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Abstract: In response to the demand for high-performance materials, epoxy thermosetting and its
composites are widely used in various industries. However, their poor toughness, resulting from the
high crosslinking density of the epoxy network, must be improved to expand their application to the
manufacturing of flexible products. In this study, ductile epoxy thermosetting was produced using
thiol compounds with functionalities of 2 and 3 as curing agents. The mechanical properties of the
epoxy were further enhanced by incorporating fumed silica into it. To increase the filler dispersion,
epoxide-terminated polydimethylsiloxane was synthesized and used as a composite component.
Thanks to the polysiloxane–silica interaction, the nanosilica was uniformly dispersed in the epoxy
composites, and their mechanical properties improved with increasing fumed silica content up to
5 phr (parts per hundred parts of epoxy resin). The toughness and impact strength of the composite
containing 5 phr nanosilica were 5.17 (±0.13) MJ/m3 and 69.8 (±1.3) KJ/m2, respectively.

Keywords: toughness; impact strength; epoxy composite; epoxide-terminated polydimethylsiloxane;
fumed silica

1. Introduction

Owing to their high density in crosslinking [1], epoxy thermosetting resins feature ex-
cellent mechanical properties, thermal stability, and chemical resistance. Therefore, they are
widely used as the materials for light-weighted composites, as well as high-performance
adhesives, sealants, and coating materials in various industries from automobile manufac-
turing to building construction [2–5]. Despite their merits, the brittleness of epoxy resins,
stemming from the dense crosslinking, impedes their application in flexible products. To
overcome this, much effort has been made to endow epoxy resins with ductility by admix-
ing functionalized liquid rubbers [6]. Given that a crack initiates and its tip meets the rubber
particles in an epoxy composite, the stress is concentrated on the rubber particles, leading
to their cavitation followed by shear deformation; thus, the applied energy is dissipated,
and the fracture toughness of the rubber-modified epoxy is enhanced [7]. The toughness of
epoxy resins is also enhanced by incorporating high-molecular-weight components into
the epoxy formulation, because of the reduction in crosslinking density [8,9]. Therefore,
the increase in deformability of the epoxy composites leads to increased toughness. In this
study, a ductile epoxy thermosetting was attained by curing bisphenol A diglycidylether
(BPDGE) with a thiol curing agent [10–12]. The thiol curing agent consisted of thiol-based
compounds with functionalities of 2 and 3 at the weight ratio of 1 to 1. Because of the
character of the thiol structure [10], the epoxy thermosetting produced by the epoxy-thiol
click reaction is ductile (Figure S1 and Table 1). In addition, the mechanical properties
of the thermosetting are further optimized by incorporating fillers into it. Given that the
mechanical properties of composites are enhanced by the strong interfacial interactions
between fillers and the matrix [13], the filler-loading technique is crucial to the realization
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of high-performance composites. Among fillers, nanosilica is widely used to fabricate
nanocomposites because of its high reinforcing effectiveness [14,15] and low price. How-
ever, the agglomeration of the nanosilica induced by the hydrogen bonding between the
silanol groups of silica deteriorates the mechanical properties and processability of the
resulting composites. To overcome this, a novel epoxide-terminated polydimethylsiloxane
(ep-PDMS) was synthesized and admixed with BPDGE to increase the dispersion efficiency
of fumed silica in this study. The interaction between the polysiloxane and silanol groups
of silica was previously studied through calculation [16] and experiments [13,17,18]. After
confirming by scanning electron microscopy that ep-PDMS enhanced the dispersion of
fumed silica in epoxy-based composite, the effect of the fumed silica content on the rhe-
ological properties, mechanical properties, impact strength, and thermal stability of the
composites was investigated.

2. Results and Discussion

Epoxide-terminated polydimethylsiloxane (ep-PDMS) was synthesized by reacting an
allyl epoxide with a hydride-terminated PDMS through the platinum-catalyzed hydrosi-
lylation reaction [19] (Figure 1). The completion of the reaction was ascertained by the
disappearance of the IR absorption at 2125 cm−1 for Si–H stretching [20] (Figure S2). NMR
spectroscopy was conducted to characterize ep-PDMS. In the 1H NMR spectrum of ep-
PDMS, the proton resonances for Si–CH2 formed via the hydrosilylation reaction appeared
at around 0.6 ppm. The proton peaks for oxirane were observed at 2.9 ppm and 3.6 ppm,
indicating that oxirane was intact despite the hydrosilylation reaction. The presence of
siloxanes was confirmed by the two signals observed at 7.59 ppm (for CH2Si(CH3)2O) and
−21.80 ppm (for OSi(CH3)2O) in the 29Si NMR spectrum of ep-PDMS.
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Figure 1. Synthesis of ep-PDMS.

Having produced this compound, the epoxy composition was fabricated by admix-
ing ep-PDMS and BPDGE at the ep-PDMS-to-BPDGE weight ratio of 1 to 9. Then, a
stoichiometric amount of thiols and a catalytic amount of 1-methylimidazole (MI) were
added to the epoxy resin. The thiol-based curing agent comprised EDT and TMPMP
with functionalities of 2 and 3, respectively, at the EDT-to-TMPMP weight ratio of 1 to
1. Because the base-catalyzed epoxy-thiol curing reaction is complex [11], the degree of
curing obtained from the kinetic parameters (apparent activation energy, pre-exponential
factor, and reaction order) was used to determine the process conditions. The curing
behavior of the epoxy/thiol/MI system was investigated by non-isothermal differential
scanning calorimetry (DSC) at various heating rates (β). When the samples were heated in
a differential scanning calorimeter, one exothermic peak stemming from epoxy curing was
observed, and the peak temperature (Tp) of the exothermic curve increased with increasing
β (Figure 2).

After data obtained from the DSC analysis were converted to ln(β/Tp
2) and 1/Tp,

the apparent activation energy (Ea) and pre-exponential factor (A) were calculated based
on the Kissinger equation (Equation (1)) [21] (Figure 3a). The Ea and A values of the
epoxy/thiol/MI curing were calculated to be 67.76 KJ/mol and 2.26 × 108 min−1 from the
slope and y-intercept of the plotting line of 1/Tp vs. ln(β/Tp

2). The apparent activation
energy was also calculated based on the Ozawa equation (Equation (2)) [22] (Figure 3b).
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The linear relation between 1/Tp and ln(β) was obtained, and the Ea value was calculated
to be 70.25 KJ/mol from the slope of the line.
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where β is the heating rate, K/min; Tp is the exothermic peak temperature, K; Ea is the
apparent activation energy, J/mol; R is the perfect gas constant of 8.314 J/(mol·K); and F(a)
is a constant function.
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Next, the reaction order (n) of the epoxy/thiol/MI curing was determined as 0.93 using
the averaged Ea value of 69.00 KJ/mol according to the simplified Crane equation
(Equation (3)) [21]. Finally, the degree of curing (α) of the epoxy/thiol/MI system over
time at various temperatures was obtained based on Equation (4) [21], and the results
are shown in Figure 4. The curing degree of the epoxy/thiol/MI system increased with
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increasing temperature and extended curing time. For the next step, the epoxy/thiol/MI
system was designated as neat epoxy.
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Next, nanocomposites were fabricated by mixing neat epoxy and fumed silica. Thanks
to the possible interactions between the (Si–O) backbone of ep-PDMS and the silanol
groups of the nanosilica, the filler loading reached 7 phr (parts per hundred parts of epoxy)
in the composites. The effect of nanosilica loading on the rheological properties of the
composites was investigated by measuring the frequency dependence of complex viscosity
(Figure 5a). The complex viscosity of the composites increased with increasing nanosilica
content. While the complex viscosity of neat epoxy and NC-1 was independent of the
frequency (Newtonian flow), that of NC-2, NC-3, and NC-4 decreased with increasing
shear rate (shear thinning). This can be explained by the fact that particles align with the
flow direction to weaken the particle–particle and polymer–particle interactions at a high
shear rate. Therefore, the flow resistance caused by the clusters of fumed silica decreased,
leading to low viscosity at a high shear rate [23,24], and this shear-thinning character was
more noticeable in the composites with high filler loading. Figure 5b shows the loss factor
(tan δ) of neat epoxy and the composites measured at 1 rad/s. While tan δ of NC-4 was
less than 1, those of others were higher than 1, indicating that NC-4 behaved like a solid
due to the high filler loading. Given that high viscosity deteriorates the processability
of composites, the technique to maximize filler loading while maintaining flowability of
composites is crucial.

The effect of the nanosilica content on the mechanical properties of the nanocomposites
was investigated through a tensile test. Dog-bone-shaped specimens were pulled in the
tensile direction until they were broken. The mechanical properties are summarized in
Table 1, and stress-strain curves are shown in Figure 6a. While the tensile strength, Young’s
modulus, and toughness of the composites increased with increasing fumed silica content
up to 5 phr, elongation at break decreased, though the change in the latter was smaller.
Compared to neat epoxy, the strength, modulus, and toughness of NC-3 increased by 76%,
50%, and 44%, respectively, and the elongation decreased by 15%. The toughness of NC-3
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reached 5.17 (±0.13) MJ/m3. It is interesting that the strength and toughness of NC-4 were
lower than those of NC-3 despite higher filler loading. Given that clusters of fumed silica
aggregates were formed with increased filler content, the density in the filler-rich phase
was high in NC-4; thus, the applied energy during the tensile test was concentrated on the
fillers and not transferred to the matrix, causing fracture to occur at the low elongation.
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Table 1. Mechanical properties of neat epoxy and nanocomposites.

Neat Epoxy NC-1 NC-2 NC-3 NC-4

Tensile strength (MPa) 4.2 ± 0.3 4.8 ± 0.6 5.7 ± 0.6 7.4 ± 0.3 5.7 ± 0.5
Elongation at break (%) 156 ± 8 147 ± 20 142 ± 2 133 ± 3 99 ± 11
Young’s modulus (MPa) 10.3 ± 0.5 11.3 ± 0.3 13.9 ± 0.8 15.4 ± 1.1 16.7 ± 0.2

Toughness (MJ/m3) 3.6 ± 0.02 3.8 ± 0.88 4.35 ± 0.42 5.17 ± 0.13 3.14 ± 0.15
Impact strength (KJ/m2) 39.9 ± 8.5 49.7 ± 4.3 60.7 ± 3.4 69.8 ± 1.3 26.4 ± 1.8
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Next, to investigate the effect of ep-PDMS on the mechanical properties of the compos-
ites, a control composite containing 5 phr fumed silica was fabricated without ep-PDMS.
The mechanical properties of the control sample are summarized in Table S1, and its stress-
strain is shown in Figure S3. Compared to the control composite, the strength, elongation,
and toughness of NC-3 were higher by 28%, 43%, and 53%, respectively, with the same filler
content, suggesting that ep-PDMS is effective to disperse fumed silica in epoxy resins. The
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poor dispersion of fumed silica in the control sample was confirmed by the FESEM images
(Figure S4). Unlike NC-3, micron-sized clusters of fumed silica were clearly observed in
the control composite.

The effect of fumed silica content on the impact strength of composites was inves-
tigated through a notched Izod impact test. Rectangular specimens with a V-shaped
notch were struck by a hammer, and the absorbed energy was recorded. The results are
summarized in Table 1 and shown in Figure 6b. The impact strength of the composites
increased with an increasing nanosilica content ranging from 0 to 5 phr. It is interesting
that the specimens were partially broken after the Izod impact test, indicating that they
were ductile. Compared to neat epoxy, the impact strength of NC-3 increased by 75%, and
this enhancement was attributed to the strong filler–matrix interaction with the help of
ep-PDMS. It should be noted that the impact strength of NC-3 was about 70 KJ/m2, and
this high value is rare for epoxy composites [25–30] (Figure S5) and comparable to those of
super-toughened poly(lactic acid) blends with impact strength higher than 53 KJ/m2 [31].
On the contrary, the impact strength of NC-4 was even lower than that of neat epoxy by
34%, implying that the presence of filler-rich phase led to severe deterioration in the impact
strength of the composites despite high filler loading. Given that NC-4 was completely
broken after the Izod impact test, whereas other samples were partially broken, the clusters
of fumed silica endowed NC-4 with brittleness. The surface morphologies of fractured
NC-3 and NC-4 after the Izod impact test were analyzed by FESEM (Figure 7). While the
surface of NC-3 was smooth, filler-rich phase with bulging nanosilica was observed on that
of NC-4.
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Next, the thermal stability of the neat epoxy and the nanocomposites was investi-
gated by thermogravimetric analysis (TGA) in temperatures ranging from 50 ◦C to 450 ◦C
(Figure 8). All specimens were stable up to 300 ◦C, at which the weight loss percentage was
less than 5%. In addition, the amount of the residue at 450 ◦C increased with increasing
filler loading in the composites. DSC measurements of them were carried out to determine
the glass transition temperature (Tg), and the results are summarized in Table 2. The Tg
values of the composites also increased with increasing fumed silica loading, though the
change was little.
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Table 2. Glass transition temperature of neat epoxy and nanocomposites.

Neat Epoxy NC-1 NC-2 NC-3 NC-4

Tg (◦C) 11.24 12.30 12.31 12.45 12.75

3. Materials and Methods
3.1. Materials

Bisphenol A diglycidyl ether (BPDGE, EEW = 190 g/eq) was purchased from Kukdo
Chemical Co., Ltd (Seoul, Korea). 1-methylimidazole (MI) was purchased from Tokyo
Chemical Industry Co., Ltd. (Tokyo, Japan). Hydride-terminated poly(dimethylsiloxane)
(Mn~580, h-PDMS), platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solu-
tion in xylene (Pt cat), 2,2′-(ethylenedioxy)diethanethiol (EDT), trimethylolpropane tirs(3-
mercaptopropioante) (TMPMP), and anhydrous magnesium sulfate were purchased from
Sigma-Aldrich Korea Ltd. (Yongin, Korea). Toluene was purchased from Samchun Chemi-
cal (Seoul, Korea). Fumed silica (K-200) of silica aggregates consisting of 7 to 40 nm primary
particles was purchased from OCI (Seoul, Korea). All chemicals were used as received
without purification.

3.2. Instrumentation

The 1H NMR, 13C NMR, and 29Si NMR spectra were measured on an NMR spectrome-
ter equipped with Bruker Top Spin 3.2 software (Ascend™ 400, Bruker, Madison, WI, USA).
The Fourier transform infrared (FTIR) spectra in the range from 500 to 4000 cm−1 were
obtained through the attenuated total reflectance method using an FTIR spectrophotometer
(IRAffinity-1S, Shimadzu, Kyoto, Japan). A tensile test was carried out using a universal
testing machine (HZ-1003A/B(1T), MMS Tech, Bucheon, Korea). A non-isothermal DSC
analysis was performed using a DSC-4000 (PerkinElmer, Waltham, MA, USA). Izod impact
strength was measured using an Izod impact tester (KP-M3940D, KIPAE). The surface
morphologies of the fractured composites were analyzed using a field emission scanning
electron microscope (FESEM).

3.3. Synthesis of ep-PDMS

An allyl epoxide was synthesized following the previously reported method [32]. A
flask was charged with allyl epoxide (6.0 g, 31.58 mmol), h-PDMS (9.16 g, 15.78 mmol), Pt
cat (0.16 g), and toluene (15.16 g). This solution was heated at 95 ◦C using an oil bath. After
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12 h stirring, the mixture was poured into a separatory funnel and sequentially washed
with deionized water and brine solution. The organic layer was separated and dried
over anhydrous magnesium sulfate. The organic layer was filtered through celite, and all
volatiles were removed from the filtrate under reduced pressure to produce ep-PDMS in a
brown liquid with the viscosity of 72 mPa·s at 25 ◦C. The epoxy equivalent of ep-PDMS
was calculated as 480 g/eq.

1H NMR (400 MHz, CDCl3) data: δ: 7.15–7.13 (m, aromatic ring), 6.93–6.90 (t, aro-
matic ring), 6.83–6.81 (d, aromatic ring), 4.25–3.80 (d, O-CH2), 3.66–3.62 (m, glycidyl),
2.90–2.88 (d, glycidyl), 2.78–2.65 (t, ArCH2), 1.66 (m, SiCH2CH2), 0.75–0.55 (t, SiCH2),
0.30–0.00 (m, SiCH3).

13C NMR (100 MHz, CDCl3) data: δ: 156.4, 131.5, 130.1, 126.9, 121.0, 111.4, 68.6, 50.4,
44.6, 34.0, 23.7, 18.4, 0.99, 0.79.

29Si NMR (79 MHz, CDCl3) data: δ: 7.59 (CH2Si(CH3)2O), −21.80 (OSi(CH3)2O).

3.4. Preparation of Compositions of Neat Epoxy and Nanocomposites

Each composition of neat epoxy and nanocomposites is summarized in Table 3. A
50 mL vial was charged with BPDGE, ep-PDMS, and fumed silica, and the mixture was
subject to an ultra-sonication treatment. After 2 h, EDT, TMPMP, and MI were added to
the mixture. Each composition was agitated using a vortex mixer for 20 min and degassed
under reduced pressure.

Table 3. The compositions of neat epoxy and nanocomposites.

Neat Epoxy NC-1 NC-2 NC-3 NC-4

BPDGE (g) 9 9 9 9 9
ep-PDMS (g) 1 1 1 1 1

EDT (g) 2.67 2.67 2.67 2.67 2.67
TMPMP (g) 2.67 2.67 2.67 2.67 2.67

MI (g) 0.11 0.11 0.11 0.11 0.11
Fumed silica (g) 0 0.1 0.3 0.5 0.7

Filler loading (phr) a 0 1 3 5 7
a phr—parts per hundred parts of epoxy resin.

3.5. Tensile Test

The as-prepared compositions were poured into a dog-bone-shaped Teflon mold and
heated at 140 ◦C for 1 h. Then, the specimens were placed in a tensile tester and pulled
along the z-axis until they were broken.

3.6. Izod Impact Strength Test

Izod impact strength was measured following an ASTM D256 standard test method
using a pendulum-C type hammer. The as-prepared compositions of neat epoxy and
nanocomposites were poured into a Teflon mold with dimensions of 63.5 mm × 12.7 mm
× 6.35 mm (width × length × thickness) and kept at 140 ◦C in a convection oven. After
1 hour, all specimens were cooled to room temperature, and a V-notch with a depth of
2.54 mm was made at the center of them using a cutter.

4. Conclusions

In this work, epoxide-terminated PDMS (ep-PDMS) was synthesized and used to
produce thiol-epoxy composites containing fumed silica. Thanks to the polysiloxane–
silica interaction, the mechanical properties of the epoxy composites containing ep-PDMS
improved with increasing fumed silica content up to 5 phr. The toughness and impact
strength of NC-3 were 5.17 (±0.13) MJ/m3 and 69.8 (±1.3) KJ/m2, respectively. The
mechanical properties of the composite without ep-PDMS containing 5 phr nanosilica
were inferior to those of NC-3 despite having the same filler content because of the poor
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dispersion of fumed silica. In conclusion, the employment of ep-PDMS is expected to be an
effective way to realize super-toughened fumed-silica epoxy composites.
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