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Abstract: Inherited cardiomyopathies are among the major causes of heart failure and associated
with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of
various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and
animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement
of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients
with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition.
Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-
linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad
spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of
cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we
will summarise the current strategies and examples of using an iPSC-based model to study different
types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from
a female patient with heterozygous Danon disease and drug screening will be demonstrated by
our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also
be addressed.

Keywords: X-linked cardiomyopathy; patient-specific induced pluripotent stem cells; disease mod-
elling; drug screening

1. Introduction

Cardiomyopathy is a highly heterogeneous myocardial disease that may contribute
to the development of heart failure. In general, cardiomyopathies can be inherited or
acquired. To date, more than 70 genes have been identified that are associated with various
forms of cardiomyopathies, some of which (Table 1) are X-linked. Due to the substantial
differences in the cardiac physiology of humans and rodents, the establishment of a disease
model for X-linked cardiomyopathy has been difficult. For example, rodents have a rapid
heart rate (300–800 bpm, compared with 60–100 bpm in humans) and their hearts have
adapted to this with rapid systolic and diastolic filling [1]. Consequently, the action
potentials of mice cardiomyocytes lack the plateau phase containing a sustained calcium
release [2]. In addition, a recent study also showed that rodents lack the delayed rectifier
potassium currents and show different responses to ion channel blockers compared with
large animals and humans [3]. These cellular and electrophysiological differences may limit
the usefulness of rodent models in studying X-linked cardiomyopathy [4]. With technical
advancements in cellular reprogramming, adult somatic cells can now be reprogrammed
into pluripotent stem cells [5–7], and such induced pluripotent stem cells (iPSCs) can be
further differentiated into cardiomyocytes for disease modelling and drug testing [8]. To
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date, various studies have evaluated the possibility of using patient-specific iPSCs to model
different forms of X-linked cardiomyopathy. In addition, there are some gender-specific
differences in an iPSC model of X-linked cardiomyopathies. Apart from the different
transmission pattern, the phenotypic expression in heterozygous females is usually more
heterogeneous due to random X-chromosome inactivation. Due to the presence of a
population of wildtype-like cells in the myocardium, heterozygous females with an X-
linked dominant disorder (e.g., Danon disease) usually show a later disease onset and
less severe symptoms than their male counterparts [9]. Disease phenotypes may also be
observed in the heterozygous female carrying an X-linked recessive gene. Strategies, such
as X-chromosome re-activation, have been demonstrated on iPSC platforms to solve these
issues. In this review, the current strategies and examples of using patient-specific iPSC
technology in modelling X-linked cardiomyopathies will be discussed. Our preliminary
data using isogenic iPSC lines for drug screening will also be presented. Finally, the
limitations of an iPSC modelling platform will be addressed.

Table 1. X-linked genes that cause cardiomyopathy.

Disease Gene Type of Cardiomyopathy Extra-Cardiac Manifestations

Duchenne muscular dystrophy DMD Dilated [10] Muscle weakness [11]
Growth delay [12]

Fabry disease GLA Hypertrophic [13]
Neuropathic pain
Renal impairment
Angiokeratoma [14]

Familial cardiac filaminopathy FLNA
Dilated [15] Periventricular heterotopia [16]
Hypertrophic [17]
Both dilated and hypertrophic [18]

Danon disease LAMP2

Hypertrophic [19]
Skeletal myopathy
Retinopathy [20]
Cognitive impairment [21]

Dilated [22]
Left-ventricular non-compaction [23]

Rett syndrome MECP2 Arrhythmogenic [24]

Extrapyramidal motor
dysfunction [25]
Epilepsy [26]
Bone fracture [27]

X-linked myotubular myopathy MTM1 Dilated [28] Respiratory failure [29]
Muscle weakness

2. The Advantages of an iPSC-Based Model

Most stem cells are of embryonic origin or derived from adult tissues with the ability
to proliferate (e.g., bone marrow). These stem cells differentiate into a myriad of cell types
but do not undergo a de-differentiation process [30]. Induced pluripotent stem cells can
be reprogrammed directly from terminally differentiated somatic cells by over-expression
of the four transcription factors (Oct4, Sox2, Klf4, and cMyc). The technology was first
introduced in 2006 by Yamanaka et al. [7], and since then, iPSCs derived from patients
or healthy individuals have been widely used for modelling various inherited disorders.
Research in regenerative medicine is possible because of the ability of iPSCs to prolifer-
ate indefinitely and differentiate into various cell types, such as neurons, hepatocytes,
and cardiomyocytes.

Since iPSCs are human in origin and pluripotent, they have enabled the development
of patient-specific cell models to recapitulate the pathophysiology of human diseases [8].
This facilitates the study of inherited diseases, since the derived iPSCs and their differen-
tiated cells will contain the same genomic profile as their patient somatic cell origin [31].
Additionally, novel drugs specific to the patient’s disease can be screened and tested on
these disease-expressing cell types. For example, iPSC-derived cardiomyocytes can be
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used to reproduce the phenotype of autophagic dysfunction in cardiomyopathy caused by
LAMP2 mutation [32]; this also allows the identification of novel drugs that can reactivate
the silenced X-chromosome.

An iPSC-based model has multiple advantages compared to the traditional cell lines.
The traditional primary cell lines were difficult to establish from patients, especially for
cell types that were difficult to access clinically. For instance, there are limited scenarios
where human adult cardiomyocytes can be isolated, so most cultured cardiomyocytes have
been isolated from neonatal cardiomyocytes [33]. Nonetheless neonatal cardiomyocytes
express an electrophysiological and proteomics profile that differs from that of their adult
counterparts. The iPSC-based model enables the derivation of a broad range of cell types
from a readily accessible somatic cell source, such as blood cells and skin fibroblasts [34].

In the early years, a disease iPSC line would be paired with a control cell line derived
from an individual without the disease. Nonetheless, with the advancement of gene-
editing techniques, iPSC models can now be genetically manipulated to study the disease
phenotype [35]. The development of the CRISPR-Cas9 system has enabled precise and
specific gene-editing and epigenetic modulations [36,37]. Along with the expandable
self-renewal features of iPSCs, the CRISPR-Cas9 system allows the induction of genetic
changes in the targeted cell line, such as gene knockout/knock-in, in order to control gene
expression [38]. In disease modelling, knockout of the disease-causing gene facilitates the
establishment of an isogenic control cell line differing only in the disease-relevant gene [39].
Gene-editing can also introduce disease-causing mutations to a normal cell line to study the
disease phenotype. Consequently, diverse genetically defective diseases can be modelled
and help in the understanding of multiple genetic conditions [40].

The unique features of iPSCs provide many potential opportunities in disease mod-
elling. An iPSC-based system allows for the development of a 3D platform to form self-
organised organoids with intensive cell–cell interactions. These iPSC-derived organoids
form primary tissue-like clumps that contain multiple cell types similar to their natural
human counterpart [41]. This has advantages over the 2D culture platform, since the 3D
organoids are expected to be more mature [42]. Apart from forming organoids, iPSCs
also enable the formation of human–animal chimaera models via xenotransplantation.
Engrafted cells can interact with the host microenvironment, replicating the diseased or-
gan’s typical environment. Examples include the development of solid organ and neural
chimaeras in order to study different diseases and model conditions, such as familial
hypercholesterolemia and autistic spectrum disorders (ASD) [43,44].

3. The Procedures for Producing iPSCs

The fundamental principle of iPSC production is to express the reprogramming
Yamanaka factors (Oct3/4, Sox2, c-Myc, and Klf4) in cells in order to drive the transcriptome
into the pluripotent stage. Theoretically, iPSCs can be reprogrammed from any somatic
cells with a complete genome. Although fibroblasts derived from skin biopsy have been
widely used to generate iPSCs, collection is invasive and painful; thus, various alternatives
are now available, including peripheral blood mononuclear cells (PBMC) from a blood
sample and renal epithelial cells from urine [45–48].

The methods of delivering the factors into the somatic cells dictate the outcomes of
the iPSCs. The first method involves the use of a retrovirus to transduce fibroblasts, but
viral integration has been a huge issue [7]. Integration-free systems include either using
the non-integrating virus, excisable transduction system, or the delivery of recombinant
reprogramming proteins. Using lentiviral vectors instead of the retrovirus results in a
higher efficiency of reprogramming with fewer viral integrations [49]. Such a simpler
approach eliminates the risk of the possible integration of the virus genes into the host
genome, so the resultant iPSC lines are more clinically relevant. Although integration-
free systems can successfully reprogram somatic cells into iPSCs with equal quality, they
are less efficient than the conventional integrating vectors, owing to the less sustainable
reprogramming expression.
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The iPSC was traditionally cultured on serum-dependent feeder layers comprised
of either mouse or human fibroblasts [45]. Nonetheless the use of animal serum raised
concerns about possible xeno-contamination [50]. Over time, iPSCs have been cultured in
feeder-free conditions using components such as Matrigel, Geltrex, and other extracellular
matrix proteins. Most iPSCs are now cultured in Essential 8™ or MTeSR™ medium;
both systems maintain iPSC pluripotency after many passages and retain the ability to
differentiate without causing any chromosomal aberrations [51].

Refering to X-linked disorders, for male patients with only one X-chromosome in the
genome, the iPSC line can usually be routinely generated and the cell lines produced will
contain the mutation. Nevertheless, if the patient is a heterozygous female, due to the
mosaic patten of X-chromosome inactivation, the generation of iPSCs with a specific active
allele is not guaranteed. Based on our observation that the X-chromosome inactivation
status remains unchanged during reprogramming, one should consider separating cells
(skin fibroblasts or PBMCs) with a different X-chromosome inactivation status prior to
transduction of the reprogramming factors. This can be achieved by diluting the cells to
single cells and then checking the expression of the wildtype or mutant allele of interest
using immunostaining or mRNA-based methods. (Figure 1). Using this approach, we
created an isogenic pair of iPSCs that were genetically identical, differing only in their
expression of the specific LAMP2 allele, and used it to model Danon disease [7].

Figure 1. Generation of isogenic induced pluripotent stem cells (iPSCs) with distinctive
X-chromosome inactivation status from the heterozygous female with X-linked mutation.

4. Differentiation of Established iPSC Lines to Cardiomyocytes

Differentiation protocols of established iPSC lines to cardiomyocytes have progressed
from early differentiation of only 8–22% efficiency to current methods that achieve a high
yield of cardiac troponin-T positive cells [52,53]. Earlier approaches included the use of
embryoid bodies with serum-containing media, but their efficiency was very low [52]. Later
efficient protocols included cardiac induction using cytokines with one of three established
methods: suspended embryoid bodies, forced aggregation, or cell monolayer [54]. The
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first stage of cardiac differentiation mimics embryonic signals to induce mesodermal
development [55–59], and the second step is cardiac specification [55,60–62]. For the
maintenance of differentiated cardiomyocytes, most efficient protocols consist of basal
medium RPMI 1640 supplemented with B27 serum or fetal bovine serum (FBS) at various
concentrations [63–65]. Isolation of cardiomyocytes can be easily achieved using a glucose-
depleted culture medium containing abundant lactate, since other cell types are not capable
of using lactate for energy production. Another method of cardiomyocyte isolation includes
cell sorting using antibodies against cardiomyocyte cell surface markers, such as SIRPa
and VCAM1 [66–69].

The current differentiation protocol generates a heterogeneous group of cardiomy-
ocytes. The addition of specific molecules has been shown to promote or inhibit certain
cardiomyocyte subtypes in order to generate more specific disease models and drug testing
platforms [70]. Studies show that the induction of appropriate mesoderm with different
concentrations of small molecules to activate or inhibit certain signalling pathways specifi-
cally yields atrial, ventricular, or pacemaker-type cardiomyocytes [71–78]. Cardiomyocyte
differentiation kits are now commercially available. Although their components may vary,
they are convenient alternatives for laboratories that are routinely performing cardiac
differentiation. For example, we are using the GibcoTM PSC Cardiomyocyte Differentiation
Kit from Thermo Fisher Scientific with a differentiation efficiency of 30–90%, depending on
the genetic background of the iPSCs. For wildtype iPSCs, we consistently yield over 80%
of cTNT positive cells (Figure 2).

Figure 2. Differentiation of iPSCs into cardiomyocytes using commercially available kits from Thermo Fisher scientific:
(A) the iPSCs were cultured as a monolayer in differentiation medium A (day 0-day 2), medium B (day 2-day 4), and car-
diomyocyte maintenance medium (from day 4). Beating clusters usually can be observed by day 8, scale bar: 200 µm; (B) flow
cytometry analysis indicates that the cardiac troponin-T (cTnT)-SERCA2-double positive cells constitute approximately
84%; (C) immunostaining of the cardiomyocytes dissociated from the beating clusters, scale bar: 50 µm.

5. Functional Characterisation of Cardiomyocytes Derived from iPSCs

Depending on the gene involved, the effect of a specific mutation on the cardiac
phenotype may require individual evaluation. In general, the characterisation of patient-
specific iPSC-derived cardiomyocytes should involve the structural organisation and
electrophysiological and calcium handling properties, as well as contractile function.
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5.1. Characterisation of Structural Properties

Cardiomyopathy patients usually exhibit characteristic changes in the heart tissue.
For example, many X-linked mutations lead to hypertrophic phenotypes [13,17]. Nonethe-
less, it should be noted that iPSC-derived cardiomyocytes are usually irregular in shape.
Although not many X-linked cardiomyopathy-associated genes are directly involved in
cytoskeleton protein production, many mutations can precipitate disruption of the cy-
toskeleton organisation as a secondary effect [79]. As such, the examination of sarcomeric
protein organisation may help to evaluate the pathophysiological effects of different mu-
tations. Immunofluorescent microscopy can be used to identify pathological changes,
such as disorganised myofilaments, by staining with antibodies specific to the sarcomeric
proteins (e.g., sarcomeric α-actinin and cardiac-troponin-T) [32]. Electron microscopy with
a resolution power of 50–200 pm can also identify phenotypic changes at an ultra-structural
level [80]. Abnormalities in membranous structures, as well as glycogen granule accumula-
tion, can be revealed, and are extremely useful in the evaluation of cardiac defects resulting
from protein aggregation, autophagic dysfunction (Danon disease), and dysregulated
intracellular storage (Danon disease and Fabry disease).

5.2. Characterisation of Electrophysiological Properties

Although no ion channel-encoding genes are located on the X-chromosome, mutations
in X-linked genes, such as MeCP2 [81], may indirectly affect cardiac electrophysiology; as
such, it is essential to evaluate changes in electrophysiological properties in iPSC-derived
cardiomyocytes when modelling X-linked cardiomyopathy. Patch clamp analysis has been
used routinely to record the physiological properties of neurons and cardiomyocytes [82].
This method allows for the real-time measurement of changes in the membrane potential or
electrical current of a single cell, a technique that requires great skill and is labour intensive
and time consuming. Furthermore, since patch-clamp analysis works only on a single cell,
it may not reveal the phenotypes related to conduction abnormality [83].

Multielectrode arrays (MEA) analysis is another means of investigating the electro-
physiology of cardiomyocytes. It enables the investigation of the mutations that induce
conduction system defects [84]. By culturing a monolayer of iPSC-derived cardiomy-
ocytes on the MEA plate, voltage changes due to depolarisation and repolarisation of
cardiomyocytes across the surface can be simultaneously recorded to reveal the action
potential conduction velocity [85]. As well as MEA, optical mapping (OM) can be used to
study disease phenotypes associated with propagation abnormalities [86]. Although this
method was developed to visualise myocardial infarction-induced heart block in isolated
animal hearts, it can be modified to record the conduction velocity across the monolayers
of iPSC-derived cardiomyocytes (Figure 3A). Unlike the MEA system, the OM system
does not directly record the voltage changes with electrodes; instead, a voltage-sensitive
fluorochrome (e.g., Di-8-ANEPPS) is used as the voltage indicator to provide a highly
sensitive recording of voltage changes across the cardiomyocytes (Figure 3B).

5.3. Characterisation of the Calcium Handling Properties

During excitation–contraction coupling, the release and reuptake of sarcomeric cal-
cium relays the electric signalling and the consequent contraction of cardiomyocytes.
Failure in the regulation or handling of intracellular calcium may significantly compromise
cardiac function or lead to cardiomyocyte death [87]. Again, mutations in X-linked genes,
such as LAMP2, can indirectly alter intracellular calcium handling [32]; thus, the study of
intracellular calcium handling is important to understand the pathophysiology of X-linked
cardiomyopathies. Currently, the most widely used method to study intracellular calcium
handling involves the use of calcium-sensing fluorochromes (e.g., Fura-2-AM) to trace
the intracellular calcium transient. Upon electrical stimulation, the release of intracellular
calcium is indicated by the fluorescent emission that is recorded with an ultra-fast and
sensitive camera [81].
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Figure 3. MEA and optical mapping for studying the electrophysiology of the iPSC-derived cardiomyocytes: (A) micro-
electrode array (MEA) analysis for evaluating the field potential changes across the monolayer surface of iPSC-derived
cardiomyocytes; (B) optical mapping-based methods for evaluating the changes in membrane potentials of a single
iPSC-derived cardiomyocyte. EAD: early after depolarisation.

5.4. Characterisations of Contraction Properties

Measurement of the contractile property of an iPSC-derived cardiomyocyte is a direct
indication of the effects of a mutation on cardiac function [88]. This is especially important
when evaluating the effects of mutations in the genes encoding cytoskeleton networks (e.g.,
FLNA). Contractile function can be evaluated by different methods. The IonOptix cardiomy-
ocyte contraction system allows for a high-speed recording (1000 hz) of the shortening
and re-lengthening of a single cardiomyocyte (Figure 4). Nevertheless, since iPSC-derived
cardiomyocytes are usually of irregular shape and contract multi-directionally, some labo-
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ratories may prefer to measure the contractile force generated during the contraction of the
iPSC-derived cardiomyocyte with anatomic force microscopy [89].

Figure 4. IonOptix recording of the change in cell length during contraction.

6. Strategies for Using iPSC-Based Models for Disease Modelling and Drug Testing

The iPSC-derived cardiomyocyte-based model is a simple, reproducible, and econom-
ically efficient platform for disease modelling and drug testing [90]. The iPSC-derived
cardiomyocytes demonstrate characteristic electrophysiological functions and pharmaco-
logical responsiveness comparable to primary cardiomyocytes, and thus have been used
extensively for disease modelling and drug testing (Tables 2 and 3) [61]. Patient-specific
iPSCs have been used to reproduce a myriad of cardiomyopathy phenotypes, including
long QT syndrome, Brugada syndrome, and familial dilated cardiomyopathy [91–93].
The electrophysiological indices of different ion channel blockers have been assessed
for their antiarrhythmic properties and proarrhythmic risks using an aniPSC-derived
cardiomyocyte-based platform using a multi-electrode array system [94–96]. Precision
medicine, such as gender and population-specific differences in drug responses, can also
be tested with iPSC-derived cardiomyocytes [97].

Sub-population-specific cardiomyocytes can be used for disease modelling and drug
testing in pathology involving specific subtypes only [98]. Atrial-selective pharmacology is
a potential means to treat atrial fibrillation with fewer side effects; drugs specific to atrial
ion channels have been shown to reduce early repolarisation of atrial but not ventricular
cardiomyocytes [99]. Atrial-specific cardiomyocytes have been used to assess atrial selec-
tivity and efficacy of antiarrhythmic drugs [99,100]. Drug-induced arrhythmia has also
been tested with ventricular-like cardiomyocytes [101].

Traditional two-dimensional cell cultures have limited translational capacity to hu-
mans. Consequently, the development of human cardiac organoid technologies may mimic
the tissue microenvironment and increase confidence in translatability in drug screening
and disease modelling [102]. Some 3D cultures show a more mature electrophysiological
function, comparable to the normal adult myocardium [103–105]. A 3D model from a
patient-derived iPSC for cardio-facio-cutaneous syndrome demonstrated hypertrophic
cardiomyopathy-related disease phenotypes in cardiac tissues that could not be shown
with 2D cultures [106]. Other conditions, such as Barth syndrome, inherited dilated car-
diomyopathy, and arrhythmia, have also been modelled using 3D organoids [107–109]. An
iPSC-derived 3D human engineered cardiac tissue model has also been used to study the
potential of gene therapy in restoring the dystrophin expression and mechanical contraction
force in DMD [110].
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Furthermore, iPSC-derived cardiomyocyte-based cardiac repair is a promising treat-
ment for the injured heart. Allogenic transplantation of iPSC-derived cardiomyocytes
has been shown to improve cardiac contractile function and attenuate ventricular dilation
in monkeys, mice, and rats with myocardial infarction, without inducing immune rejec-
tion [111–113]. Infarct size and apoptosis have both been reported to be reduced with the
transplantation of patches of iPSC-derived cardiomyocytes that have also been shown to
have additional cytoprotective and angiogenesis effects in order to improve the survival
of damaged myocardium [114,115]. The improved cardiac function is likely due to the
formation of mature grafts by injected iPSC-CMs that continuously express cardiac markers
and sarcomere structures [116].

Table 2. Application of iPSCs in the investigation of X-linked cardiomyopathies.

Disease Pathophysiological Changes References

Duchenne muscular dystrophy
Express truncated non-functional dystrophin protein, disrupted
myofibrils, calcium overloads, disrupted membrane fragility, increased
DAD and OPPs

[7,117–120]

Fabry disease
Gb3 accumulation, deficient enzyme, high ANP expression
Decreased contractility, cellular hypertrophy, disturbed ion channel
electrical currents, peripheral displacement of myofibrils

[121–123]

Danon disease
Deficiency of LAMP2, accumulation of autophagy materials, increased
mitochondrial oxidative stress, increased apoptosis, altered metabolism,
impaired contractile function, reduced calcium transients

[32,124,125]

Rett syndrome

Decreased soma size, fewer glutamatergic synapses, reduced spine
density, altered calcium signalling and electrophysiological defects,
decreased axon outgrowth, dendritic morphogenesis
Changes in exosome protein cargo and signalling bioactivity

[124,125]

Table 3. Applications of iPSC-based models for drug testing.

Disease Drug/Treatment Tested References

Duchenne muscluar dystrophy Proteasome inhibitors, polaxamer188, human artificial chromosomes [7,81,89]
Fabry disease glucosylceramide synthase inhibitor [126]
Danon disease N-acetylcystein, rotenone, DNA-demethylating drugs [32,127]

Rett syndrome IGF-1, gentamycin, exosomes hstone deacetylase inhibitors,
medhya rasayana [128–131]

6.1. Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is an X-linked condition affecting 19.8 males in
every 100,000 and resulting in progressive muscle wasting [132]. It is caused by a DMD
gene mutation [133]. The DMD gene is located on the short arm of the X-chromosome
and codes for the dystrophin protein. Frame shifting or non-sense mutations of the gene
code for a truncated non-functional dystrophin protein without its cysteine domain [134].
The deficient dystrophin cannot act as a cohesive protein and results in the disaggregation
of dystrophin-associated protein complex (DAPC), ultimately resulting in an impaired
structure and reduced durability of the myofibres [133,135].

Most patients with DMD will ultimately develop dilated cardiomyopathy (DCM),
one of the main causes of DMD-associated mortality [136]. Indeed, DMD-associated DCM
is responsible for 2% of inherited DCM, often resulting in heart failure and ventricular
arrhythmia [137]. It is characterised by inferolateral left ventricle regional contractile
impairment and replacement fibrosis [138]. Its gradual progression with increased muscle
stiffness and ventricular dilation ultimately results in more severe heart failure. The
prognosis of the DMD patient with DCM is poor, with limited therapeutic options [139].
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Several iPSC-based models have been established to recapitulate the pathophysiology
of DMD-associated DCM, including calcium handling changes, impairment of myofibrils,
and membrane fragility. After repeated stretch–contraction cycles, it was observed that the
cell morphology was altered due to rupture of the sarcolemma. Compared with patient-
derived tissues, iPSC models permit investigation of the early-stage pathogenesis of DMD
and the different gene mutations associated with DMD-associated DCM, including ∆ Exon
50, ∆ Exons 45–52, c.5899C>T, and more [81,120,140].

The in vivo model can recapitulate the disease phenotypes and provide a more synop-
tic picture of the pathophysiology. The in vitro cellular models show the molecular changes
observed in the tissues of the DMD patient, including the DMD signature dystrophin
deficiency and the downstream changes, such as increased oxidative stress, impaired au-
tophagy, and immunoproteasome dysregulation [118,140–142]. Studies show that the over-
all ATP production and basal respiration rate are decreased in the disease cell lines [117].
Furthermore, the yes-associated protein (YAP) is also modified due to altered actin stress
fibers, leading to reduced proliferation of the iPSCs-derived cardiomyocytes. Cytosolic
calcium has been found to be overloaded with increased intracellular Ca2+ concentration,
especially after mechanical stretching [118]. Utilising high-throughput methods, muscle
genes and mitochondrial metabolism genes have been identified to be dysregulated from
the somite stage [119].

The molecular pathogenic profile can also be linked to the cardiac cardiomyopathic
and electrophysiologic phenotype observed in affected patients. Patients with DMD-
associated cardiomyopathy frequently suffer supraventricular and ventricular arrhyth-
mias [143]. The diseased cell line has been shown to exhibit slower firing rates and increased
events of delayed after depolarisations (DADs) and oscillatory prepotentials (OPPs). The
length of the repolarisation also increased. This is especially the case in affected males,
due to the increased ICa,L density. This explains the arrhythmic pattern observed in DMD
patients [120].

After identifying the pathophysiological changes, novel drug targets can be identified
to alleviate the disease phenotype. In a study with ∆ exons 49–50, a proteasome inhibitor
was applied to rescue the immunoproteasome dysregulation observed in iPSC-derived
cardiomyocytes [7]. In another study of ∆ exons 45–52, a membrane sealant Polaxamer 188
was able to restore the normal phenotype upon understanding how the damaged mem-
brane could lead to dysregulated mechanosensitive channels [81,144]. Furthermore, the
advancement of gene therapy may also enable the correction of the DMD phenotype. Hu-
man artificial chromosomes (HACs) have been shown to restore the dystrophin expression
level and the normal phenotype [89].

6.2. Fabry Disease

Fabry disease is an X-linked multi-system lysosomal storage disorder with an inci-
dence of around 0.04 to 0.25 per 10,000 males, and a higher incidence for the later-onset
variant [145–147]. The disease mainly affects males, and heterozygous females have a
spectrum of symptoms [148]. The causal mutation in Fabry disease is located at the GLA
site and results in a defect or deficiency in the production of the alpha-galactosidase A
enzyme (a-GAL A). a-GAL A is a lysosomal enzyme responsible for the removal of ter-
minal alpha-galactosyl groups in glycolipids, particularly globotriaosylceramide (Gb3).
Deficiency leads to the consequent accumulation of glycolipids in various tissues [149].
Progressive storage of these glycolipids leads to cellular dysfunction and irreversible dam-
age, resulting in symptoms such as neuropathic pain, left ventricular hypertrophy, renal
impairment, and angiokeratoma [150]. Some patients have the atypical late-onset cardiac
variant of Fabry disease that presents as unexplained left ventricular hypertrophy without
previous symptoms in middle-aged males [151]. Other cardiac manifestations include
coronary insufficiency, valvular involvement, arrhythmia, and atrioventricular conduction
problems [152]. There is no cure for Fabry disease, and the current standard of care is
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enzyme replacement therapy with intravenous administration of synthetic a-GAL A every
other week [153].

Patient iPSC-derived cardiomyocytes can be used to model the disease and screen
potential drugs [154]. Early attempts at modelling with iPSCs from patient fibroblasts gen-
erated a characteristic accumulation of Gb3 and pathological ultrastructural features [155].
Kuramoto Y. et al. [122] further isolated iPSCs from female patients and discovered indi-
vidual clones that demonstrated either deficient or normal enzyme activity, that were then
respectively used as the disease model and the isogenic control. Gb3 accumulation can be
identified by mass spectrometry, and the expression of ANP in diseased iPSCs is increased,
indicative of hypertrophy. Others have also generated iPSC-derived cardiomyocytes with
decreased contractility, cellular hypertrophy, disturbed ion channel electrical currents, and
peripheral displacement of cardiac contractile myofibrils, the typical phenotypic changes
in diseased patients [121,128,156]. Currently, we are working with iPSCs established from
a patient with Fabry disease. In brief, this patient contains a GLA-IVS4–919-G>A muta-
tion with a significantly reduced a-GAL A protein level in the resultant cardiomyocytes
(Figure 5).

Figure 5. Generation of iPSC-derived cardiomyocytes from Fabry disease patient: (A) pedigree analysis of a family
carrying the GLA-IVS4–919 G > A allele; (B) the iPSC line established from non-disease individual and FD-patient 1 were
differentiated into cardiomyocytes and subjected to Western blot analysis; (C) a-GAL enzyme activity of the corresponding
iPSC-derived cardiomyocytes. *: p < 0.05 between the indicated groups, N = 4.

Drug testing with patient iPSC-derived cardiomyocytes is made possible with the
development of high-throughput compound screening [157]. No established data or
drug testing research have been performed, but many studies have demonstrated the
potential of the patient iPSC model for drug testing in Fabry disease. After identification of
pathological phenotypes in mutant iPSCs, candidate drugs can be tested for normalisation
or minimisation of these phenotypic changes and the drug toxicity can be assessed [158,159].
Several molecules, such as interleukin-18 and arachidonate 12/15-lipoxygenase, have
been demonstrated in Fabry iPSC-derived cardiomyocytes to be associated with disease
progression, and respective inhibitors have been proposed to have an adjunctive effect
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with enzyme replacement therapy [123,160]. Future investigations could make use of
an iPSC-based model to test the effectiveness of these inhibitors in the alleviation of
Fabry phenotypes.

6.3. Rett Syndrome

Rett syndrome is a monogenic X-linked dominant neurological disorder affecting 0.44
to 0.72 per 10,000 females aged 2 to 18 years, with similar rates across different races and
ethnicities [126,161,162]. The disease mainly affects females, as mutations in hemizygous
males often lead to embryonic or neonatal death in the first year of life [125]. Females with
typical Rett syndrome initially develop normally after an uneventful full-term delivery but
after several months experience loss of speech, purposeful hand movements, gait abnormal-
ities, postnatal microcephaly, stereotypic hand movements, seizures, autistic features, and
respiratory, cardiac, and nervous system abnormalities. Neurological development arrests
by the age of one [156]. Some patients have atypical Rett syndrome that does not include
all of the classic phenotypes seen in the typical form. Approximately 90% of the typical Rett
syndrome and the milder preserved speech variant are due to a loss-of-function mutation
in the MECP2 gene, located in the long arm of the X-chromosome (Xq28) [163]. The MECP2
gene encodes for methyl-CpG binding protein 2, which is abundantly expressed in the brain
as an epigenetic modulator to control gene expression through DNA methylation [164]. A
minority of patients with atypical Rett syndrome have mutations in the cyclin-dependent
kinase-like 5 (CDKL5), Forkhead box protein G1 (FOXG1), myocyte-specific enhancer factor
2C (MEF2C), and transcription factor 4 (TCF4) genes [165].

Patients with Rett syndrome are at an increased risk of life-threatening cardiac ar-
rhythmia with prolongation of QT corrected interval and alternations of ventricular repo-
larisation with the possibility of sudden unexpected cardiac death [166]. Other cardiac
phenotypes include reduced cardiac vagal tone, sympatho-vagal imbalance, and heart rate
variability [161].

Patient fibroblast-derived iPSCs have been used for disease modelling and drug test-
ing in Rett syndrome. Rett-iPSCs from female patients retained the ability to undergo
X-inactivation and differentiation into neurons. Compared with their wildtype controls,
these diseased iPSC-generated neurons were smaller in size, and had fewer glutamatergic
synapses, reduced spine density, smaller soma size, altered calcium signalling, and elec-
trophysiological defects [128,162]. Diseased iPSC-derived neural cultures also resulted in
changes to exosome protein cargo and signalling bioactivity [129]. The iPSCs generated
from atypical Rett syndrome patients with a CDKL5 mutation exhibited a decrease in axon
outgrowth, dendritic morphogenesis, and synapse formation in diseased neurons [167].

A patient-derived iPSC model can also be used to screen the effects of candidate drugs
by observation of the reversal of Rett disease phenotypes. IGF-1 and gentamicin adminis-
tration have been found to be effective in the partial reversal of Rett-like symptoms in a cell
culture, similar to results in a previously described mouse model [128]. Administration of
control exosomes also rescues neurodevelopmental deficits seen in Rett syndrome iPSC
models [129]. Selective inhibitors of histone deacetylase improved GABAergic circuit dis-
ruption and acetylated a-tubulin defects present in iPSC-derived neurons [130]. Traditional
Indian Medhya Rasayana herbs have also been shown to reverse neurological disorders
when tested in iPSC models [131].

6.4. Danon Disease

Danon disease is an X-linked dominant lethal multi-systemic condition that affects
1–4% of patients with hypertrophic cardiomyopathy [168]. It is caused by the mutation of
the X-linked LAMP2 gene that encodes lysosomal-associated membrane protein 2 (LAMP2).
Deficiency in LAMP2 protein production leads to the failed fusion of autophagosomes
and lysosomes, with the consequent accumulation of glycogen in muscle cells [169]. Male
Danon disease patients manifest with myopathy, retinopathy, cognitive impairment, and
hypertrophic cardiomyopathy (HCM) that ultimately results in sudden death in the absence
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of heart transplantation [170,171]. In heterozygous females, the age of onset of the disease is
15 years later than in males, and they mainly present with cardiac-restricted manifestations,
including cardiomyopathy and arrhythmia [172].

To this end, several Danon disease patient-specific iPSC-based models have been
established. Using this model, we have previously demonstrated that the accumulation of
autophagy materials inside the affected cardiomyocytes is mainly due to the failure to clear
the autophagic cargo, rather than over-activation of the autophagy signalling pathway [32].

In addition, increased mitochondrial oxidative stress, impaired mitophagy flux, and
increased apoptosis have also been observed in iPSC-derived cardiomyocytes carrying the
LAMP2 mutant [173]. This results in the reduced OCR of basal respiration, ATP production,
and maximal respiratory capacity (MRC) in the Danon disease iPSC-derived cardiomy-
ocytes [174]. Treatment of the diseased iPSC-derived cardiomyocytes with antioxidant
N-acetylcysteine has been shown to reduce the level of oxidative stress and alleviate the
mitochondrial fragmentation pattern observed in the diseased cell line. Given the low rate
of ATP generation, Danon disease iPSC-derived cardiomyocytes switched to utilising the
glycolysis pathway to sustain their metabolism [175]. The Danon disease iPSC-derived
cardiomyocytes exhibited downregulation of protein synthesis, potentially originating
from reduced ATP synthesis and increased unfolded protein responses [175,176].

Danon disease iPSC-derived cardiomyocytes also exhibit diseased cardiac phenotypes,
demonstrating an impaired contractile function similar to hypertrophic cardiomyopathy. It
was shown that the contractility was decreased [32], and the contractile force per post was
lower than that of control cell lines. The contractile force has been shown to return to normal
after correction of the LAMP2 mutation (c.247C>T) using the CRISPR-cas9system [174]. The
LAMP2-deficient iPSC-derived cardiomyocytes exhibit a reduced amplitude of intracellular
calcium transient and reduced maximum velocity of calcium release and reuptake. This
is due to the reduced cellular level of calcium handling proteins in the mutant line, such
as sodium–calcium exchanger (NCX1), sacro/endoplasmic reticulum Ca2+-ATPase 2, and
ryanodine receptor 2 (RYR2) [32]. The Danon disease iPSC-CM also demonstrates traits of
heart failure, such as significantly increased expression of ANP and BNP in the diseased
cell line [127].

As the disease is due to phenotypic demonstration of the diseased allele, activating
the previously silenced normal X-chromosome with the wildtype LAMP2 gene will rescue
the diseased phenotype in the heterozygous female Danon disease patient. To prove
this concept, we have created isogenic iPSCs from female Danon disease patients. By
reactivating the wildtype LAMP2 allele by demethylation, we were able to restore LAMP2
protein production and improve the autophagic functions in the affected cells [32].

7. Isogenic iPSCs as a New Platform to Study X-Chromosome Inactivation

As mentioned before, isogenic iPSC-pairs with distinctive phenotypes can now be
generated from a heterozygous female carrying one X-linked wildtype allele and one
X-linked mutant allele. Making use of such a system, we have established an isogenic-iPSC-
based platform to screen chemicals that can activate the silenced X-chromosome. In brief,
as demonstrated previously [32], when the LAMP2-deficient iPSC carrying a wildtype
LAMP2 allele on the silenced X-chromosome was treated with a drug that could reactivate
the silenced X-chromosome, cells started to produce a functional LAMP2 protein that could
be detected by a simple immunoassay (Figure 6). Using this system, we have screened
a library of approximately 300 chemicals and identified several inhibitors of the JAK2
signalling pathway (e.g., LY2784544 and BMS-911543) that can reactivate the genes on the
silenced X-chromosome. This result not only facilitates the development of therapeutic
targets for X-linked disorders, but also reveals the signalling pathways that may govern
the randomised X-chromosome inactivation.
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Figure 6. Application of the iPSCs with a silenced wildtype LAMP2 allele for drug screening: (A) the iPSCs with silenced
LAMP2 allele were cultured on 96-well plates and treated with DiscoveryProbe™ Epigenetics Compound Library (APExBio).
The reactivation of X-chromosomes will be detected using Alexa488-conjugated antibodies specific to human LAMP2;
(B) primary screening results.

8. Limitations

Cardiomyocytes derived from patient-specific iPSCs offer an exclusive and conve-
nient means to model disease phenotypes that are associated with X-linked mutations.
Nonetheless, the functional immaturity of the iPSC-derived cardiomyocytes remains an
important issue to be addressed. As demonstrated earlier by our group, compared with
human ESC-derived cardiomyocytes, human iPSC-derived cardiomyocytes usually exhibit
a reduced calcium handling ability and sarcoplasmic reticulum function [177]. This is
due to the immature nature of the human iPSC-derived cardiomyocytes [178]. Human
iPSC-derived cardiomyocytes display a lack of T-tubules and poor colocalisation of calcium
channels and ryanodine receptors [179]. Therefore, extra attention should be paid when
one considers modelling cardiomyopathies that resulted from the gene mutation that may
affect calcium transients, such as DMD [180]. The immature iPSC-derived cardiomyocytes
also demonstrate some different electrophysiology, cell morphology, and metabolism. As
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such, there is a need to improve the maturity of the iPSC-derived cardiomyocytes; this can
be achieved with a prolonged culturing time [181], physical stimulation [182,183], biochem-
ical stimulation [184], and metabolic alterations [185]. Moreover, since the iPSC-derived
cardiomyocytes area contains a mixed population of atrial, ventricular, and nodal-like cells,
these cells may differ substantially in their electrophysiological properties despite being
genetically identical. Thus, for modelling cardiomyopathies associated with ion channel
abnormalities, one may need to consider the contribution of the different cardiomyocyte
subtypes to the results obtained or derive sub-population specific cardiomyocytes in the
differentiation process. Similarly, when testing the effects of a putative antiarrhythmic
drug, the immature phenotype and mixed cardiomyocyte subtypes should also be taken
into account. Finally, although the use of isogenic iPSCs may help to evaluate the effects
of a particular mutation under the same genetic background, the results may still not be
sufficient to help predict prognosis and disease severity in heterozygous female patients.
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