pending [86]. Pioglitazone is a PPAR-γ agonist for treating diabetes. An open-label
phase II RCT of pioglitazone showed cognitive benefits in diabetic patients with mild AD.
The participants received 15–30 mg of pioglitazone daily for 6 months [87]. Two phase
III quadruple-blind trials of pioglitazone in MCI patients were terminated due to a lack
of efficacy without safety concerns [88,89]. The PPAR-δ agonists have been evaluated
in AD mouse models [229]. A hybrid PPAR-δ and PPAR-γ agonist, T3D-959, resolved
neuroinflammation in an intracerebral streptozotocin (STZ) animal model of AD [90].

2.3.4. Microbiome Therapy

The composition of the gut microbiota affects the gut–brain communication and
brain function by synthesizing various neurotransmitters and neuromodulators [230].
Dysbiosis of the gut microbiota leads to an overproduction of LPS in the gut, which
increases permeability to the BBB [231]. Sodium oligomannate (GV-971), a marine-derived
oligosaccharide, suppresses gut microbiota dysbiosis, regulates neuroinflammation, and
destabilizes Aβ aggregates [232]. Phase III double-blind RCTs of sodium oligomannate
showed a cognitive benefit in patients with mild to moderate AD [91]. The participants
received a dose of 900 mg of sodium oligomannate for 36 weeks. The treated group showed
significant improvement in ADAS-cog performance compared to the placebo group [92].
Sodium oligomannate was approved in November 2019 in China for treating mild to
moderate AD [233].
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2.4. Neuroprotective Agents

Neurodegenerative mechanisms are involved in the pathogenesis of AD. Therefore,
applying neuroprotective strategies aims to delay both the AD onset and AD progres-
sion [234]. Three neuroprotective candidates are generally discussed: antiepileptic drugs,
NMDAR modification, and omega 3 polyunsaturated fatty acid supplements.

2.4.1. Antiepileptic Drugs

Antiepileptic drugs are considered CNS depressants and have been found to dete-
riorate cognitive functions. In recent studies, some agents had the potential to enhance
cognitive performance in epileptic patients, including levetiracetam and gabapentin [235].

Levetiracetam exerts a therapeutic effect by targeting the synaptic vesicle 2A (SV2A)
protein [236]. Levetiracetam displayed neuroprotective properties in traumatic brain injury
in both animal models and clinical trials [237]. In a mouse model of AD, administration
of levetiracetam decreased the Aβ load and rescued the cognitive deficit in APP/PS1
mice after a 4-week treatment [238]. In the healthy elderly, the double-blind crossover
RCT of levetiracetam showed potential with regard to enhancing cognitive functions. The
volunteers received a dose of 1000 mg of levetiracetam during the 5-week treatment phase.
The volunteers in the levetiracetam-treated phase showed cognitive improvement but with
a tendency of irritability and fatigue [239]. In patients with MCI, a multicenter double-blind
phase III RCT of AGB101 (levetiracetam) is currently ongoing to evaluate its potential to
slow cognitive and functional decline [93].

Gabapentin is a voltage-gated calcium channel (VGCC) inhibitor that indirectly affects
the glutamate system. In cerebral ischemia-reperfusion mice, gabapentin treatment showed
a neuroprotective effect and reduced neural injury in a dose-dependent manner [240]. In
healthy populations, administration of a single dose of 50–400 mg of gabapentin promoted a
subtle cognitive improvement [241]. In dementia patients with BPSD, preliminary evidence
indicated that gabapentin treatment had possible benefits in treating AD. The gabapentin
treatment with a daily dose of 200–3600 mg decreased agitation and improved cognition.
The result was based on low-grade evidence [242]. A double-blind phase IV RCT of
gabapentin enacarbil is continuing to investigate the therapeutic efficacy of nighttime
agitation and restless leg syndrome in patients with moderate to severe AD [94].

2.4.2. NMDAR Modification

Glutamate is one of the major excitatory neurotransmitters in the CNS. The N-methyl-
D-aspartate receptor (NMDAR) is a subtype of the ionotropic glutamate receptor and
plays a critical role in regulating synaptic plasticity, neuronal survival, learning, and
memory [243]. Individuals with AD had decreased glutamate levels in CSF and fewer
NMDARs in the hippocampus and frontal cortex [244]. Enhancement or modulation of
NMDAR activity demonstrated therapeutic potential in early AD.

The preservative sodium benzoate enhances NMDAR activity by inhibiting D-amino
acid oxidase (DAAO). D-serine, the main co-agonist of NMDARs, is metabolized by
DAAO into hydroxypyruvate. Inhibition of DAAO increases the level of downstream
D-serine (Figure 2) [245]. In studies of schizophrenia, sodium benzoate inhibited reactive
oxygen species and had a potent neuroprotective effect [246–248]. Sodium benzoate was
tolerated in patients with MCI and mild AD. The participants received a 24-week benzoate
treatment with a dose of 250 to 750 mg per day. The treated group showed greater
improvement in ADAS-Cog than the placebo group [95]. In a phase II double-blind RCT,
24-week administration of sodium benzoate in which the participants received 250–1500 mg
benzoate treatments showed both altered brain activity and cognitive benefit in MCI [96].
In patients with BPSD, a 6-week benzoate treatment demonstrated a benefit in specific
individuals: those with a young age, those of the female gender, those with a higher BMI,
those with a significant DAAO decrease, and those with antipsychotic use [247]. In a
multicenter, double-blind RCT, benzoate treatment showed cognitive benefits in women
with moderate to severe AD. The treated group received 250–1500 mg of benzoate daily
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for 6 weeks and showed improved ADAS-Cog performance compared to the placebo
group [97].

Figure 2. NMDAR signaling pathway. Created with BioRender.com. NMDAR—N-methyl-D-
aspartate receptor, DAAO—D-amino acid oxidase. The sharo arrow means activation of the chemical
reaction. The blunt head arrow means inhibition of the chemical reaction.

Riluzole is classified as a glutamate modulator and is used in amyotrophic lateral
sclerosis therapy. Riluzole inhibits the presynaptic glutamate release indirectly and modu-
lates the postsynaptic NMDAR activity. In animal models of early AD, the riluzole-treated
group had better enhanced cognition and a reduced Aβ load compared to the placebo
group in transgenic mice [249,250]. A phase II double-blind RCT of riluzole was completed
to assess the cerebral metabolism and cognitive effect in mild AD. No results have yet
been published [98]. Troriluzole (BHV-4157) is a riluzole derivative, and one phase II
double-blind RCT of troriluzole is continuing to evaluate the cognitive change in patients
with mild to moderate AD [99].

2.4.3. Omega 3 Polyunsaturated Fatty Acid Supplements

Omega 3 polyunsaturated fatty acids include three subtypes: α-linolenic acid (ALA),
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The latter two were de-
rived from fish oil and demonstrated an anti-inflammatory effect against cardiovascular
diseases [251]. In AD mouse models, a supplement of either EPA or DHA showed a
neuroprotective property and improved memory and learning [252]. In MCI patients,
several controlled studies have indicated that omega 3 fatty acid supplements from 3 to
12 months significantly improved cognitive performance over the placebo [253,254]. In
APOE4 carriers, phospholipid DHA dietary supplements had the potential to prevent the
development of AD [255]. A phase II double-blind RCT has been ongoing to evaluate the
effect of the APOE4 genotype and the cognitive efficacy of DHA supplements [101]. In
mild to moderate AD, a phase III RCT of a DHA supplement was evaluated. The 18-month
2 mg DHA supplements administered daily did not rescue the cognitive and functional
decline in the treated group when compared to the placebo group [100]. A recent systematic
review and meta-analysis study suggested that only combined DHA and EPA supplements
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improved certain aspects of cognitive performance in AD patients. No consistent evidence
has supported the therapeutic efficacy in short- or medium-term treatment [256]. A phase
III RCT of icosapent ethyl, an ethyl ester of EPA, is ongoing to evaluate the cognitive and
cerebrovascular effect in cognitively healthy adults at increased risk for AD [102].

2.5. Brain Stimulation

Brain stimulation is proposed as a promising non-pharmacological therapeutic option
for AD [257]. In the field of AD therapy, several brain stimulation methods have been
researched: deep-brain stimulation (DBS), vagus nerve stimulation (VNS), transcranial
magnetic stimulation (TMS), and transcranial electrical stimulation (Figure 3) [258].

Figure 3. The diagram of the brain stimulation devices. (A) Deep-brain stimulation (DBS); (B) invasive vagus nerve
stimulation (iVNS); (C) non-invasive vagus nerve stimulation (nVNS); (D) repetitive transcranial magnetic stimulation
(rTMS); (E) transcranial direct current stimulation (tDCS); (F) transcranial alternating current stimulation (tACS). Created
with BioRender.com. The sharp arrow means the direction of energy flow.

2.5.1. Deep-Brain Stimulation

Deep-brain stimulation is an invasive brain stimulation technique. The surgeon
implants electrodes at a targeted region of the brain and promotes electrical stimulation.
The electrical stimulation is provided by an implantable pulse generator. DBS treatment is
considered an advanced treatment for tremors in patients with Parkinson’s disease [259].

In 2010, a small-size phase I trial of DBS was investigated in six patients with mild
AD. The DBS was placed in the fornix within the hypothalamus. After 12 months of
continuous stimulation, the patients showed reduced cognitive decline and improved
glucose metabolism at the temporoparietal lobe [260]. A phase II double-blind RCT of
forniceal DBS was performed in mild AD patients. No significant difference in cognition
or metabolism was observed between the treated and control groups. Subgroup analysis
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revealed the patients aged 65 or older had slight cognitive improvement, whereas younger
patients demonstrated worsening of cognition after 12-month forniceal DBS treatment [103].
A two-year follow-up of the study reported the same conclusion. The forniceal DBS
treatment had possible benefits in patients aged 65 and older [104]. A larger phase III
multicenter RCT of forniceal DBS is currently underway to evaluate the effectiveness of
cognition in the elderly with mild AD [105].

In addition to the fornix, the nucleus basalis of Meynert (NBM) is also considered a tar-
geted region of DBS. A small-size, double-blind, sham-controlled phase I trial of NBM-DBS
was assessed in patients with mild to moderate AD. At a 12-month follow-up assessment,
two thirds of the patients had improved or stabilized cognitive performance [106]. The
patients who responded to NBM-DBS had the characteristics of a higher baseline cognitive
function and less advanced cortical atrophy [261,262].

2.5.2. Vagus Nerve Stimulation

Vagus nerve stimulation is categorized into invasive and non-invasive methods. With
invasive VNS (iVNS), the surgeon places the electrode at the left side of the tenth cranial
nerve. The electrical stimulation is generated by a connected implanted pulse generator. In-
vasive VNS is approved for treating epilepsy and treatment-resistant depression. In 2002, a
small-size pilot study of iVNS was researched in AD patients for 6 months. After a 3-month
treatment, an estimated 90% of patients showed an improved MMSE performance, and
70% of the patients had better performance on ADAS-Cog. After 6 months of treatment, the
response rate was maintained at 70% in AD patients [107]. The same researchers recruited
more AD patients and followed them up for 12 months. After 12-month iVNS treatment,
an estimated 70% of patients showed stabilized or improved cognitive performance [108].

Non-invasive VNS (nVNS) is a non-invasive intervention. The portable nVNS device
provides electrical stimulation transcutaneously at the ear or neck and indirectly stimulates
the auricular branch of the vagus nerve. Non-invasive VNS has been proven to be effective
in the treatment of cluster headaches and migraines [263]. In the cognitively healthy elderly,
a single session of nVNS improved associative memory in the treated group compared to
the placebo. No serious or long-term adverse effects were reported [264]. The potential of
nVNS in AD treatment has been suggested, but the clinical evidence is still lacking [265].
One double-blind sham-controlled crossover study is underway to evaluate the therapeutic
effect of nVNS in patients with MCI [109].

2.5.3. Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique.
The TMS device produces an electric current through a coil wire, which is encased in plastic
and placed above the patient’s scalp. The process produces a magnetic field across the
cranial tissue and results in electrical stimulation at targeted sites of the brain [266]. The
pulse of TMS can be single or repeated. Compared to single-pulse TMS, repetitive TMS
(rTMS) modulates the cortical activity and promotes after effects beyond the stimulation
period. Different rTMS protocols lead to variant after effects in the brain, with an inhibitory
effect at low-frequency stimulation (≤1 Hz), and excitatory effects at high-frequency stimu-
lation (≥5 Hz) [267]. A high-frequency rTMS protocol at the left dorsolateral prefrontal
cortex (DLPFC) has been approved for treatment-resistant depression therapy in the United
States [268].

High-frequency rTMS at the left DLPFC was also investigated in AD treatment. Three
double-blind RCTs of 10 Hz rTMS were evaluated in MCI patients. Two studies of 2-week
10 Hz rTMS treatment showed a significant improvement in executive function in the
treated group compared to the sham group [110,269]. One study of 4-week 10 Hz rTMS for
evaluation in MCI patients is still recruiting and continuing [111].

The 20 Hz rTMS at the left DLPFC method was researched in studies for AD treatment.
In AD patients, 2-week 20 Hz rTMS treatment led to improved language performance,
and 4-week intervention brought an even greater change and longer-lasting effect [112].
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The 20 Hz rTMS protocol was tested in AD patients with BPSD. Compared to the control
group, which received low-dose antipsychotic medications alone, combined 20 Hz rTMS
and medication resulted in significant improvement in both cognitive functions and BPSD
symptoms after a 4-week treatment [113]. One double-blind RCT of 20 Hz rTMS was tested
in patients with mild to moderate AD patients. The study aimed to evaluate the add-on
effect of rTMS. All the participants received face–name associative memory cognitive
training. After 4 weeks of treatment, the treated group showed better performance in
trained associative memory than the sham group. Combined rTMS and cognitive training
showed a greater benefit than cognitive training alone. The additional improvement was
greater in participants with higher educational levels and cognitive baseline [114]. Another
trial on the add-on effect of high-frequency rTMS was also investigated in AD treatment.
Mild to moderate AD patients undergoing cognitive training received real or sham rTMS
treatment for 4 weeks. Compared to the sham group, the treated group showed better
performance in general cognitive and behavioral functions [115]. Stimulation at the left
DLPFC seems to be the most popular and promising protocol in AD treatment.

Some studies of high-frequency rTMS targeted bilateral DLPFCs. The first study
applied 20 Hz rTMS in patients with different degrees of AD. Following 5-day stimulation,
patients receiving high-frequency rTMS showed cognitive and functional improvement in
mild to moderate AD when compared to the sham group [117]. Another pilot crossover
study of 4-week 20 Hz rTMS was evaluated in mild to moderate AD patients. The results
revealed a stronger improvement in general cognition during the treatment phase than the
sham phase [118]. Few studies have focused on the 5 Hz rTMS protocol in AD therapy.
One clinical trial of 5 Hz rTMS compared the efficacy of different protocols in AD patients:
simple (stimulation at left DLPFC) versus complex (stimulation at six other cortical sites).
The results suggested that a 3-week intervention promoted both cognitive and functional
improvement in both groups, and that there was no difference between the simple and
complex protocols [116].

High-frequency rTMS is also performed at different targeted sites in the brain, such as
the inferior frontal gyrus (IFG), superior temporal gyrus (STG), and parietal and posterior
temporal lobes. One crossover RCT evaluated the clinical benefit of 10 Hz rTMS at the right
IFG in MCI patients. All the patients received two sessions of stimulation in a random
order: right IFG (active site), and right vertex (control site). The results indicated that
high-frequency stimulation at the right IFG enhanced the improvement in attention and
psychomotor speed, while the stimulation of the vertex showed a significant cognitive
change [119]. Another crossover study tested the efficacy of high-frequency rTMS in
patients with MCI and mild to moderate AD. Dementia patients had a pattern of gray matter
atrophy, especially at the bilateral IFG, putamen, and cerebellum. The stimulation lasted
a total of three sessions at 10 Hz over three regions in a random order: right IFG (active
site), right STG (active site), and right vertex (control site). The stimulation of the right IFG
and right STG revealed cognitive benefits, especially in attention and psychomotor speed
performance. Patients with a greater gray matter volume reduction gained more benefit
from the rTMS intervention [120]. The efficacy of high-frequency rTMS of the left parietal
lobe (precuneus) was tested in MCI patients. The 20 Hz rTMS protocol was conducted
for 2 weeks. The stimulation of the left parietal lobe revealed greater clinical benefits in
episodic memory in the treated group than in the sham group, but the effect was not noted
in other cognitive domains. Analysis of rTMS combined with electroencephalography
uncovered the phenomenon of modulation of brain connectivity [121]. One double-blind
RCT of 20 Hz rTMS targeted the region of bilateral posterior temporal regions of the brains
of AD individuals. The study included mild to moderate AD patients and performed
6-week 20 Hz stimulation in the treated group and sham stimulation in the control group.
The results showed that rTMS had advantages in the treatment of mild AD, with better
performance in memory and language in the treated group than the sham group. However,
the cognitive benefit was minimal or insignificant in moderate AD patients [122].
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The low-frequency rTMS protocol has been less researched than the high-frequency
protocol with regard to AD treatment. One randomized sham-controlled trial of 1 Hz rTMS
at DLPFCs was applied in healthy individuals and MCI patients. The participants received
two sessions on the same day, either at the right or left DLPFC. The results indicated
that low-frequency rTMS enhanced recognition memory in both the healthy and MCI
groups. Inhibition of the right DLPFC may modulate the excitability of the contralateral
hemisphere [123]. In AD, one clinical study compared the efficacy of high-frequency (20 Hz)
and low-frequency (1 Hz) rTMS targeting bilateral DLPFCs. The therapeutic efficacy of
low-frequency rTMS was demonstrated to be less effective than high-frequency rTMS after
a 5-day intervention [117].

A recent meta-analysis concluded that both high-frequency and low-frequency rTMS re-
sulted in cognitive improvement in AD patients, with medium to large effect sizes [270]. The af-
ter effect of five or more sessions of rTMS could last from a few weeks to
4 months [114–118,270,271].

2.5.4. Transcranial Electrical Stimulation

Transcranial electrical stimulation involves passing a weak electrical current (1–2 mA)
among two or more electrodes on the subject’s scalp. The electrode positioning could be
based on the international 10–20 electrode placement system, the neuronavigation system,
or physiology-based placement. Transcranial electrical stimulation comes in two major
forms: transcranial direct current stimulation (tDCS) and transcranial alternating current
stimulation (tACS). In tDCS, the electrodes are divided into anodal or cathodal sites, while
in tACS, the electrodes are active or reference sites. The applied electrical current is direct
in tDCS but sinusoidal in tACS [272,273].

Transcranial direct current stimulation is the most common choice of transcranial
electrical stimulation in treating AD. Studies into tDCS in AD have focused on several
targeted regions: left DLPFC, left temporal lobe, and temporoparietal lobe [274]. In 2009,
a study of anodal tDCS at the left DLPFC was first performed in patients with mild to
moderate AD. The participants received true stimulation with an intensity of 2 mA for
30 min, and sham stimulation was conventionally set as 30 s. The results indicated that
a single session of left DLPFC stimulation led to improved recognition memory [124].
The 2 mA tDCS protocol over the left DLPFC was tested in AD patients with repeated
sessions. One double-blind RCT of tDCS included mild to moderate AD patients. The
participants were classified into anodal tDCS, cathodal tDCS, and sham tDCS groups. The
true stimulation was 25 min long. After 10 sessions, the active treatment group showed
a higher MMSE score than the sham group, and the cognitive benefit was similar in the
anodal and cathodal tDCS groups [125]. One double-blind phase II RCT of the 2 mA anodal
tDCS protocol was tested in moderate AD patients with apathy. Each true session persisted
for 20 min, and the total session number was six times. However, the intervention of
tDCS showed no significant effect regarding cognitive, behavioral, or apathy symptoms
in moderate AD. The study suggested that more than six sessions may promote clinical
change in patients with moderate AD [126]. One recent study of at-home tDCS was applied
in patients with early AD. The 2 mA tDCS protocol was applied daily for 6 months with
30-min sessions. Compared to the sham group, the treated group showed improved or
stabilized cognition, with improvement in global and language functions and a decreased
reduction in executive function [127].

In MCI patients, the anodal tDCS protocol showed clinical benefits in cognition. One
double-blind RCT of 1.5 mA anodal tDCS was evaluated in MCI treatment. Each true
session was 15 min, while sham stimulation was 10 s each session. This study indicated
that a single session of tDCS enhanced the free recall and recognition of memory in the
treated group compared to the sham group [128]. One pilot study compared the efficacy
between 2 mA anodal tDCS and cognitive stimulation in MCI patients. The study also
aimed to determine the optimal frequency of tDCS in MCI treatment. Each true session
lasted for 30 min, with a variance of one to five sessions in the treatment phase. The results
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revealed that tDCS treatment resulted in a significant but mild improvement in some
cognitive aspects, especially in selective attention, processing speed, and planning ability
tasks. The optimal frequency of tDCS was three sessions per week. The conclusion should
be warranted due to the session’s variability [129].

Several studies of tDCS targeted the region of the left parietal lobe. In 2009, the anodal
tDCS at the left parietal region was tested in patients with mild to moderate AD. Single-
session 30-min 2 mA anodal tDCS promoted superior improved recognition memory in
the treated group compared to the sham group [124]. One study of 2 mA anodal tDCS over
the left temporal area was assessed in patients with mild to moderate AD. The participants
received six 30-min sessions. Active tDCS stimulation did not result in a significant change
in verbal memory function [130].

The other targeted site of tDCS was the bilateral temporoparietal lobe. In 2008, the
1.5 mA tDCS protocol of the bilateral temporoparietal region was first tested in patients
with mild AD. All participants received one sham stimulation and two true stimulations
(anodal and cantonal) in a random order. Each true session was performed for 15 min,
while the sham stimulation lasted only 10 s. The subgroup analysis showed that the anodal
tDCS group gained improved word recognition, but the cathodal tDCS group experienced
cognitive worsening instead [131]. One trial of 2 mA anodal tDCS at the bilateral temporal
areas was evaluated in patients with mild to moderate AD. The participants received five
30-min sessions. The anodal stimulation enhanced the visual recognition memory in the
treated group compared to the sham group [132]. Another trial of 2 mA anodal tDCS
over the bilateral temporal areas was investigated with regard to cognitive and biological
changes in patients with early AD. The patients received ten 20-min sessions. Significantly
improved cognitive performance and increased total serum Aβ levels were observed in the
treated group, but there was no change in tau or lipid peroxidase [133]. One recent study
assessed the short-term and long-term effects of 2 mA tDCS over the left temporoparietal
region in the treatment of advanced AD. The true stimulation was administrated for 20 min
daily, for a total of 10 times. The sham stimulation was 10 s each time. At one month, the
tDCS intervention stabilized the neuropsychological performance in the treated group,
while the sham group showed a significant decline. The treated group continued with the
frequency of tDCS for five sessions per month for 8 months. The protective effect of tDCS
was maintained in long-term follow-up [134]. The after effect of tDCS generally lasted for
at least 4 weeks [128,132,134].

tACS is a choice among transcranial brain stimulations. Some small trials have
indicated that tACS may enhance specific cognitive functions in cognitively healthy popu-
lations [275,276]. The evidence of the therapeutic effect of tACS in AD patients is limited.
In 2020, one pilot study of tACS over the left DLPFC was conducted in patients with MCI
and mild to moderate AD. The study aimed to investigate the additional cognitive effect of
combined tDCS in patients undergoing brain exercises. The stimulation was scheduled as
sinusoidal waveforms at the frequency of 40 Hz with an intensity of 1.5 mA, from −0.75
to +0.75 mA. The treated group received two 30-min sessions per day, with 40 sessions in
total. At a 4-week follow-up assessment, the tACS group showed a slight improvement in
cognitive performance, while the non-tACS group demonstrated slight cognitive decline
instead. The study showed that tACS had potential in AD treatment, and that the after
effect may be maintained for 4 weeks [135]. One crossover RCT of 40 Hz tACS at 3 mA in
AD treatment has been completed, in which the targeted region of tACS was the superior
parietal cortex. The study was completed, but the results have not been published [136].
Several clinical trials of 40 Hz tACS are underway in AD treatment [137,277].

3. Discussion

In this review, we described the development of AD therapy during the past two
decades, identifying five mainstream categories: anti-Aβ therapy, anti-tau therapy, anti-
neuroinflammatory therapy, neuroprotective agents, and brain stimulation. Initially, the
pathological markers Aβ and tau were the main targets of therapy. Immunotherapies be-
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came the most popular method among the two fields. The target of intervention gradually
shifted from specific pathological markers to complex mechanisms, such as neuroinflam-
matory and neurodegenerative processes. Compared to the pharmacological field, non-
pharmacological interventions went even further. Among brain stimulation approaches,
non-invasive methods have been more tolerable than invasive techniques, and the most
commonly studied methods were rTMS and tDCS. rTMS and tDCS showed convincing
outcomes in cognitive enhancement and maintenance. Non-invasive brain stimulations
have the potential to be the next trend in AD treatment.

Drug repositioning is another potential method for accelerating pharmacological
development. Drug repositioning has many advantages. First, repositioning existing drugs
to new therapeutic uses is less expensive than developing a new drug. Second, both the
safety and tolerance of existing drugs have already been investigated. It is easier for these
drugs to achieve advanced clinical stages to evaluate the therapeutic effect in AD. Some
potential drugs were proposed in this way, such as lithium, metformin, levetiracetam, and
sodium benzoate. The challenges lie in the choice of existing drugs, which depends on our
understanding of AD pathogenesis.

Precision medicine is another issue. Some patients gained more clinical benefits from a
specific intervention. For example, sodium benzoate showed more cognitive improvement
in female patients than in males. Phospholipid DHA supplements showed a preventive
effect on AD in APOE4 carriers. Most of the AD patients who responded to rTMS and
tDCS were in the early stage of AD. The etiology of AD is considered multifactorial, which
may be distinct in each individual. Choosing the appropriate interventions according
to the characteristics of AD patients can help to achieve a therapeutic effect as soon as
possible and minimize the harm and adverse effects of treatment. Designing personalized
interventions is one of the most critical milestones of further AD treatment.

4. Future Research Direction

In pharmacological interventions, researching the potential agents is still a challenge.
AD is a multifactorial disorder and involves several pathogenic mechanisms: misfolded
protein aggregation, neuroinflammatory process, neurodegeneration, and insulin dysregu-
lation. Drug repositioning is a possible effective method. The potential candidates include
anti-inflammatory agents, neuroprotective agents, and antidiabetic agents. As biophysical
and structural biology experimental approaches progress, the pathophysiological mecha-
nisms of Aβ and tau are being uncovered. The knowledge of AD pathogenesis helps us to
find potential compounds or to design further immunotherapies.

In non-pharmacological interventions, standardizing the settings of the protocol is the
current challenge. For example, to determine the protocol of rTMS, the parameters include
the targeted sites, frequency, duration of each session, and schedule. The same rTMS
protocol may show inconsistent efficacy in patients at different stages of AD. Designing
several standardized protocols according to the disease severity is a possible strategy in
the future.

Selecting responsive subgroups is important in both pharmacological and non-pharma-
cological interventions. The characteristics of patients are involved in designing the treat-
ment, including age, gender, genetic factors, medical diseases, environmental factors, and
lifestyles. Advances in machine learning allow us to deal with complex factors and build
models which predict the optimal therapeutic regimens for AD patients. Further research
is required to uncover the relationship between patients’ characteristics and response to
a specific treatment. With further research efforts, the practice of precision medicine is
possible and anticipated.
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