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Abstract: To identify potential early biomarkers of treatment response and immune-related adverse
events (irAE), a pilot immune monitoring study was performed in stage IV melanoma patients by
flow cytometric analysis of peripheral blood mononuclear cells (PBMC). Overall, 17 patients were
treated with either nivolumab or pembrolizumab alone, or with a combination of nivolumab and
ipilimumab every three weeks. Of 15 patients for which complete response assessment was available,
treatment responders (n = 10) as compared to non-responders (n = 5) were characterized by enhanced
PD-1 expression on CD8+ T cells immediately before treatment (median ± median absolute devia-
tion/MAD 26.7 ± 10.4% vs. 17.2 ± 5.3%). Responders showed a higher T cell responsiveness after T
cell receptor ex vivo stimulation as determined by measurement of programmed cell death 1 (PD-1)
expression on CD3+ T cells before the second cycle of treatment. The percentage of CD8+ effector
memory (CD8+CD45RA−CD45RO+CCR7−) T cells was higher in responders compared to non-
responders before and immediately after the first cycle of treatment (median ± MAD 39.2 ± 7.3% vs.
30.5 ± 4.1% and 37.7 ± 4.6 vs. 24.0 ± 6.4). Immune-related adverse events (irAE) were accompanied
by a higher percentage of activated CD4+ (CD4+CD38+HLADR+) T cells before the second treatment
cycle (median ± MAD 14.9 ± 3.9% vs. 5.3 ± 0.4%). In summary, PBMC immune monitoring of
immune-checkpoint inhibition (ICI) treatment in melanoma appears to be a promising approach to
identify early markers of treatment response and irAEs.

Keywords: immunology; T cells; melanoma; flow cytometry; immune checkpoint

1. Introduction

Cancer immunotherapies have a major impact on patient outcomes [1]. In particular,
immunecheckpoint inhibition (ICI) strategies targeting the programmed cell death protein 1
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(PD-1), programmed cell death protein ligand 1 (PD-L1), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) are approved for a large number of different cancers [1].
The longest experiences with ICI therapies exist for melanoma, renal cell cancer, and non-
small cell lung cancer. In melanoma, PD-1 and CTLA-4 inhibitory antibodies (nivolumab,
pembrolizumab, and ipilimumab) have been approved as single agents or in combination
for treatment of patients with unresectable stage III and distant metastatic disease [2,3].
Further, pembrolizumab, nivolumab, and ipilimumab have been approved by the U.S.
Food and Drug Administration (FDA) for adjuvant melanoma therapy [4].

However, a significant number of patients still do not respond to these treatments (60%
in case of PD-1 inhibition, 80% for CTLA4 inhibition). A variety of predictive biomarkers
for treatment response have been proposed. A major predictor of clinical benefit to anti-
PD-1 treatment is the presence of a T cell-inflamed gene expression profile in the tumor
microenvironment [5,6]. In melanoma and head and neck cancer, baseline IFN-γ-related
mRNA profiles were increased in tumors of responders to anti-PD-1 therapy [7]. In
melanoma, the frequency of tumor antigen-specific CD8+ T cells residing in the tumor
microenvironment found in baseline biopsies and during treatment was associated with
therapeutic response [8,9]. Negative regulatory factors, such as PD-L1 on tumor cells,
or the presence of FoxP3+ T regulatory cells (Tregs) and T cell anergy are observed in T
cell-inflamed tumors and may act as markers for response prediction [10].

However, immune monitoring on metastasis tissues prior to treatment and during the
course of therapy requires longitudinal biopsies, a rather impractical approach for most
patients and clinical settings. Thus, the analysis of blood samples appears to be much
more feasible and might even mirror the immunological environment in the tumor [11,12].
A study with the anti-PD1 antibody pembrolizumab using mass cytometry and flow
cytometry of peripheral blood mononuclear cells showed that the reinvigoration of Ki67+

circulating exhausted-phenotype CD8+ T cells (Tex) in relation to pretreatment tumor
burden correlated with clinical response [11]. However, response rates were also influenced
to a certain degree by the amount of T cells (CD8+ and CD4+), myeloid cells, monocytes,
and PD-1- and CTLA-4-expression on T-cells in the patients’ blood [11,13].

Only a few studies examined biomarkers predicting immune-related adverse events
(irAEs) to ICI therapies. In a proteome analysis, specific pre-treatment IgG-antibody
signatures in sera of melanoma patients predicted irAE development [14]. Furthermore,
the expression of specific chemokines and interleukins (increases in CXCL9 and CXCL10)
during therapy with PD-1 inhibitor could identify melanoma patients who are at high-
risk for irAEs [15]. The analysis of T cell clonality from blood samples in patients with
pancreatic cancer demonstrated that an increased amount of T cell clones could predict
severe irAEs [16,17].

IrAEs are common in ICI therapy and may be explained by T cell reactivation. The
anti-PD-1 antibodies nivolumab and pembrolizumab have a similar range of irAEs but are
less frequent and, in the majority, less severe compared to ipilimumab. For patients treated
with nivolumab, the most common irAEs were fatigue, rashes, diarrhea, pruritus, nausea,
and endocrinopathies [18]. The most frequent and severe irAEs occur during combination
therapy with nivolumab and ipilimumab.

Taken together, current immunotherapies in melanoma are associated with stilllimited
response rates and significant rates of immune-related adverse events. Thus, predictive
clinical markers that might be obtained by easily accessible patient material such a blood
samples, and also early during treatment, might help to improve clinical treatment de-
cisions and patient monitoring. In the present study, a panel of more than 40 different
immune cell subsets of peripheral blood mononuclear cells was analyzed in melanoma
patients under ICI therapy. This exploratory study was performed to identify candidate
cell subsets for future, more focused, studies of larger sample sets, which may ultimately
be used in routine clinical settings to guide treatment decisions.
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2. Results
2.1. General Clinical Characteristics

Seventeen patients (eight females, and nine males) were enrolled from June 2019
to October 2020. Apart from one mucosal melanoma and two melanomas of unknown
primary, all patients had stage IV metastatic cutaneous melanoma. Ten patients were
treatment-naïve. Eight patients started with the combination of ipilimumab and nivolumab,
five patients were treated with pembrolizumab and four patients received nivolumab as
a single agent. One patient who received the combination treatment was previously
progressive in the course of adjuvant treatment with nivolumab and afterwards received
targeted therapy with dabrafenib and trametinib and stereotactic radiation of a solitary
brain metastasis. Another patient was pretreated in advanced stage IV with dabrafenib and
trametinib and achieved complete remission but relapsed after a treatment-free interval of
six months. The BRAF V600E mutation was observed in five patients. In ten patients, at
least 2% of tumor cells expressed PD-L1. PD-L1 was negative in four patients (Table 1).

2.2. Immune-Related Adverse Events

Eight out of seventeen patients developed irAEs (47%) within the three months of
immune monitoring (Table 1), four patients experienced multiple irAEs. IrAEs consisted of
colitis, hepatitis, hypophysitis, nephritits, oral mucositis, pneumonitis, and thyroiditis. In
40% of these patients, the above mentioned irAEs were accompanied by fatigue, which
varied between grade 1–3 (Common Terminology Criteria for Adverse Events, CTCAEv5.0).
All patients who received the combination of ipilimumab and nivolumab experienced
irAEs. Most of their irAEs were mild to moderate. One patient suffered from fatigue grade
3. Patient 7 had to stop ICI due to irAEs.

2.3. Tumor Response

Two patients achieved CR and eight patients PR (summarized as responders). One
patient showed SD and four patients progressive disease (PD) (summarized as non-
responders). Of these four, two patients died from disease progression. In two patients,
response assessment was not available due to an early change of treatment regimen to tar-
geted therapy (TT) (patient 12) and unknown cause of unexpected death in early treatment
phase (patient 14) (Table 1).

2.4. Immune Monitoring

The expression of checkpoint point molecules PD-1 and CTLA-4 as well as the percent-
ages of different T cell, B cell and monocyte subpopulations at indicated time points were
analyzed by flow cytometry (overall 87 immune features; Supplementary Table S2). Respon-
der versus non-responder patients were compared as well as patients with and without
irAEs. Only irAEs which occurred during the 3 months of the observational period were
included into the study. Baseline expression values and experimentally induced expression
of checkpoint molecules as well as irAEs-related values were of particular interest.

The strongest time course effects were seen for PD-1 downregulation on CD3+, CD4+,
and CD8+ T cells at all time points after start of treatment (CD3+: median 26.6% vs. medians
0.1–3.4% for other time points; CD4+: median 25.7% vs. medians 0.2–4.9% for other time
points; CD8: median 22.5% vs. medians 0.4–2.1% for other time points), which is most likely
due to the PD-1 blocking antibodies used for treatment (Figure 1A–C). Time course analysis
also showed that the median of the percentages of activated (CD4+CD38+HLA-DR+) CD4+

T cells (p = 0.012) increased over time, starting with a median of 3.3% (time point 1) vs.
medians 3.4% (time point 2), 8.7% (time point 3) and 5.5% (time point 4) (Figure 1D).
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Table 1. Clinical characteristics of melanoma patients included in this study.

Patient Gender/Age a
Melanoma

Subtype/Site/Breslow
in mm b

BRAF/PD-L1 c ICI d Pre-Treatment e Tumor Burden
in cm f Involved Sites g Response h irAE/Grade i S100/LDH j

1 F/78 uNM/HN/1.8 WT/5% 4NIVO RT 1.0 PUL CR none -/+

2 M/76 uNM/T/1.4 WT/30% 1IPI/NIVO, 6NIVO none 20.6 CER, LN, MUS, PER, SC PR irFAT/G3
irTHY/G2 -/-

3 F/70 NM/LE/3.9 WT/20% 4PEMBRO aIFN 6.7 LN, PUL PD irMUC/G2 -/+
4 M/67 uALM/LE/3.1 WT/5% 4PEMBRO none 3.4 HEP PD irHEP/G1 -/+
5 F/74 mucM/AN/12.0 WT/0% (cKIT WT) 1IPI/NIVO, 1NIVO naRT 20.8 AN, HEP, PUL PD irHEP/G2 -/+
6 F/91 uNM/T/3.5 V600E/30% 4PEMBRO none 3.9 CUT, HEP, PUL PR none -/+

7 M/78 NM/T/9.6 WT/10% 2IPI/NIVO none 15 HEP, LN, OSS PR
irTHY/G2,
irHYP/G2,
irHEP/G1

+/+

8 M/75 uNM/UE/3.4 WT/0% 4PEMBRO none 4.6 CUT, LN, SC PR none +/-

9 F/41 NM/LE/3.1 V600E/0% 4IPI/NIVO, 1NIVO aIFN, aNIVO,
aTT 1.9 CER, LN SD none +/-

10 F/57 SSM/T/0.8 V600E/5% 2IPI/NIVO, 4NIVO TT 1.0 CER, PUL PR irHEP/G2 -/-

11 M/70 MNOS/T/1.4 WT/UKN 3IPI/NIVO, 1NIVO none 13.6 CER, INT, PUL, LN PR
irFAT/G2,
irCOL/G2,
irTHY/G1

+/+

12 M/77 uNM/T/9.0 V600E/5% 2NIVO none 18.7 CUT, INT, LN, MUS,
OSS, SPLE n.a. none +/+

13 M/76 NM/HN/3.6 WT/UKN 1NIVO none 16.9 ADR, BIL, OSS, PUL PD none +/+
14 M/61 uSSM/OE/1.5 WTUKN 3PEMBRO none 7.6 CUT, LN, PUL n.a. none -/-
15 F/95 uNM/HN/11.0 WT/10% 5NIVO none 7.5 ADR, HEP, MUS, PUL PR none -/-

16 F/52 CUP/UKN/UKN WT/2% 2IPI/NIVO RT 2.6 PAN, MUS CR
irDER/G1,
irTHY/G1,
irNEP/G1

-/-

17 M/48 CUP/UKN/UKN V600E/0% 4IPI/NIVO RT, TT 5.4 CER PR none +/+
a gender female (F) or male (M). b melanoma subtype (ulcerated (u), nodular melanoma (NM), superficial spreading melanoma (SSM), acral lentiginous melanoma (ALM), mucosal melanoma (mucM), melanoma
not otherwise specified (MNOS)), melanoma of unknown primary (CUP), site of primary (head and neck (HN), upper extremities (UE), torso (T), lower extremities (LE)), anal (AN), unknown site (UKN)/Breslow
thickness in mm. c BRAF mutation (V600) or wild type (WT); PD-L1 positivity in percent of melanoma cells in immune histochemical staining vs. staining unknown (UKN). d number of treatment cycles during
immune monitoring and therapy regimen of immune checkpoint inhibitors: nivolumab monotherapy (NIVO; 240 mg Q2W or 480 mg Q4W),ipilimumab/nivolumab combination therapy (IPI/NIVO; IPI
3 mg/kg bodyweight and NIVO 1 mg/kg bodyweight), pembrolizumab monotherapy (PEMBRO; 200 mg Q3W or 400 mg Q6W). e pre-treatment: adjuvant treatment (a), neoadjuvant (na,) targeted therapy
with BRAF/MEK-inhibitors (TT), ICI (NIVO, PEMBRO), radiotherapy (RT), interferon-α (IFN). f tumor burden in cm (target + non-target lesions). g in metastasis involved sites: adrenal (ADR), anal (AN),
gallbladder/bile (BIL), cerebral (CER), cutaneous (CUT), hepatic (HEP), intestinal (INT), lymph node (LN), muscular (MUS), skeletal (OSS), pancreatic (PAN), peritoneal (PER), pulmonary (PUL), subcutaneous
(SC), splenic (SPLE). h complete response (CR, all target lesions (TL) and non-target lesions (NTL) regressed), partial response (PR, sum of diameters TL + NTL at least −30%), progressive disease (PD, at least
+20% in sum of diameters of TL + NTL), stable disease (SD, sum of diameters TL + NTL between −29% and +19%); response not available (n.a.) due to early treatment change to TT or unknown cause of death
before response evaluation. i immune-related adverse event (irAE) during immune monitoring and grade according to CTCAE v5.0 (G1-5): irHepatitis (irHEP), irFatigue (irFAT; irFAT grade 1 was not assessed as
irAE), irGamma-glutamyltransferasis elevated (irGGT), irThyroiditis (irTHY), ir lichenoid mucositis (irMUC), irHypophysitis (irHYP), irNephritis (irNEP). j S100 and LDH above upper level of normal (+) vs.
normal values (-) at start of ICI.
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Figure 1. PD-1 expression on T cells in stage IV melanoma patients under ICI therapy. PBMC were
taken from patients at indicated time points and PD-1 expression on T cells was analyzed by flow
cytometry (FACS). Blood samples were taken immediately before first treatment with anti-PD-1 (either
alone or in combination with anti-CTLA-4) (time point 1), immediately after first treatment on the
same day (time point 2), after two or three weeks (time point 3) and after three months (time point 4).
(A) PD1+CD3+ T cells. (B) PD1+CD4+ T cells. (C) PD1+CD8+ T cells. (D) CD4+CD38+HLADR+ T
cells. Nominal (unadjusted) p-values are shown without adjustment for multiple testing. Data in
(A–C) are given as percentage of PD-1+ cells of total CD3+, CD4+, and CD8+ T cells, respectively.
Data in (D) are given as percentage of CD38+HLADR+ cells of total CD4+ T cells.

A number of markers were differentially expressed between responders and non-
responders (Figure 2A–F). There was a consistent trend for PD-1 expression on CD3+ T
cells in responders compared to non-responders without stimulation (median ± MAD
33.1 ± 7.9% vs. 23.1 ± 9.8%) (Figure 2A). Latent T cell responsiveness to external stimuli
and to local stimuli present in the tumor microenvironment might be factors that influence
treatment response. To address this issue, PBMC were washed and subsequently stimulated
for 24 h with anti-CD3/anti-CD28 at every time point of treatment to activate T cell receptor
signaling. Control cells were kept in T cell standard culture medium containing 10% FCS.
PD-1 surface expression was measured as a surrogate marker for T cell re-activation.
Control T cells kept under serum-conditions as well as anti-CD3/anti-CD28-stimulated T
cells showed more prominent PD-1 expression on CD3+ T cells in responders compared
to non-responders at time point 3 (median ± MAD 29.6 ± 9.0% vs. 6.3 ± 3.4% and
79.3 ± 5.8% vs. 63.9 ± 5.0%) (Figure 2B,C). This difference was not observed for CD4+ T
cells (Supplementary Figure S1).
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Figure 2. PD-1 expression on CD3+ and CD8+ T cells in ICI responders and non-responders. PBMC were taken from
patients at indicated time points as described in Figure 1 and analyzed by flow cytometry (FACS). (A,D) PD1+CD3+ or
PD1+CD8+ expression without stimulation. (B,E) PD1+CD3+ or PD1+CD8+ expression in control cells after cell culture
in 10% FCS. (C,F) PD1+CD3+ or PD1+CD8+ expression after anti-CD3/anti-CD28 stimulation. Nominal (unadjusted)
p-values (Mann–Whitney U test between responders and non-responders) are shown without adjustment for multiple
testing. Responders are indicated by response = 1, non-responders by response = 0. Data in (A–F) are given as percentage of
PD-1+ cells of total CD4+ and CD8+ T cells, respectively.

PD-1 expression on CD8+ T cells was significantly higher at time point 1 (immediately
before first treatment) in responders than in non-responders (median ± MAD 26.7 ± 10.4%
vs. 17.2 ± 5.3%) (Figure 2D), but this difference was lost at later time points. Control T cells
kept under serum-conditions as well as anti-CD3/anti-CD28-stimulated T cells showed
more prominent PD-1 expression on CD8+ T cells under serum-conditions at time points
2 and 3 (median ± MAD 22.5 ± 9.8% vs. 3.1 ± 2.8% and 32.1 ± 13.4% vs. 4.9 ± 2.7%)
(Figure 2E). The difference was no longer present after stimulation of CD8+ T cells with
anti-CD3/anti-CD28 antibodies (Figure 2F). Here, stimulation with anti-CD3/anti-CD28
induced close to 80% positive cells in both responders and non-responders, and differences
observed for cells kept under serum-conditions may be leveled out under anti-CD3/anti-
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CD28 stimulatory conditions (Figure 2F). Taken together, latent T cell responsiveness of
CD8+ T cells might be a valuable early marker for treatment response.

Responders also had significantly higher percentage of CD8+ (CD8+CD45RA−CD45RO+

CCR7−) T effector memory T cells than non-responders at time points 1 and 2 (median ± MAD
39.2 ± 7.3% vs. 30.5 ± 4.1% and 37.7 ± 4.6 vs. 24.0 ± 6.4) (Figure 3A). The absolute number
of CD8+ effector memory T cells was not different between responders and non-responders.
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Figure 3. Inflammatory T cell subpopulations in ICI responders and non-responders. PBMC were taken from patients
at indicated time points as described in Figure 1 and analyzed by flow cytometry (FACS). (A,B) Percentage and absolute
number of effector memory T cells, respectively. (C) CD38+HLADR+ NK cells. (D) CD4+CD38+ cells. Nominal (unadjusted)
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CD8+ effector memory cells of total CD8+ T cells. Absolute number refers to CD8+ effector memory cells per µL. Data in
(C) are given as CD38+HLADR+ cells of total NK cells. Data in (D) are given as percentage of CD38+ cells of total CD4+ cells.

The percentage of activated (CD16+CD56+CD38+HLA-DR+) NK cells was higher
in non-responders at time points 1 and 2 (median ± MAD 10.4 ± 6.8% vs. 2.4 ± 1.3%
and 7.4 ± 1.8% vs. 2.2 ± 0.8%) (Figure 3C). The percentage of activated CD4+ T cells
(CD4+CD38+) was significantly higher at time point 3 in non-responders compared with
responders (median ± MAD 75.0 ± 10.2% vs. 55.3 ± 2.5%) (Figure 3D). In line with this,
the percentage of activated CD4+ T cells (CD4+CD38+HLA-DR+) increased over time, as
described above (Figure 1D). Taken together, CD8+ effector memory T cells, activated
(CD16+CD56+CD38+HLA-DR+) NK cells, and CD4+CD38+ T cells may be early markers of
treatment response. pSTAT5 at position 705 (pY705) is regarded as a general marker for T
cell activation [19]. The baseline value of pSTAT5 in T cells at time point 1 was significantly
higher in responders (Supplementary Figure S2). However, the baseline values of all
patients were very low (below 5%). The clinical relevance of this finding is unclear at
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the moment and requires further investigation. No difference was observed after T cell
stimulation with IL-2 or anti-CD3/anti-CD28 for pSTAT5, which, however, dramatically
increased pSTAT5 values (Supplementary Figure S2).

The proportion of effector T cells distinguished patients with irAEs from patients
without irAEs. The percentage of CD4+ effector T cells (CD4+CD45RA+CD45RO−CCR7−)
was lower at time point 4 (median ± MAD 2.0 ± 1.5% vs. 3.8 ± 2.1%) for patients
with irAEs (Figure 4A). The percentage of CD8+ (CD8+CD45RA+CD45RO−CCR7−) ef-
fector T cells showed no difference in patients with irAEs (Figure 4B). The percentage of
CD4+CD38+HLA-DR+ (Figure 4C) T cells at time point 3 was higher in patients with irAEs
(median ± MAD 14.9 ± 3.9% vs. 5.3 ± 0.4%), as was the percentage of CD4+HLADR+ T
cells (median ± MAD 24.8 ± 3.0% vs. 10.4 ± 1.8%) (Figure 4D), similar to the percentage
of CD8+CD38+ T cells at time point 3 (median ± MAD 63.5 ± 7.8% vs. 42.8 ± 11.7%)
(Figure 4D).
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Figure 4. Inflammatory T cell subpopulations in patients with and without irAE. PBMC were taken from patients at
indicated time points as described in Figure 1 and analyzed by flow cytometry (FACS). (A,B) Percentage of CD4+ and CD8+

effector T cells. (C) CD4+CD38+HLADR+ T cells. (D) CD8+CD38+ T cells. irAE, immune-related adverse events. 0, without;
1, with adverse events. Nominal (unadjusted) p-values (Mann–Whitney U test between irAE = 1 and irAE = 0) are shown
without adjustment for multiple testing. Data in (A,B) are given as percentage of CD4+ effector cells and CD8+ effector cells,
respectively, of total CD4+ and CD8+ cells. Data in (C) are given as percentage of CD38+HLADR+ cells of total CD4+ cells.
Data in (D) are given as percentage of CD38+ cells of total CD8+ cells.

Baseline expression (time point 1) of phosphorylated STAT5 at position 705 (pY705)
and stimulation with IL-2 showed that patients with irAE had a consistent trend of dif-
ference of pSTAT5 levels compared with patients without irAE at time point 3, possibly
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arguing for an enhanced responsiveness of lymphocytes of these patients (median ± MAD
83.8 ± 7.4% vs. 57.9 ± 21.0%) (Figure 5A,B).
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Figure 5. Intracellular expression of phosphorylated STAT5 (pSTAT5) in T cells. PBMC were taken
from patients at indicated time points as described in Figure 1 and analyzed by flow cytometry
(FACS). (A) pSTAT5 expression after T cell stimulation with IL-2 for 15 min. (B) pSTAT5 expression
without T cell stimulation. irAE, immune-related adverse events. 0, without; 1, with adverse events.
Nominal (unadjusted) p-values (Mann–Whitney U test between irAE = 1 and irAE = 0) are shown
without adjustment for multiple testing. Data in (A,B) are given as percentage of pSTAT5 positive
cells of total CD3+ T cells.

Next, we analyzed markers of leukocyte activation at the time point of the occurrence
of irAE (earliest time point after irAE and admission to our outpatient clinic with ongoing
adverse events). We compared these values with time point 2 (immediately after the first
intravenous administration of the respective immune therapy to exclude treatment-related
PD-1 downregulation as a confounding parameter). In line with the time course of T cell
activation, there was an induction of CD4+CD38+HLA-DR+ T cells (increase of 7.3 ± 3.1%),
and of CD8+CD38+ T cells (increase of 15.6 ± 11.6%) at the time point of adverse events
(Figure 6A,B).

Furthermore, the percentage of CD8+ and CD4+ effector memory T cells (CD8+/CD4+

CD45RA−CD45RO+CCR7−) was higher at this time point (increase of 8.2 ± 4.0% and
6.9 ± 1.8%, respectively) (Figure 6C,D). Moreover, the percentage and the absolute number
of B cells was downregulated at this time point (Supplementary Figure S3). Thus, activated
CD4+ and CD8+ T cells and CD4+/CD8+ effector memory T cells may indicate tumor
response and adverse events.
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Figure 6. Inflammatory T cell subpopulations in patients with irAE. PBMC were taken from patients immediately after
first treatment on the same day (post-treatment; time point 2 in previous figures). In addition, PBMC were taken from
patients at the time point of first appearance of adverse events (irAE) and analyzed by flow cytometry (FACS). The red
boxplots illustrate the pairwise difference of post-first treatment and irAE measurements. (A) CD4+CD38+HLADR+ T
cells. (B) CD8+CD38+ T cells. (C) CD8+ effector memory T cells. (D) CD4+ effector memory T cells. Nominal (unadjusted)
p-values (Wilcoxon signed-rank test between post-therapy and irAE) are shown without adjustment for multiple testing.
Data in (A) are given as percentage of CD38+HLADR+ cells total CD4+ cells. Data in (B) are given as percentage of CD38+

cells of total CD8+ cells. Data in (C,D) are given as percentage of CD4+ and CD8+ effector memory cells, respectively, of
total CD4+ and CD8+ cells.

3. Discussion

In an attempt to identify predictive immune markers for ICI treatment response and
irAE, this exploratory study analyzed sequential blood samples in 15 stage IV melanoma pa-
tients under ICI therapy by flow cytometry for a comprehensive set of immune phenotypes.

The strongest effects were seen for loss of PD-1 detection on CD3+, CD4+ and CD8+ T
cells. Of note, this effect was seen immediately after the first ICI treatment, possibly due to
the use of PD-1-blocking antibodies given either alone or in combination with anti-CTLA-4
treatment. PD-1 expression also characterized immune phenotypes of treatment responders
and non-responders. The proportion of PD-1+CD8+ T cells in responders was significantly
higher at time point 1 (before treatment) in responders compared to non-responders. This
difference was lost during the further course treatment, likely due to PD-1 saturation by
the applied antibodies. Our observations are in line with a study in non-small cell lung
cancer patients treated with PD-1 inhibitor therapy, in which responding patients showed
higher numbers of PD-1+CD8+-expressing T cells during the first four weeks of treatment,
supporting a predictive role of PD-1 expression for ICI treatment [20].

In the present study, PD-1 expression on T cells remained low throughout three
months of monitoring. However, PD-1 re-expression could be achieved by anti-CD3/-
CD28 stimulation of lymphocytes ex vivo or under culture conditions of lymphocytes with
FCS. In case of anti-CD3/-CD28 treatment, PD-1 expression was induced in ~80% of CD3+
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and CD8+ lymphocytes. In case of CD3+ T cells, treatment responders showed a stronger
responsiveness to anti-CD3/-CD28 stimulation (~82% positive cells), as compared to non-
responders (~64% positive cells) at time point 3 (2 or 3 weeks after onset of treatment).
These findings may thus help to identify non-responders at a relatively early time point.
This difference was also observed in CD3+ and CD8+ lymphocytes kept in RPMI with FCS,
which may represent a kind of serum stimulation. In line with these observations, CD28
expression (and activation) was shown to be important for the rescue of exhausted T cells
under PD-1 targeted treatment [21]. The role of T cell receptor (TCR) activation for PD-1
induction, as observed in our study, is not completely understood, but PD-1 induction
after TCR stimulation either alone or in combination with immune-activating cytokines has
been reported in a number of earlier studies [22,23]. Thus, latent responsiveness to TCR
stimulation appears to be a promising functional marker for treatment response in different
cancer settings, which, to the best of our knowledge, has not been described in detail so far.
In support of these findings, local PD-1 expression in melanoma tissues after stimulation
in the local tissue microenvironment has been shown to have a prognostic value in ICI
treatment settings [8]. Moreover, in an earlier report, T cell recovery of tumor-infiltrating
lymphocytes (TIL) extracted from NSCLC biopsies could be observed within hours ex vivo
in cell culture [24].

A very recent report of melanoma treatment-related immune monitoring showed
that PD-1 downregulation on CD4+CD25+CD127−PD1+ regulatory T lymphocytes under
PD-1 inhibitor treatment was observed only in patients with favorable prognosis but not
in patients with unfavorable prognosis [25]. In this latter study, no reduction of PD-1
expression was observed in non-responders. However, based on a current review on
different PD-1 staining antibodies, so far no reliable staining was described for any of the
commonly used FACS antibodies after PD-1 inhibitor therapy [26]. Thus, the constant
staining for PD-1 in unfavorable prognosis patients in this study cannot be explained at
the moment. Regulatory T cells as a whole did not show a significant difference between
populations with favorable or unfavorable prognosis in this study [25], which is supported
by our data.

In line with our observation of latent and enhanced responsiveness, proliferation
marker Ki67 was highly expressed in PD-1+CD8+ T cells in another melanoma study after
three weeks of treatment with the anti-PD1-inhibitor, an analysis performed with PMBC
of 29 stage IV melanoma patients [11]. Moreover, a higher ratio of PD-1+Ki67+CD8+ (re-
invigorated) CD8+ T cells to tumor burden was associated with better clinical response. T
cell re-invigoration might indeed be a marker of enhanced responsiveness. The authors
regarded CD38 and HLA-DR, the expression of which increased under treatment on CD4+

T cells in the present study, as cell surface surrogate markers for Ki67+ cells.
Responders also had a higher percentage of CD8+ (CD8+CD45RA−CD45RO+CCR7−)

effector memory T cells than non-responders in the present study. Thus, CD8+ effector
memory T cells might be a second early marker for treatment response, since differences
were already observed before the second cycle of treatment. Frequencies of CD4+ effector
memory CD4+CD45RO+CD62L− T cells were lower before therapy for responders in a
recent study using cytometry by time of flight (CyTOF) for PBMC analysis [13]. This
study analyzed 20 stage IV melanoma patients treated with anti-PD-1 antibodies. How-
ever, the CD8+ T cell subpopulation of responders had a higher frequency of central
memory (CD8+CD45RO+CD62L+) T cells before and after 12 weeks of treatment than non-
responders. High baseline CD14+CD16b−HLA-DRhi monocytes in PBMC were the most
prominent predictor for progression-free and overall survival in this latter study [13]. The
percentage of activated HLA-DR-positive monocytes was slightly higher in pretreatment
samples in our study, but values did not reach statistical significance.

Further, effector memory T cells have been shown to be associated with durable
responses in ICI-treated melanoma patients in a very recent study [27]. In this latter study,
a large transcriptomic analysis of peripheral blood CD8+ lymphocytes was performed for
metastatic melanoma patients receiving anti-PD-1 or anti-CTLA-4 therapy. The number of
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large TCR clones, as determined by TCR sequencing, was higher in responders compared
to non-responders, which correlated with the percentage of CD8+, but not CD4+, effector
memory T cells in peripheral blood.

Moreover, transcriptomic and immune profiling were performed on 158 tumor biop-
sies from melanoma patients treated with anti-PD-1 monotherapy or combined anti-PD-1
and anti-CTLA-4 therapy. As determined by mass cytometry of melanoma tissues using a
panel of 43 markers, CD8+/CD4+EOMES+CD69+CD45RO+ effector memory T cells were
significantly more abundant in responders of combined immunotherapy compared with
non-responders [28].

In a further study, thousands of immune cells from 48 tumor samples of melanoma
patients were analyzed using single-cell gene expression profiles of lesional immune cells
from metastatic melanomas under ICI (predominantly anti-PD-1) treatment [29]. In line
with our findings, clusters of CD4+ and CD8+ effector memory cells were associated with
response to treatment, and non-responder T cells expressed high levels CD38, LAG3 and
HAVCR2 (TIM-3), well-known T cell exhaustion markers [29].

In line with this, one major finding in our study was that activated HLA-DR+CD38+NK
cells and CD4+CD38+ T cells showed higher levels in non-responders as compared to re-
sponders. Similar findings have been reported in an experimental murine melanoma study
that also included a number of patient samples [12]. Authors found that priming of T cells
by a gp100 peptide vaccination strategy in parallel to anti-PD-1 treatment reversed the in-
hibitory effects of PD-1+CD38highCD8+ T cells as did the depletion PD-1+CD38highCD8+

cells. These findings emphasized the immune inhibitory role of CD38+ T cells. In pa-
tient samples, the fraction of PD1+CD38+CD8+ T cells was higher in cells extracted from
melanoma lesions in non-responders compared to responders [12]. The CD38+ fraction
in PD-1+CD8+ cells showed a similar behavior in PBMC. Thus, apart from PD-1, CD38
appears to be a significant inhibitor molecule for immune activation. The role of CD38
is incompletely understood in the immune context but its effects might be mediated by
the metabolic CD38-NAD+ axis [30]. T cells with reduced surface expression of CD38
exhibited higher NAD+, mediating oxidative phosphorylation, higher glutaminolysis, and
mitochondrial dynamics. Consequently, CD38 has gained interest as new molecule for
targeted treatment of cancer as recently shown for multiple myeloma [31].

A major question of the present study was the role of immune phenotypes as predictors
for the occurrence of irAE. In line with the time course of T cell activation, there was a promi-
nent induction of CD4+CD38+HLA-DR+ T cells and of CD8+CD38+ T cells at the time point
of adverse events, both subpopulations of activated CD4+ and CD8+ T cells. As mentioned
above, the role of CD38 is not completely understood in tumor immunology, but overexpres-
sion might indicate suppressive mechanisms to control an over-activated immune system.
Furthermore, the percentage of CD4+ and CD8+ (CD4+/CD8+CD45RA−CD45RO+CCR7−)
effector memory T cells was higher at this time point. Thus, CD4+ and CD8+ effector
memory T cells appear to indicate both tumor response and adverse events. Since this
CD8+ T cell population was already present at time points 1 and 2 (before and immediately
after the first treatment) in the responder versus non-responder analysis, it may serve as
an early marker for response and irAE. Evidence has been provided that irAEs correlate
with treatment response in ICI therapy using nivolumab [32]. Thus, CD4+/CD8+ effector
memory T cells might be a link between both treatment response and irAE. Similar results
were obtained in a very recent report, where it was demonstrated that a subset of patients
predisposed to ICI-related hepatitis may be identified by expanded CD4+ effector memory
T cells [33].

Overall, the number of studies analyzing markers of irAE in peripheral blood is
limited, and so far, we have provided one of the most comprehensive studies. In the
present study, we took blood samples from patients at up to five different time points
within the first three months of therapy, where irAEs are most prevalent [34]. Future
investigations are needed and should analyze the importance of the overall absolute
number versus the percentage of the respective immune cell subpopulation, respectively.
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Before the second treatment cycle (time point 3), the frequency of activated CD4+ T
cells (CD4+CD38+HLA-DR+) was elevated and preceded the onset of irAEs. Similarly, the
percentage of pSTAT5 expressing T cells (after 15 min of IL-2-stimulation) was higher in
irAE patients. Thus, latent responsiveness of peripheral blood cells might also be a marker
for irAE, as described above for treatment response. Activated (phosphorylated) STAT5
is a well-known marker for T cell proliferation and activation [19,35,36]. In accordance
with these findings, the expression of proliferation markers on CD4+ T cells 2 weeks after
therapy initiation of ipilimumab and GM-CSF was increased in patients with metastatic
prostate cancer [17]. In this study, a diversification in the T cell repertoire of both CD4+

and CD8+ T cells was associated with the occurrence of irAEs, which was, however, shown
in only two patients. Similarly, an increased number of activated Ki67+CD8+ T cells was
associated with the development of irAEs in melanoma patients, 6 months after therapy
initiation with adjuvant ipilimumab [24].

In line with our data of activated (CD4+CD38+HLADR+) T cells associated with irAE,
Subudhi and coworkers showed that expansion of specific CD8+ Tcell clones preceded
the development of severe irAE and identified CD8+ T cells as a potential predictive
biomarker for irAEs in patients with metastatic prostate cancer under ipilimumab ther-
apy [16]. Histopathological examinations of immune-related hepatitis in melanoma patients
under either nivolumab or ipilimumab demonstrated a primarily CD8+ T lymphocytic infil-
tration of hepatic tissue [37]. Similarly, histopathologic examination of cardiac tissue from
a patient who suffered from immune-related myocarditis under pembrolizumab showed a
predominantly CD8+ T cell infiltration [38]. An earlier study showed that a low percentage
of Ki67+EOMES+CD4+ T cells at baseline (but not under treatment) was associated with the
occurrence of irAE in a study using adjuvant treatment of stage III and stage IV melanoma
patients with anti-CTLA antibody ipilimumab [39]. This is partly in contrast to our study,
as we did not observe differences in cell populations at baseline. However, the majority
(59%) of the patients in the mentioned study received prior immunotherapy with a cell
vaccine, GM-CSF, high-dose IL-2, or interferon-α, or biochemotherapy. Thus, a significant
number of their baseline values might have been influenced by prior immune treatment,
and thus these data might not be directly comparable to ours.

The percentage and absolute numbers of B cells was reduced at the time point of irAE.
The role of B cells in tumor immunology is still controversial at the moment and is related
to positive and negative prognoses, respectively. However, evidence has been provided
that a decline in B cell numbers is associated with irAE under ICI treatment of melanoma
patients, in line with the results in the present study [40].

The present study has limitations such as the limited number of patients as it was
designed as an exploratory study to find candidates for markers that may be validated
in larger studies in future. However, the number of parameters analyzed exceeds that
of many other studies, with additional ex vivo stimulation experiments. Moreover, time
course analyses performed herein may add additional information about the validity of
individual markers.

Taken together, the present comprehensive study of peripheral blood markers for
treatment response and irAE is consistent with a number of earlier studies regarding
effector memory and effector T cells, further validating these findings. Moreover, latent re-
sponsiveness of T cells after TCR stimulation may be an early marker of treatment response.
Evidence is provided for the role of new markers such as CD38 for treatment resistance in
melanoma, which might have direct therapeutic consequences. Activated CD4+ and CD8+

T cells showed a characteristic pattern in patients with irAE. Further studies with larger
patient cohorts should be performed to further substantiate these findings.

4. Materials and Methods
4.1. Study Design and Patients

Seventeen adult patients were enrolled in the exploratory study to identify putative
markers. This was a non-interventional biomarkerstudy performed in one center. The
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study protocol was approved by the local ethics committee at the Medical Faculty at
Leipzig University (reference number: 130/19-ek). The investigations were carried out
following the rules of the Declaration of Helsinki of 1975, and patients were included after
informed consent.

Patients were included with advanced unresectable stage IV melanoma, naïve for ICI
therapies. Patients with progress after previous molecularly targeted treatment (such as
BRAF inhibitors) or following adjuvant treatment with interferon alpha were allowed, as
well as patients with adjuvant therapy with PD-1-inhibitors more than 6 months prior to
study inclusion.

Patients were treated with ICI (pembrolizumab every three or six weeks, or nivolumab
every two or four weeks, or a combination of nivolumab with ipilimumab every three
weeks). Blood samples were collected at four pre-defined time points: (i) directly before
(time point 1); (ii) directly after the first ICI infusion (time point 2); as well as (iii) directly
before the second infusion (time point 3) after two or three weeks, depending on the ICI
regimen; and (iv) after three months of treatment (time point 4). Additional sampling
time points were determined for patients with either clinical evidence for irAEs or disease
progression. Progression was radiologically assessed (response evaluation criteria in solid
tumors, RECISTv1.1 criteria), and in case of suspicion of pseudoprogression, confirmed
with repeated imaging at earliest time point after 4 weeks.

Response was categorized as partial response (PR) or complete response (CR), whereas
non-response included stable disease (SD) and progressive disease (PD) (RECIST criteria)
after a minimum of six months. A maximum of five blood samples was taken from each
patient. Follow-up of patients was after at least 6 months (maximum 18 months).

4.2. Flow Cytometry

Peripheral blood samples from patients were collected to discriminate between specific
cell populations and to assess: (i) a basic immune status, (ii) T cell differentiation, (iii) phos-
phorylation of signal transducer and activator of transcription 5 (pSTAT5), (v) PD-1- and
CTLA4-expression on T cells, (vi) γδ-T cells, and (vii) human leukocyte antigen-HLADR
isotype (HLA-DR) expression (Supplementary Tables S1 and S2). For (i), (ii), (vi), and
(vii), patient’s peripheral blood was incubated with different antibody combinations as
described by Boldt and co-workers (Supplementary Tables S1 and S2) (20, 21). For each sam-
ple, 100 µL of whole blood was incubated with an antibody cocktail specific for the desired
cell populations [41,42]. After surface cell staining for 15 min at room temperature in the
dark, erythrocytes were lysed by incubation with lysis buffer (BD Biosciences, Heidelberg,
Germany) for 10 min. Following centrifugation and washing with PBS (Biochrom, Berlin,
Germany), lymphocytes were fixed with 200 µL phosphate-buffered saline (PBS) containing
1% formaldehyde. The different populations consisted of T helper cells, cytotoxic T cells, B
cells, NK cells, activated NK cells, NK T cells, activated CD4+T cells, activated CD8+ T cells,
α/β T cells, γ/δ T cells, CD4/CD8 double-positive T cells, CD4/CD8 double-negative
T cells, α/β CD4/CD8 double-negative T cells, γ/δ CD4/CD8 double-negative T cells,
thymus migrant CD4+ T cells, thymus migrant CD8+ T cells, naive CD4+ T cells, naive
CD8+ T cells, effector memory CD4+ T cells, effector memory CD8+ T cells, central memory
CD4+ T cells, central memory CD8+ T cells, effector CD4+ T cells, effector CD8+ T cells,
HLA-DR+ monocytes, regulatory T cells, PD-1+ T cells, PD-1+ T helper cells, cytotoxic T
cells (for PD-1+ cells 24 h blank value or 24 h anti-CD3/-CD28 stimulated in vitro), CTLA-
4+ T cells, CTLA-4+ T helper cells, CTLA-4+ cytotoxic T cells (for CTLA-4+ 24 h blank
value or 24 h anti-CD3/-CD28 stimulated), and pSTAT5-expressing T cells (24 h blank
value IL-2 stimulated or 24 h anti-CD3/-CD28 stimulated in vitro) (for more details see,
Supplementary Table S2).

4.3. Analysis of STAT5-Phosphorylation—IL-2-Stimulation

200 µL EDTA-blood from patients was incubated with recombinant interleukin 2
(IL-2) (37 ◦C, 15 min). After that, whole blood was lysed by incubation with lysis/fixation
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buffer (BD Phosflow, BD Biosciences, Heidelberg, Germany) (12 min, 37 ◦C). After washing
(500× g, 5 min) cells were permeabilized in Perm Buffer III (BD Biosciences) for 30 min on
ice. After washing (500× g, 5 min) cells were stained with anti-pSTAT5 (pY705) (intracellu-
lar), anti-CD3 peridinin-chlorophyll proteins (PerCP)-Cy5.5, anti-CD4 phycoerythrin (PE),
and anti-CD8 Alexa Fluor488 antibodies. Antibodies were purchased from BD Biosciences.
After 1 h (at room temperature in the dark) cells were washed and fixed with 200 µL PBS
containing 1% formaldehyde. An unstimulated panel was used as negative control.

4.4. Analysis of STAT5-Phosphorylation—CD3/CD28-Stimulation

PBMCs were isolated by density gradient centrifugation (1 × 106 cells/ml RPMI, 10%
fetal calf serum (FCS) + 1% penicillin/streptomycin), stimulated with anti-CD3/anti-CD28
antibodies (eBioscience, San Diego, CA, USA) at 37 ◦C, 5% CO2 for 24 h. The next day, cells
were harvested, washed (500× g, 5 min) an incubated with lysis/fix buffer (BD Biosciences)
for 12 min at 37 ◦C. After washing (500× g, 5 min) cells were stained as described above.
An unstimulated panel was used as negative control.

4.5. Analysis of Lymphocyte Markers and PD-1-Expression

PBMCs were isolated by density gradient centrifugation as described above. PBMCs
were then split into three parts, either left unstimulated, held under serum conditions for
24 h, or stimulated with anti-CD3/anti-CD28 for 24 h (at 37 ◦C). Cells were then stained
by incubation with an antibody cocktail containing anti-CD8 PerCP, anti-CD4 V450, anti-
CD3 V500, anti-CD45 APC-H7, anti-CD56 PE-Cy-7, anti-CD16 PE-Cy-7, and anti-PD1 PE
for 15 min in the dark (Supplementary Table S1). Antibodies were purchased from BD
Biosciences. In the next step, erythrocytes were lysed by incubation with lysis buffer (BD
Biosciences) for 10 min. Following centrifugation and washing with PBS (Biochrom, Berlin,
Germany), lymphocytes were fixed with 200 µL PBS containing 1% formaldehyde.

4.6. Analysis of CTLA-4-Expression

PBMCs were isolated by density gradient centrifugation as described above. PBMCs
were then split into three parts, either left unstimulated, held under serum conditions for
24 h, or stimulated with anti-CD3/anti-CD28 for 24 h (at 37 ◦C). Cells were then stained
with anti-CD8 PerCP, anti-CD4 V450, anti-CD3 V500, anti-CD45 APC-H7, anti-CD56 PE-
Cy-7, and anti-CD16 PE-Cy-7 for 15 min in the dark. After washing in PBS (500× g, 5 min)
cells were permeabilized by FIX and Perm Buffer III (BD Biosciences) for 20 min. After
washing, cells were incubated with anti-CTLA-4 APC (BD Biosciences) for 30 min in the
dark. Cells were washed (2 x) and fixed with 200 µL PBS containing 1% formaldehyde.

4.7. Data Acquisition

For data acquisition, an eight color FACS Canto II flow cytometer (BD Biosciences)
was used, equipped with a 405 nm violet laser, a 488 nm blue laser and a 647 nm red
laser. For correct collection of fluorescent light, different band-pass filters and mirrors
were used. For the violet laser: Horizon 450 channel (450/50) and Horizon 500 channel
(510/50, 502LP); for the blue laser: SSC channel (488/10), FITC channel (530/30LP, 502LP),
PE channel (585/42, 556LP), PerCP channel (670LP, 655LP), and PE-Cy7 channel (780/60,
735LP); for the red laser: APC channel (660/20) and APC-H7 channel (780/60, 735LP) were
used. Data were analyzed using FACS DIVA (BD Biosciences) software.

4.8. Clinical Data

We collected demographic and clinical data such as age, sex, primary melanoma type,
mutational status (BRAF; in BRAF wild type melanomas, additionally in individual cases
NRAS and cKit, the latter especially for mucosal melanomas), tumor burden (including
sum of diameters of measurable lesions and number of involved organs), levels of lactate
dehydrogenase (LDH) as well as preceding melanoma therapies (e.g., adjuvant interferon
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alpha, targeted therapies). Furthermore, we obtained standard laboratory values including
the tumor marker S100ß protein.

4.9. Statistical Analysis

Statistical analysis was performed using the statistic software R v4.0.2. Differences
between responders and non-responders as well as patients with and without irAE were
assessed by Mann–Whitney U test for each of the analyzed four time points. The Kruskal–
Wallis test was applied for the analysis of time courses including n = 15 patients. Two
patients, patients 12 and 14 (Table 1), were excluded from the final analyses because of an
early change in treatment regimen to BRAF/MEK-inhibition and unknown cause of death,
respectively. Differences between post-first dose levels (time point 2) and levels at the time
point of first appearance of irAE were analyzed by Wilcoxon signed-rank test for all patients
with observable irAE within the follow-up time. Based on the small sample size of the
presented pilot study, the limited statistical power did not allow for statistical confirmation
of the observed differences with proper adjustment for multiple testing. Instead, the most
prominent differences were selected by a nominal (unadjusted) p-value of p < 0.05. For
these features, the median as well as the median absolute deviation (MAD) of measured
levels are presented for each group (R function MAD with parameter constant = 1).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22158017/s1.
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