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Abstract: Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV).
The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA
vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV
proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized
with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice
at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs
followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the
MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed
by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs
injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory
cytokines detected after DNA injection promotes the conversion of MSCs introduced later into
the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration
promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when
administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.

Keywords: mesenchymal stem cells (MSC); DNA immunization; hepatitis C virus (HCV); nonstruc-
tural HCV proteins; immune response; HCV vaccine

1. Introduction

Hepatitis C virus (HCV) is a hepatotropic RNA virus that induces chronic liver
inflammation, fibrosis, and hepatocellular carcinoma. The HCV burden in public health is
estimated at about 71 million people worldwide by the World Health Organization (WHO),
with at least 400,000 people that are dying every year from HCV disease [1]. In up to 80% of
cases, acute hepatitis C transfers into chronic disease, which may be caused by a very high
heterogeneity of the viral genome and the existence of quasispecies, interference of the virus
with innate and adaptive immune response pathways, and the formation of “escape” HCV
variants that are not recognized by the immune system [2,3]. Despite the breakthrough in
the treatment of hepatitis C, it has not yet been possible to determine the exact causes of the
frequent chronization of HCV infection, to identify the features of the immune response that
determine the elimination of the virus in the acute phase of infection, to fully understand
the mechanisms of hepatitis C pathogenesis, or to develop a vaccine. Development of a
vaccine against HCV is considered to be one of the main strategies in eliminating the disease
and reducing public health burden. However, despite decades of research, there is currently
no licensed vaccine against HCV [4]. Effective vaccines can be based on recombinant viral
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proteins or peptides that contain B- and T-cell epitopes, and DNA plasmids or viral vectors
that ensure their expression [4,5]. In case of hepatitis C, it was shown that an effective
vaccine should trigger a potent multiepitope and functional Th1 immune response [6]. DNA
vaccines induce adaptive immune responses, but naked DNA is weakly immunogenic.
Various approaches, including adjuvants, are used to increase the poor immunogenicity of
plasmid DNA. Most commonly used are gene adjuvants that encode signaling molecules,
such as cytokines, chemokines, immune costimulatory molecules, toll-like receptor (TLR)
agonists, and inhibitors of immunosuppressive pathways [7,8]. The spectrum of adjuvants
approved by the FDA for use in vaccines is limited. At the same time, the development of
new adjuvants with different compositions that could affect the magnitude and quality of
the adaptive immune response against specific pathogens is recognized as an important
and urgent task [8,9].

One possible approach to enhancement of the response to DNA constructs containing
viral genes may be the use of mesenchymal stem cells, also referred to as multipotent
mesenchymal stromal cells (MSCs). MSCs have been a focus of recent research, partially
because they are an extraordinary model for investigating the biological mechanisms that
allow a cellular population to generate diverse cell types and because they are a potential
tool in cellular therapies for several clinical applications. MSCs can differentiate into
mesenchymal lineages and secrete cytokines and growth factors with paracrine effects that
favor the regeneration of damaged tissues [10,11]. A number of studies have established
the antifibrotic effect of MSCs in hepatitis [12,13]. According to ClinicalTrials.gov, more
than 680 clinical trials using MSCs are registered for cell therapy of many fields, including
liver diseases (more than 40 trials) [13]. Advances in cell therapy in recent years are
associated with the use of the immunosuppressive properties of MSCs in transplantology,
oncology, and some other areas of medicine, although many issues remain unresolved [14].
Depending on the microenvironment, MSCs can exhibit both immunosuppressive and
immunostimulatory properties [15]. However, the mechanisms of stimulation of the
immune response by MSCs remain unclear and have been studied mostly in vitro in mixed
leukocyte reactions [15,16].

We previously showed that modified MSCs carrying the genes of five nonstructural
HCV proteins (NS3-NS5) stimulate a cellular immune response in mice that significantly
exceeds the immune response to a plasmid encoding the same proteins [17]. The goal of
this study was to investigate whether naïve unmodified MSCs can stimulate an immune
response during DNA vaccination against hepatitis C, and to determine the conditions
under which MSCs exhibit adjuvant properties.

2. Results
2.1. Characterization of MSCs

As described in detail earlier [17], MSCs obtained were attached to the surface of
culture flasks and were polymorphic cells with a fibroblast-like morphology. Phenotyping
of MSCs by flow cytometry showed that most of the cells (83–96%) expressed CD73, CD90.1,
and CD105 receptors and no expression was detected for hematopoietic cell markers CD45
and CD34. The adipogenic and osteogenic differentiations of MSC were confirmed by
detection of neutral fat inclusions or alkaline phosphatase activity, respectively. Thus, in
terms of adhesive ability, surface markers, and differentiation potential, the cells meet the
minimal criteria for human MSCs of the Mesenchymal and Tissue Stem Cell Committee of
the International Society for Cellular Therapy [18]. Numerous studies have shown that the
main properties of MSCs isolated from humans are similar to MSCs from other species,
including mice [19], rats [20], and dogs [21].

2.2. Transfected Huh7.5 Cells and Modified MSCs Express Hepatitis C Virus Genes

The functional activity of the plasmid was studied with monoclonal antibodies (mAbs).
The ability of the plasmid to induce expression of the nonstructural HCV proteins NS3,
NS4A, NS4B, NS5A, and NS5B was confirmed by immunocytochemical staining of trans-
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fected Huh7.5 cells (Figure 1). Nonstructural HCV proteins reacted with specific mAbs
exhibiting antigenic activity and were localized in the cytoplasm; there was no staining in
cells stained with non-specific mAbs. It can be noted that all proteins were found predomi-
nantly in the perinuclear area, which is in line with numerous reports from other groups.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 16 
 

 

2.2. Transfected Huh7.5 Cells and Modified MSCs Express Hepatitis C Virus Genes 
The functional activity of the plasmid was studied with monoclonal antibodies 

(mAbs). The ability of the plasmid to induce expression of the nonstructural HCV proteins 
NS3, NS4A, NS4B, NS5A, and NS5B was confirmed by immunocytochemical staining of 
transfected Huh7.5 cells (Figure 1). Nonstructural HCV proteins reacted with specific 
mAbs exhibiting antigenic activity and were localized in the cytoplasm; there was no 
staining in cells stained with non-specific mAbs. It can be noted that all proteins were 
found predominantly in the perinuclear area, which is in line with numerous reports from 
other groups. 

 
Figure 1. Immunocytochemical staining of hepatitis C virus (HCV) nonstructural proteins in Huh7.5 
cells transfected with the pcNS3-NS5B plasmid. Expression of HCV proteins in the transfected 
Huh7.5 cells was determined by the method of indirect immunofluorescence using monoclonal an-
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We also used MSCs transfected with the same plasmid. The expression of nonstruc-
tural HCV proteins in MSCs transiently and stably transfected with the pcNS3-NS5B plas-
mid was shown earlier [17]. 

2.3. Comparative Analysis of Cytokine Production in Cultured and Transfected Cells 
Next, we measured the levels of the cytokines IL-6, IL-10, IL-12, IFN-γ, and TNF-α 

secreted by MSCs in vitro during serial passages. The concentration of IL-6 in the MSCs 
conditional medium statistically significantly increased at 3–4 passages, then gradually 
decreased, and was not detected by the 13th passage. The TNF-α level also reached its 
maximum values at the same time (Figure 2). IL-10, IL-12, and IFN-γ were not detected in 
the conditioned medium. 

Figure 1. Immunocytochemical staining of hepatitis C virus (HCV) nonstructural proteins in Huh7.5
cells transfected with the pcNS3-NS5B plasmid. Expression of HCV proteins in the transfected Huh7.5
cells was determined by the method of indirect immunofluorescence using monoclonal antibodies
(mAbs) against HCV proteins and anti-mouse secondary antibodies conjugated to fluoresceine
isothiocianate (FITC; green). The detected HCV proteins are indicated and the mAbs used are listed
in Section 4.5. Green staining of HCV proteins is observed in the cytoplasm of cells, merged with
nuclear staining with DAPI (blue); no HCV-specific staining was seen in transfected cells stained
with mAb to HBsAg (control). Scale bar = 25 µM.

We also used MSCs transfected with the same plasmid. The expression of nonstruc-
tural HCV proteins in MSCs transiently and stably transfected with the pcNS3-NS5B
plasmid was shown earlier [17].

2.3. Comparative Analysis of Cytokine Production in Cultured and Transfected Cells

Next, we measured the levels of the cytokines IL-6, IL-10, IL-12, IFN-γ, and TNF-α
secreted by MSCs in vitro during serial passages. The concentration of IL-6 in the MSCs
conditional medium statistically significantly increased at 3–4 passages, then gradually
decreased, and was not detected by the 13th passage. The TNF-α level also reached its
maximum values at the same time (Figure 2). IL-10, IL-12, and IFN-γ were not detected in
the conditioned medium.

The study of the dynamics of cytokines secreted by modified MSCs at the beginning
and at the end of the selection of transfected clones using G-418 (days 3 and 15, respectively)
also showed a significant increase in the level of IL-6 (p < 0.05) (Figure 2b). In contrast to
the naïve MSCs, TNF-α was not detected in the conditioned medium. IFN-γ increased on
Day 3 after transfection, but stably transfected MSC cultures did not produce this cytokine.

In Huh7.5 cells transfected with pcNS3-NS5B, the production of cytokines IFN-γ and
IL-6 significantly decreased compared to non-transfected cells, while the secretion of the
other two—TNF-α and IL-1β—increased (Figure 2c).

Thus, there were significant differences in the production of cytokines IFN-γ, IL-6, and
TNF-α between naïve and transfected MSCs on the one hand, and naïve and transfected
tumor Huh7.5 cells on the other hand. For immunization of mice, MSCs of 3–4 passages that
did not produce IFN-γ were selected, and the secretion of IL-6 and TNF-α was maximal.
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Figure 2. The changes in cytokine levels in a conditional medium during cultivation and transfection
of mouse MSCs and human hepatoma cells. (a) The concentrations of IL-6 (left) and TNF-α (right)
in the conditional medium during the cultivation of MSCs in the dynamics; (b) the concentration
of cytokines secreted by naïve MSCs (passage 3), MSCs transfected with the pcNS3-NS5B plasmid
(72 h), and MSCs stably expressing NS3-NS5B genes (transfection and selection using G-418, day 15);
(c) comparative level of cytokine production by naïve Huh7.5 cells and cells transfected with the
plasmid pcNS3-NS5B (72 h). The concentrations of cytokines are expressed in pg/mL. Values on
each diagram are the means ± SD for three independent experiments; * p < 0.05 compared to the first
passage MSCs (a) and naïve non-transfected MSCs (b) or Huh7.5 (c).

2.4. Cellular Immune Response to Mitogen

Mice were immunized with either DNA (pcNS3-NS5B)—Group 1; naïve MSCs—
Group 4; or DNA and MSCs in a different order—Groups 2 and 3 (as indicated in Section 4,
Materials and Methods, as well as in Figure 3). A week after the second immunization,
the cellular immune response to the injected constructs was evaluated. In Groups 2, 3,
and 4 of the mice that received MSCs, compared with the control Group 5, spontaneous
proliferation of lymphocytes (growth medium) was higher (Figure 3a). In response to
phytohemagglutinin (PHA), the number of lymphoblasts increased to a greater extent in
Groups 3 and 4 compared to other groups. The appearance of IFN-γ-synthesizing cells had
the same tendency: an increase in the number of spots in Groups 2–4 of mice in response to
both the medium and PHA (Figure 3b).



Int. J. Mol. Sci. 2021, 22, 8121 5 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 16 
 

 

2.4. Cellular Immune Response to Mitogen 
Mice were immunized with either DNA (pcNS3-NS5B)—Group 1; naïve MSCs—

Group 4; or DNA and MSCs in a different order—Groups 2 and 3 (as indicated in Section 
4, Materials and Methods, as well as in Figure 3). A week after the second immunization, 
the cellular immune response to the injected constructs was evaluated. In Groups 2, 3, and 
4 of the mice that received MSCs, compared with the control Group 5, spontaneous pro-
liferation of lymphocytes (growth medium) was higher (Figure 3a). In response to phyto-
hemagglutinin (PHA), the number of lymphoblasts increased to a greater extent in Groups 
3 and 4 compared to other groups. The appearance of IFN-γ-synthesizing cells had the 
same tendency: an increase in the number of spots in Groups 2–4 of mice in response to 
both the medium and PHA (Figure 3b). 

 
Figure 3. Spontaneous and phytohemagglutinin (PHA)-induced cellular response of lymphocytes 
from immunized mice in vitro. Each group (5 mice) received the DNA plasmid and/or naïve MSCs 
during two injections with a three-week interval. To assess the cellular response of the splenocytes 
in vitro, we used mitogen PHA; the medium alone was used as negative control. (a) Results of T-
cell proliferation are expressed as the number of lymphoblasts in the cell proliferation reaction; (b) 
the IFN-γ production by splenocytes in response to PHA was assayed as the number of IFN-γ-syn-
thesizing cells by ELISpot as the number of spot forming cells (SFCs) per 106 cells; * p < 0.05 com-
pared to the control (Group 5); # p < 0.05 compared to all groups. 

Thus, the highest response to PHA was in mice of Groups 3 and 4. Assessment of the 
proliferative response to mitogens is one of the most universal tests to assess the lympho-
cyte function; a weak reaction indicates the failure of cellular immunity. 

2.5. Cellular Immune Response to HCV Proteins 
Specific stimulators—recombinant proteins NS3, NS4B, and NS5A—led to the for-

mation of lymphoblasts only in Groups 1 and 3, and the SI in these groups did not differ 
(Figure 4a). NS5B protein stimulated lymphocyte proliferation in all groups of plasmid-
immunized mice (Groups 1–3), but in Group 2, the SI was significantly lower. No response 
to HCV proteins was observed in Groups 4 and 5. 

In the ELISpot assay, the formation of spots above the control level (the mean number 
of spots in response to medium + 2 SD) was stimulated by all the proteins used in Groups 
1 and 3 and NS4, as well as in Group 2 (Figure 4b). The average number of IFN-γ-synthe-
sizing cells in response to NS4, NS5A, and NS5B proteins was significantly 3–6 times 
higher in Group 3 compared to Group 1. In Groups 4 and 5, the number of spots was at 
the background level. 

Figure 3. Spontaneous and phytohemagglutinin (PHA)-induced cellular response of lymphocytes
from immunized mice in vitro. Each group (5 mice) received the DNA plasmid and/or naïve MSCs
during two injections with a three-week interval. To assess the cellular response of the splenocytes
in vitro, we used mitogen PHA; the medium alone was used as negative control. (a) Results of
T-cell proliferation are expressed as the number of lymphoblasts in the cell proliferation reaction;
(b) the IFN-γ production by splenocytes in response to PHA was assayed as the number of IFN-γ-
synthesizing cells by ELISpot as the number of spot forming cells (SFCs) per 106 cells; * p < 0.05
compared to the control (Group 5); # p < 0.05 compared to all groups.

Thus, the highest response to PHA was in mice of Groups 3 and 4. Assessment
of the proliferative response to mitogens is one of the most universal tests to assess the
lymphocyte function; a weak reaction indicates the failure of cellular immunity.

2.5. Cellular Immune Response to HCV Proteins

Specific stimulators—recombinant proteins NS3, NS4B, and NS5A—led to the for-
mation of lymphoblasts only in Groups 1 and 3, and the SI in these groups did not differ
(Figure 4a). NS5B protein stimulated lymphocyte proliferation in all groups of plasmid-
immunized mice (Groups 1–3), but in Group 2, the SI was significantly lower. No response
to HCV proteins was observed in Groups 4 and 5.

In the ELISpot assay, the formation of spots above the control level (the mean number
of spots in response to medium + 2 SD) was stimulated by all the proteins used in Groups
1 and 3 and NS4, as well as in Group 2 (Figure 4b). The average number of IFN-γ-
synthesizing cells in response to NS4, NS5A, and NS5B proteins was significantly 3–6 times
higher in Group 3 compared to Group 1. In Groups 4 and 5, the number of spots was at the
background level.

Thus, the cellular immune response to specific HCV stimulators was observed almost
only in Groups 1 and 3, while a significant increase in the parameters in Group 3 was only
recorded in the ELISpot assay.

2.6. The Level of IFN-γ in the Blood Serum of Mice

After completion of immunizations, the level of IFN-γ in the sera of the control group
mice was 27.8 ± 13.6 pg/mL. In the mice of Groups 1 and 2, it significantly increased more
than 3 times (p < 0.05); Groups 3 and 4 did not change from Group 5 (Figure 5). Thus, the
introduction of HCV DNA to mice leads to an increase in the serum level of IFN-γ, while
the introduction of MSCs before the injection of the plasmid reduces it.
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of HCV. Each group (5 mice) received the DNA plasmid and/or naïve MSCs during two injections
with a three-week interval. To assess the cellular response of lymphocytes in vitro, we used the
recombinant proteins from the nonstructural region of HCV, which were combined into four pools
(NS3, NS4, NS5A, and NS5B); the medium alone was used as the negative control. Results of T-cell
proliferation are expressed as stimulation indexes (SIs) (a); the IFN-γ production by splenocytes
in response to HCV proteins was expressed as the difference in the number of spots (spot-forming
units, SFUs) per 106 cells between the wells stimulated by the nonstructural HCV antigens and the
mean control wells without specific stimulators (growth medium alone) +2 standard deviations (SDs)
(b). * p < 0.05 compared to the control (group 5); # p < 0.05 compared to all groups; red line—the
threshold level of the reaction.
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After completion of immunizations, the level of IFN-γ in the sera was evaluated by ELISA; * p < 0.05
compared to the control (Group 5).
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3. Discussion

During the cultivation of the MSCs obtained from bone marrow, an increase in the
production of proinflammatory cytokines IL-6 and TNF-α was observed with a peak
at 3–4 passages. The immunological activity of these cytokines can be judged by their
antiviral action. Previously, it was shown that the culture fluids from the MSCs on the
fourth passage, containing the maximum concentrations of IL-6 and TNF-α, showed the
maximum effect of suppressing the infectious activity of the herpes simplex virus (HSV-1)
in vitro [22]. Therefore, to study the immunostimulatory activity of MSCs in vivo, we
injected mice with MSCs collected at 3–4 passages of cultivation, when the functional
activity and proinflammatory properties of the MSCs were high. A comparison of the
production of proinflammatory cytokines by MSCs and Huh7.5 hepatocarcinoma cells
showed significant differences: the TNF-α and IL-6 concentrations were 10 and 200 times
higher in the MSCs, while IFN-γ was produced only by Huh7.5 cells. The reaction to pcNS3-
NS5B DNA transfection also appeared to be different: the production of IL-6 and IFN-γ
increased in the MSCs, decreased in Huh7.5, and the concentration of TNF-α significantly
increased only in Huh7.5 cells. These data can be explained by the different nature of
the compared cells: normal mouse bone marrow cells and human tumor cells. Huh7.5
cells have mutations in some genes including the RIG-1 gene that encodes a cytoplasmic
sensor for viral RNA, and can initiate anti-viral and inflammatory cell responses [23]. It
is possible that the reduced expression of IL-6 and IFN-γ in Huh7.5 cells transfected with
pcNS3-NS5B is due to the low activity of RIG-1, an interferon-inducible cellular DExD/H
box RNA helicase.

The data on the different effects of MSCs on DNA immunization are of the greatest
interest. We assume that it is due to the different order of administration of MSCs—before
or after the plasmid immunogen. It was shown that the intramuscular introduction of
naked plasmid DNA leads to effective expression of the transgene in the skeletal mus-
cle [24]. In the model system, it was found that the plasmid immunogen delivered by the
intramuscular injection leads to early (after 2 h) expression of the immunogen [25]. Then,
the transgene release derived the peptides/proteins via exosomes or apoptotic bodies.
This material is endocytosed by immature dendritic cells, which subsequently present
antigens preferentially via the major histocompatibility class (MHCII) to CD4+ T-cells
in draining lymph nodes [8]. Several types of antigen-presenting cells (APCs) recognize
external pathogens and subsequently initiate defensive immune mechanisms. In our work,
the intramuscular administration of a plasmid containing and expressing five HCV genes
elicited an immune response to HCV, inducing T-cell proliferation and IFN-γ synthesis.
MSCs administered intravenously 24 h after recombinant DNA suppressed both of these
parameters by an average of 2.5 and 5 times, respectively (Figure 6). We also showed that
the expression of HCV proteins during transfection of mouse cells with plasmid was ac-
companied by an increase in the level of proinflammatory cytokines, as well as an increase
in IFN-γ in the sera of immunized mice in the case of injection of DNA alone or DNA
before MSCs. The immunosuppressive effect of MSCs in this case can be compared with
that observed when using MSCs for the treatment of patients with COVID-19 [26]. Dur-
ing the inflammatory response, many proinflammatory cytokines are secreted, including
TNFα, IL-1β, IL-2, IL-6, IL-7, IL-12, IL-18, IL-33, IFN-α, and IFN-γ. An excessive increase
in reactivity leads to a cytokine storm—the leading mortality factor due to SARS-CoV-2
infection [27–29]. A large number of experimental and clinical studies demonstrated that
injection of MSCs or their secretome significantly reduces inflammation and the expression
of chemokines and proinflammatory cytokines and enhances regeneration and functional
recovery [27,30]. MSCs also have been used in clinical trials to treat patients infected with
influenza virus A (H7N9), which had symptoms similar to those in patients infected with
SARS-CoV-2 [31], and in experiments with influenza viruses H5N1 and H9N2 [32,33]. Stem
cells are also being tested to treat other viral infections, such as hepatitis B, HIV-1, and
Coxsackie B3 [34–36].
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The mechanisms of the immunosuppressive properties of MSCs have been analyzed
in many studies. MSCs are reported to inhibit the immune response from innate immune
cells, including monocytes and macrophages [37], dendritic cells (DCs) [38], natural killer
cells (NK cells) [39], and that from adaptive immune cells, including T-cells [40], B-cells [41]
and other immune cells [42]. In vitro, MSCs can stop a variety of immune cell functions,
namely, cytokine secretion and the cytotoxicity of T- and NK cells, B-cell maturation
and antibody secretion, DC maturation and activation, and antigen presentation. Some
authors believe that the immunosuppressive properties of MSCs are mediated by cell
surface receptors [43]. In contrast, others reported a reduction in the immunosuppressive
activity of MSCs that promoted the T-cell and neutrophil survival, activation, and response
upon TLR ligation [44,45]. MSCs affect the functions of most immune effector cells via
direct contact with immune cells or indirectly via local microenvironmental factors that
modulate APCs and other accessory cells. Previous studies have confirmed that the
immunomodulatory effects of MSCs are mainly communicated via MSC-secreted cytokines;
however, apoptotic and metabolically inactivated MSCs have more recently been shown
to possess immunomodulatory potential, in which regulatory T-cells and monocytes play
a key role [46]. It should be noted that in vivo studies have shown many discrepancies
regarding the mechanisms of the immunomodulatory properties of MSCs [47].

Much less is known about the proinflammatory properties of naïve and engineered
MSCs, which are associated with the attraction and stimulation of granulocytes, macrophages,
NK cells, and proinflammatory cytokine induction in vitro [9,16,48,49] and in vivo [17,50–53].
One of the explanations for the multidirectional actions of MSCs is the polarization of
MSCs. The concept of MSC polarization into proinflammatory and anti-inflammatory cells
provides an attractive model to explain and investigate the apparently contradictory roles
of MSCs in inflammation [54]. Two different immune phenotypes have been described for
MSCs, depending on which toll-like receptor (TLR) is activated. MSC1 is endowed with
a proinflammatory phenotype following TLR4 activation with LPS. On the other hand,
anti-inflammatory MSC2 is induced by the activation of TLR3 with Poly(I:C) [55–57]. MSC1
shows an increased synthesis and secretion of proinflammatory cytokines and chemokines,
such as IL-6 and IL-8, whereas MSC2 has increased production of immunosuppressive
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mediators, such as IP-10 and CCL5. MSCs have high immunoplasticity, and the phenotype
conversion can be caused by exogenous stimuli, such as proinflammatory cytokines or TLR
agonists, as well as the duration of treatment [15,57,58]. The data on the effect of exogenous
proinflammatory cytokines on MSCs are contradictory. Several authors have noted an
increase in the antigen-presenting properties of MSCs as a result of IFN-γ pretreatment [59].
Other studies have shown that the “priming” of MSCs in vitro with IFN-γ, TNF-α, or
IL-1β leads to the formation of the immunosuppressive phenotype MSC2 [15,58,60]. We
administered MSCs of 3–4 passages that did not produce IFN-γ, and the secretion of IL-6
was maximal, to healthy mice. It was shown that the accumulation of IL-6 leads to the
activation of the MSC1 population and promotes the formation of Th17 cells that activate
the immune response [15]. Apparently, an increase in the level of pro-inflammatory cy-
tokines as a result of HCV protein expression in Group 2 mice in response to plasmid
administration contributed to the transformation of MSCs into the MSC2 phenotype with
suppressive activity on the adaptive immune response to HCV.

Another explanation of the phenomenon described by us may be related to the effect
of MSCs on one of the populations of suppressor cells—myeloid suppressor cells (MDSCs).
They represent a heterogeneous population of immature myeloid cells with a powerful
suppressor potential. The role of MDSCs in viral infections has not been adequately
studied [61]. In patients infected with HCV, an increase in the MDSC population is
observed; these cells inhibit the proliferation of CD4+ and CD8+ lymphocytes, NK cells,
and IFN-γ production [62,63]. Previously, we found that MSCs caused a 2-fold reduction
in the number of MDSCs in immunized mice compared to groups of control mice and
those immunized with the DNA vaccine [17]. Thus, one of the mechanisms of stimulation
of the innate and adaptive immune response by MSCs in our experiments may be the
suppression of MDSCs. Interestingly, when modeling cancer in mice, a dependence
of the immunomodulatory “phenotype” of MSCs on the injection site was found. The
simultaneous injection of MSCs with tumor cells led to immunosuppression, and distal
injection led to immunostimulation; the immune response was shown to correlate with a
decrease in the proportion of MDSCs and regulatory T-cells [64].

A comparison of the data in Figures 3 and 4 shows that the T-cell response to the
mitogen in Group 3 (MSCs + DNA) is higher in both proliferation and IFN-γ production
than the specific response to HCV proteins. At the same time, the differences in the
proliferative response were significantly greater than in the synthesis of IFN-γ. Thus,
not all proliferating cells induced by PHA are able to synthesize IFN-γ. The specific
response to HCV proteins, on the contrary, manifests itself in an increase in the production
of IFN-γ with an unchanged level of T-cell proliferation. It was of interest to compare
the specific T-cell response in groups immunized with naïve MSCs with similar response
rates to genetically modified MSCs (mMSC) expressing the same HCV proteins obtained
earlier [17]. The overall mean responses to all HCV proteins used in different variants of
DNA immunization were compared (Figure 6). It turned out that, in the mouse group
immunized with MSCs before DNA, the production of IFN-γ was as high as in the mMSC
immunization (Figure 6b). At the same time, the proliferative response in the mMSC group
was significantly higher (Figure 6a). The main method that is recommended for assessing
the response of T-cells to new HCV vaccines is the quantification of IFN-γ production by
the ELISpot method, which shows the activity of the antiviral response [5,65,66]. Therefore,
the data obtained using naïve MSCs to improve the effectiveness of DNA immunization
are very important.

4. Materials and Methods
4.1. Mice

Mice of the DBA/2J (H-2d) line (females, 6–8 weeks old) were obtained from the
laboratory of the animal breeder Stolbovaya, FMBA, Moscow Region. All ex vivo and
in vivo animal experiments were carried out in accordance with the order 199n of the
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Ministry of Health of the Russian Federation and with the “Regulations on the ethical
attitudes to laboratory animals of N.F. Gamaleya NRCEM (Moscow, Russia)”.

4.2. Isolation and Characterization of Primary MSCs

The primary culture of MSCs was obtained by isolation from the red bone marrow
of the femur bones of DBA mice as described earlier [17]. Briefly, mouse primary MSCs
were obtained from bone aspirates of DBA mice. The cell suspension was homogenized
and centrifuged at 2000× g for 10 min. Cell pellets were resuspended in high glucose Dul-
becco’s modified Eagle medium (DMEM) containing 10% fetal calf serum (FCS) (Invitrogen,
Waltham, MA, USA), 10 µg/mL insulin, 5.5 µg/mL transferrin, 6.7 ng/mL sodium selenite,
10 ng/mL basic fibroblast growth factor, 2 mM L-glutamine, and 50 µg/mL gentamicin.
The cells were seeded in culture flasks (Costar, New York, NY, USA) at a concentration of
2 × 106 cells/mL. The next day, as well as every subsequent 3–4 days, the culture medium
was replaced. The resulting adhesive cell population was reseeded using a 0.25% trypsin
solution. MSCs were cultured at 37 ◦C in a 5% CO2 atmosphere. Unless otherwise specified,
culture media and other reagents were purchased from PanEco, Russia (Moscow, Russia).

The cells were characterized by morphological properties, adhesive ability, expression
of surface markers, and the potential for adipogenic and osteogenic differentiation, as
described above [17].

4.3. Cell Line

The human hepatoma Huh7.5 cell line [67] was cultured in Dulbecco’s modified
minimal essential medium (Paneco, Moscow, Russia) supplemented with 10% fetal calf
serum (Gibco, Waltham, MA, USA), 2 mM glutamine, and 50 µg/mL gentamycin at 37 ◦C
in a humid atmosphere with 5% CO2.

4.4. Plasmid and Transfection

We used the pcNS3-NS5B plasmid construct encoding five nonstructural HCV pro-
teins (NS3, NS4A, NS4B, NS5A, and NS5B) of genotype 1b that was constructed using
a commercially available pcDNA-3.1(+) vector (Invitrogen, USA) [68]. The plasmid was
purified from E. coli strain JM109 using a commercial QIAGEN Plasmid Purification Maxi
Kit (QIAGEN, Hinden, Germany) according to the manufacturer’s instructions. To confirm
the plasmid functionality, Huh7.5 cells were transfected using TurboFect Transfection
Reagent (Thermo Fisher Scientific, Rockford, IL, USA), as described above [69]. MSCs of
mice were transfected with the same plasmid using Xfect Transfection Reagent (Clontech
Laboratories, Takara, San Jose, CA, USA), and a stably transfected MSC (mMSC) line was
obtained using the G-418 selective antibiotic, as described earlier [17].

Cytokine secretion was measured by quantifying the cytokine levels in the conditioned
medium, as described below.

4.5. Immunocytochemical Detection of HCV Proteins

Expression of HCV proteins in the transfected Huh7.5 cells was determined by the
methods of indirect immunofluorescence, using original monoclonal antibodies (mAbs)
against HCV proteins (2H4 to NS3, 3F12 to NS4A, 6B11 to NS4B, and 3F4 to NS5A) [70],
and commercially available mAbs to the NS5B protein (sc-58146, Santa Cruz Biotechnology,
Dallas, TX, USA), as previously described [69]. As secondary antibodies, fluorescein
isothiocyanate-labeled (FITC) anti-mouse IgGs (Dako, Denmark) were used. Nuclei were
stained with 4′-6-diamino-2-phenylindole dye (DAPI). Staining was visualized using an
Axio Scope A1 Carl Zeiss (Jena, Germany) fluorescent microscope at excitation/emission
wavelengths of 520/560 nm and 360/460 nm (DAPI) at 400×magnification.

4.6. Immunization of Animals

Five groups of mice were immunized with pcNS3-NS5B plasmid and/or MSCs of
3–4 passages in a different order (5 animals per group). The mice from Group 1 (DNA)
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were injected with plasmid; from Group 2 (DNA + MSC) with plasmid, and after 24 h with
MSCs; from Group 3 (MSC + DNA) first with MSCs and the next day with plasmid; from
Group 4 (MSC) only with MSCs; and from Group 5 (Control) with saline solution. MSCs
(5 × 105 cells) were injected into the tail vein, and plasmid (100 µg) was administered
intramuscularly into the quadriceps femoris muscle. Two immunizations with an interval
of 3 weeks were conducted.

4.7. The Recombinant HCV Proteins

The recombinant HCV proteins were used as antigens to stimulate T-cell responses
in vitro. The proteins were combined into four pools: NS3 (helicase domain with a sequence
of 1230–1658 aa, immunodominant region 1356–1459 aa, genotype 1b); NS4 (1677–1754 aa
and mosaic protein containing regions 1691–1710, 1712–1733, 1921–1940 aa from genotypes
1, 2, 3, and 5); NS5A (the full-length protein 1973–2419 aa and fragments 2061–2302 aa,
2212–2313 aa, genotypes 1b and 1a); and the NS5B protein lacking C-terminal hydrophobic
21 amino acid residues (2420–2990 aa, genotype 1b). The recombinant proteins were
expressed in E. coli and purified by chromatography on Ni-NTA-agarose or on glutathione
sepharose, as described previously [68,71–73].

4.8. T-Cell Proliferation and ELISpot Assays

A week after the second immunization, the cellular immune response to the injected
constructs was evaluated. T-cell proliferation in vitro was assessed by activation of the
DNA synthesis as described previously [74], with minor modifications. The spleens
of 5 mice of each group were pooled, a suspension of splenocytes was seeded in U-
bottomed 96-well microculture plates at a density of 5 × 105 cells/well, and specific
stimulants (pools of the recombinant HCV NS3, NS4, NS5A, and NS5B proteins at a
final concentration of 1 µg/mL) were added. As negative controls, we used the medium
alone (spontaneous proliferation); mitogen phytohemagglutinin (PHA, 5 µg/mL, Sigma,
St. Louis, MO, USA) was used as an unspecific positive control. All samples were set in at
least four replicates. The cells were cultured in a RPMI-1640 medium containing 20% FCS
(Invitrogen, Waltham, MA, USA), 4.5 mg/mL glucose, 2 mM glutamine, 0.2 u/mL insulin,
and 50 µg/mL gentamicin at 37 ◦C in a 5% CO2 atmosphere. Splenocyte proliferation
was assessed using the blast transformation test after 2 days for PHA and 6 days for HCV
antigens. The results were presented as the stimulation index (SI) calculated as the ratio of
the average lymphoblast numbers observed in the presence and in the absence of specific
stimulators. A positive result was registered at SI > 2.

Quantification of cells secreting IFN-γ was carried out with the ELISPOT mouse IFN-γ
Kit (BD Biosciences, San Jose, CA, USA) in accordance with the manufacturer’s instructions.
Stained spots were visualized using an MBS-10 stereo microscope (LOMZ, Russia). The
results were expressed as the difference in the number of spots (spot-forming units, SFUs)
per 106 cells between the wells stimulated by the nonstructural HCV antigens and the
mean control wells without specific stimulators (growth medium alone) +2 standard
deviations (SDs).

4.9. Detection of Cytokines in Cell Culture Media and Mouse Sera with Sandwich ELISA

Measurement of the mouse cytokine levels (IFN-γ, TNF-α, IL-6, IL-10, IL-12) was
performed with ELISA in conditioned medium from MSCs during 1–13 passages and
also in a medium from a selection of the MSCs transfected with pcNS3-NS5B. IFN-γ
quantification was also conducted in mice sera after second immunization. We used the
Mouse IL-6 ELISA development kit (HRP), Mouse IFN-γ ELISA development kit (HRP),
Mouse TNF-α ELISA development kit (HRP) (Mabtech, Stockholm, Sweden), Mouse IL-10
DuoSet ELISA, and Mouse IL-12 p70 Duoset ELISA (R&D Systems, Minneapolis, MN,
USA). The detection sensitivity for IL-6 was 10 pg/mL, for IFN-γ and TNF-α 2 pg/mL,
and for IL-10 and IL-12 30 pg/mL.
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Human cytokine secretion by Huh7.5 cells was assayed by ELISA, using Vektor-
Best kits (Russia) for IL-1β, IL-6, IFN-γ, and TNF-α. The sensitivities of the cytokine
assays were 0.5 pg/mL for IL-6, 1 pg/mL for IL-1β and TNF-α, and 2 pg/mL for IFN-
γ. The concentrations of cytokines were determined from the calibration curves of the
standard samples.

4.10. Statistical Analysis

Statistical analysis was performed using Statistica 8 (StatSoft Inc., Tulsa, OK, USA)
and GraphPad Prism 7 (GraphPad5, SanDiego, USA) software. The data are presented as
the means ± SD of three independent experiments and analyzed by two-tailed Student’s
t-test or one-way analysis of variance (ANOVA), followed by Tukey tests for multiple
comparisons when appropriate (p < 0.05 was considered as statistically significant).

5. Conclusions

The development of a DNA vaccine against hepatitis C involves many different re-
search directions, including the search for the optimal adjuvant. Our study showed for
the first time that bone marrow naïve MSCs can exhibit both stimulating and inhibitory
effects on the same DNA immunogens. When administered before DNA in preventive
DNA immunization, the number of lymphocytes synthesizing IFN-γ in response to HCV
significantly increased. We consider our results as a basis for further preclinical studies
of the protective effect of naïve MSCs as well as genetically modified MSCs in the future.
Further studies are required for a detailed study of the mechanisms of the immunostimula-
tory action of naïve MSCs. At the same time, the large resources of MSCs, their availability
in large quantities, and their proven safety indicate that MSCs can serve as the basis for
the development of an effective adjuvant for a vaccine against hepatitis C and other viral
infections, and hopefully, the problems associated with their the immunocompatibility,
stability, and heterogeneity can be solved in the future.
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