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Supplementary Methods 
 
XCMS parameters 
 
The following XCMS parameters and methods were used for data pre-processing: 
 
xset <- xcmsSet (method = "centWave", peakwidth = c(10, 30), ppm = 15, noise = 50, snthresh = 3, 
mzdiff = 0.003, prefilter = c(3, 100), mzCenterFun = "wMean", integrate = 1, fitgauss = FALSE, 
verbose.columns = FALSE 
 
xset <- retcor (xset, method = "obiwarp", plottype = "none", distFunc = "cor_opt", profStep = 
0.6352, center = 2, response = 1, gapInit = 0.448, gapExtend = 2.4, factorDiag = 2, factorGap = 1, 
localAlignment = 0 
 
xset <- group (xset, method = "density", bw = 3, mzwid = 0.008, minfrac = 0.05, minsamp = 10, 
max = 50) 
 
xset <- fillPeaks(xset) 
groups (xset,method="maxint",value="into") 
 
Duplicated peaks 
 
XCMS peak picking parameters that are not ideal for a given peak shape can result in one lipid 
signal being split into two peaks in the resulting feature table, identifiable as two highly correlated 
features with almost identical m/z values and retention time values. We dealt with this issue by 
grouping all features with pairwise difference in m/z values < 10 ppm and retention time difference 
< 0.05 minutes, keeping only one feature from each group.  
 
Co-eluting peak clusters 
 
Untargeted LCMS lipidomics experiments can produce large clusters of lipid features that are 
derived from the same lipid compound, identifiable as a large number of well-correlated lipid 
features with identical retention times. We dealt with this issue by deleting larger-than-average 
groups of lipid features that fall into a small retention time window as follows. First, we defined a 
window of 0.005 minutes and calculated the number of lipid features with retention times falling 
into this window, depending on the position of the window across the retention time gradient 
(“sliding histogram”). Next, we used kernel density estimation (python package KernelDensity, 
kernel='gaussian', bandwidth=0.5; this calculates the logarithm of the density) on the sliding 
histogram values, and calculated the smoothed (or averaged) sliding histogram by taking the 
exponent of the kernel density estimation and normalizing it by the area under the sliding 
histogram. We defined a first cutoff function as this smoothed histogram. Next, we defined a spike 
in the sliding histogram as a group of adjacent values of the sliding histogram that are larger than 
the cutoff function. Each spike corresponds to a retention time boundary, and a set of lipid features 
that fall into this retention time boundary. The height of the spike is the maximum value of the 
sliding histogram in this retention time boundary. We aimed to delete abnormal spikes that 
correspond to co-eluting peak clusters. Because we expected co-eluting peak clusters to be a 
derivative from one lipid compound (which will have the highest intensity), we expected most 
peaks in a co-eluting cluster to have m/z values higher than this original lipid compound. However, 
this might not be true for all co-eluting peak clusters. For this reason, we defined two types of 
abnormal spikes. The first type of abnormal spikes was defined as spikes with height > 40. For the 
second type of abnormal spikes, we defined a second cutoff function as 4*smoothed histogram +10. 
We defined as abnormal any spike for which (1.) the height was larger than this cutoff function, and 



for which (2.) the percent of lipid features in this spike with m/z values > m/z value of the lipid 
feature with highest intensity in this spike was larger than 75%. We deleted from downstream 
analysis all lipid features that corresponded to an abnormal spike. 
 
Isotope deletion  
 
Isotopes were grouped based on differences in m/z and retention times of the lipid features. 
Additionally, we used pairwise correlations across samples, because we expect variability in isotope 
intensities to be explained only by unbiased random error in measurements (any biological 
variability or technical biases will be identically reflected in isotopes), and we expect these 
correlations to be quite high. 
First, lipid features were separated into isotope pre-groups. Differences between m/z values 
(m/z_diff) and differences in retention times (rt_diff) were calculated for each pair of lipid features, 
and features with m/z_diff<0.01 and rt_diff< 10 seconds were considered to be connected. Next, we 
located all the connected components, each connected component defining an isotope pre-group. 
Because two features in a pre-group might be connected through a chain of connected pairs, the 
resulting m/z_diff and rt_diff could be much higher than the above-defined thresholds, and one pre-
group could contain multiple isotope groups.  
Next, for each pre-group we defined the isotope groups. Starting from lipid feature X with highest 
intensity in the pre-group, we identified the lipid features Y satisfying the following criteria: 
1000000*(m/z of X - m/z of Y + C13 - C12 )/ (m/z of X) < 10, difference in retention time < 1.5 
seconds, correlation across samples < 0.8, and intensity of Y < intensity of X. If exactly one feature 
was found, this feature was added to the isotope group and the procedure was continued recursively. 
If no feature or multiple features were found, the procedure was stopped and the lipid features Y 
were not added to the isotope group. In all cases, lipid features Y were deleted from the pre-group, 
as well as feature X. Once the procedure stopped, if there were lipid features remaining in the pre-
group, the algorithm was repeated recursively, starting with the remaining lipid feature with highest 
intensity. 
This algorithm defined isotope groups. For each isotope group, only the highest intensity feature 
was retained in the data table, and all other lipid features (their higher level isotopes) were deleted 
from analysis. 
 
TL annotation 
 
We used a semi-automated procedure based on m/z values and retention times for the putative 
annotation. For each considered lipid class, we generated a theoretical table of neutral masses 
corresponding to the lipid species with the various number of double bonds and chain lengths. Each 
lipid class was annotated in one ionization mode using one adduct of choice (Table 6). The lipid 
classes we reported in the data were: MAG, DAG, TAG, FFA, PC, LPC, PC-O, PC-P, PE, LPE, 
PE-O, PE-P, PI, Cer, SM, HexCer;O1, HexCer;O2, HexCer;O3, SHexCerO2; SHexCerO3. The 
lipid classes we considered, but did not discover in the data were: PS, PG, PA, Cer;O1, Cer;O3, 
SM;O1, SM;O3, SHexCer;O1.  
Starting from a lipid class and its corresponding adduct, we matched the theoretical m/z to the m/z 
values of the lipid features with a mass accuracy threshold of 10 ppm. Next, a model for the 
retention times of the lipid species was built, and only lipid species fitting into this model were 
retained in the putative annotation, according to the following procedure. We started with an in-
house database of retention times of verified lipid species annotation, and retention time alignment 
between the current retention times and the database retention times based on linear interpolation 
between retention times of the internal standards. The retention times of the in-house database were 
matched to the current retention times to find which lipid species from the database were present in 
the current data. One of these matched lipid species was used to define an “anchor point” for the 
rest of the lipid species in the lipid class. The model for the retention time was defined by three 



main parameters: rt_delta1, rt_delta2, the anchor point, as well as a transformation retention time. 
First, the retention times were transformed according to this function. Different transformations 
were used for different lipid classes, specifically, base 2 log transformation for all lipids except 
triglycerides, and base 2 exponential transformation for triglycerides, because the corresponding 
elution region had a steeper slope. Parameter rt_delta1 corresponded to the shift in transformed 
retention time when one double bond was added to the lipid species, and rt_delta2 corresponded to 
the shift in transformed retention time when one carbon was added to the lipid species. Starting 
from the anchor point, this model defined the predicted retention time for any lipid species of the 
lipid class. Defining additional parameter rt_error, we used this model to annotate the lipid features 
by keeping the lipid features with retention times within +- rt_error boundary of the predicted 
retention times, and discarding the rest. 
Next, the model was trained on the data to find optimal parameters rt_delta1 and rt_delta2. To do 
this, we defined the score function as the number of annotated lipid features. We performed a 
simple grid search over an array of rt_delta1 and rt_delta2 to find the optimal parameters. Using 
these parameters, we annotated the lipid features as described above. This procedure was data-
based, and the parameters were not necessarily ideal. For this reason, the resulting putative 
annotation based on m/z values and retention times were additionally manually curated.  
For PC-O and PC-P lipid classes, as well as PE-O and PE-P classes, a modification of the procedure 
was used. Because these lipid classes have identical m/z values and similar retention times, the 
above described algorithm could not separate them. In the modified procedure, we similarly started 
with an anchor point for the -O lipid class and an anchor point for the -P lipid class, but used the 
optimal parameters rt_delta1 and rt_delta2 calculated for the corresponding PC or PE class. 


