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Abstract: Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal
models have provided invaluable contributions in the knowledge of viral infection, transmission and
progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell
leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical
spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as
well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered
animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and
to verify the effectiveness of viral therapy and host immune response. Here we review the current cell
models for studying virus-host interaction, cellular restriction factors and cell pathway deregulation
mediated by HTLV products. We recapitulate the most effective animal models applied to investigate
the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and
monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1
viruses in animals. The most recent anticancer and HAM /TSP therapies are also discussed in view
of the most reliable experimental models that may accelerate the translation from the experimental
findings to effective therapies in infected patients.

Keywords: HTLV; humanized mice; ATL; HAM/TSP; Tax; HBZ; BLV; STLV; CRISPR; NF-«B; CIITA;

restriction factors

1. Introduction

Human T-cell leukemia virus type 1 (HTLV-1), isolated in the early 1980s from T
cell lines derived from patients with cutaneous T-cell lymphoma and human adult T-cell
leukemia, was the first human retrovirus to be discovered [1,2]. Since then, four HTLV
types have been isolated in humans and have been phylogenetically associated with the
simian STLV viruses [3,4]. In contrast to the HIV retrovirus, no efficient therapy is yet
available to avoid the onset of the most alarming diseases caused by HTLV-1. In vivo,
HTLV-1 infects mainly CD4+ T cells, the key cells in the triggering and establishment
of the adaptive immune response. Besides being the etiological agent of adult T-cell
leukemia/lymphoma (ATL), in 3-5% of infected subjects, HTLV-1 causes immune hyper-
sensitivity conditions like arthritis, uveitis, and most importantly, the HTLV-1-associated
myelopathy /tropical spastic paraparesis (HAM/TSP), a fatal chronic inflammatory neurological
disorder [5-8]. Most infected people, however, remain asymptomatic, highlighting the role
of the immune system in the control of infection [9-11]. Worldwide, more than 20 million
subjects are infected by HTLV and, despite advances in treatment, patients with aggressive
ATL generally have a poor prognosis [12,13].

HTLV-1 persistent infection is likely associated with the ability of the virus to evade
the host’s immune response. Inmune evasion might correlate with high proviral load and
thus to disease outcome. HTLV-1 infection occurs exclusively through cell-to-cell contact,
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and the number of infected cells in vivo significantly impacts on viral spreading [14]. After
primary infection, the clonal expansion of infected cells, rather than the novo infection of
cells, represents the main route for HTLV-1 to establish persistent and chronic infection [15]
(Figure 1).
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Figure 1. HTLV cell infection and transmission.

The proviral genome is integrated into the host genome and contains, in addition to
structural proteins Gag, Pol and Env, a unique pX region coding for several regulatory
and nonstructural proteins Tax, Rex, p12, p13, p30 and HTLV-1 basic zipper protein (HBZ),
which is encoded by the antisense viral transcript. Among them, Tax and HBZ are thought
to play key roles in HTLV-1 infection and oncogenesis. Transgenic mice expressing Tax or
HBZ develop neoplastic diseases, indicating that they function as oncogenes [16-19]. Tax
is a potent activator of viral transcription and exerts pleiotropic effects on cell signaling
deregulating different cellular pathways thus mainly contributing to HTLV-1 induced
neoplastic transformation. However, the frequent loss of Tax expression from ATL cells
suggests that the viral protein is mainly involved in the onset of leukemic transformation.
By contrast, HBZ is ubiquitously expressed, playing a crucial role in the maintenance
of oncogenic process and disease progression. Furthermore, recent reports from our
laboratory have demonstrated that HBZ subcellular localization could be a prognostic
marker of HTLV-1-disease progression, as HBZ is expressed solely in the cytoplasm of
asymptomatic carriers (AC) and HAM /TSP subjects, while in tumor cells isolated from
leukemic patients, it is also present in the nucleus [20-22]. HBZ antagonizes many of
the activities of Tax and suppresses Tax-induced viral transcription, thus the interaction
between Tax and HBZ may significantly affect the outcome of HTLV-1 infection [23-25].

Although intensive studies in recent years have contributed to shedding light on the
mechanisms of viral replication and host response, several aspects of HTLV-1 pathogenesis
remain poorly understood, including the intimate molecular mechanism(s) of tumorigene-
sis, the progression of HTLV-1 leukemia toward the aggressive form, and the possibility of
enhancing the host response to avoid or at least delay disease onset.

Here we will discuss the complex landscape of host—viral interactions in the context
of HTLV-1 infection, pointing out key experimental systems (e.g., cells and animal models)



Int. . Mol. Sci. 2021, 22, 8001

3o0f24

suitable for the study of HTLV-1 viral transmission, disease pathogenesis, and treatment
and their recent contribution to the advancement of knowledge of HTLV infection.

2. Cell Models

Initially, most of the data related to HTLV-1 infection, mode of transmission, patho-
genesis as well as the description of the cellular pathways targeted by viral proteins were
derived from studies of viral factors over-expressed in cells that are not targets of infection
or from viral particles produced in cells transduced with the HTLV-1 proviral genome.
Subsequently, the ability of HTLV-1 to infect different types of cells in vitro and transmit
the infection via cell-to-cell contact has made it possible to generate HTLV-1-producing cell
lines (such as MT-2, MT-4, C91-PL and SP) by coculturing leukemic cells from ATL patients
with human cord blood lymphocytes isolated from healthy subjects. HTLV-1-infected T
cell lines have also been established from ATL patients, such as ATL-2 cells, MT-1, ATL-T,
TLOm1, ED, ATL35-T, and ATL-55T. Commonly used cell lines in HTLV studies are listed
in Table 1 [11,26-31].

Table 1. Commonly used cell lines for studying HTLV-1.

IL-2- Dependency

Origin Name Growth Phenotype References

ATL-2 independent CD4+ CD3- [26]
ATL-T independent CD4+ [26]
ATL-35T independent CD4+ [27]
ATL-55T dependent CD4+ [27]
. ED independent CD4+ [27]
ATL dﬁrlved F6T independent CD4+ CD25+ [28]
cens K3T independent CD4+ CD25+ [28]
MT-1 independent CD4+ Tax- [11]
TL-Om1 independent CD4+ Tax- [28]
SI1T independent CD4+ CD25+ [28]
Su9T01 independent CD4+ [28]
Chronically C91-PL independent CD4+ [26]
infected MS-9 dependent CD4+ [29]

MT-2 independent CD;JX;E 2o [26,29]
I?TLV—}:I- 1 MT-4 independent CD4+ [27]
trans prmed ce HUT-102 independent CD4+ Tax+ [30]
1nes C8166 independent CD4+ [31]

CD4+ CD8+

SpP dependent CD3+ [26]
T entl Jurkat independent CD4+ CD3+ [31]
faf“Slegt Y HEK293 independent CD4- [31]
transtected cells HeLa independent CD4- [11]

Studies conducted in primary T lymphocytes isolated from the peripheral blood of
HTLV-1-infected individuals have added important elements to the knowledge of the
mechanism of HTLV-1 pathogenesis, as these cells showed increased spontaneous IL-2-
dependent proliferation when cultured in vitro. However, over time, proliferation often
becomes independent of (IL-2), and these cell cultures generally represent outgrowths of
clones that do not predominate in the leukemic patients, but rather are selected for growth
in culture. Moreover, primary ATL cells express CD3, CD4 and CD25 but not CD7 in
most cases, and 10-15% express both CD4 and CD8. Generally, signal transduction and
gene expression alterations observed in ATL cells were also found in HTLV-1-infected
and virus-expressing T cells, although viral genes, except for antisense transcripts, such
as HBZ, are not expressed in ATL cells. Another important limitation in the study of
HTLV-1 is the absence of a reliable system to measure de novo infection, due to the fact that
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HTLV-1 cell-free virus preparations are largely not infectious [31]. Here we will review the
most recent contribution derived by studies based on cellular models on HTLV-1 infection
and pathogenesis.

2.1. HTLV-1 Infection and Cell-to-Cell Transmission

As mentioned above, HTLV-1 transmission occurs through contact with infected cells
present in body fluids such as in maternal milk, semen, or blood.

In vitro studies conducted by coculturing a target cell with HTLV-1-infected T cell
line confirmed that cell-free virus is poorly infectious and a virus-induced specialized
cell-to-cell contact, based on specific interactions between cellular and viral proteins, is
needed for an efficient virus transmission [32]. Two types of cell-cell contacts seem to be
critical for HTLV-1 transmission: long cellular connections, including cellular conduits or
tunneling nanotubes (TNTs) and virological synapse [33] (Figure 2).
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Figure 2. Models of HTLV-1 cell-to-cell transmission.

The first mode of HTLV-1 transmission in cell models was reported by lagakura et al.
(2003), who observed the formation of virological synapse (VS) between fresh peripheral
blood mononuclear cells (PBMC) isolated from HTLV-1-infected patients. Confocal mi-
croscopy studies have revealed that HTLV-1 Gag, Env proteins and genomic viral RNAs
were unpolarized in isolated T cells but accumulated at cell-cell junction and transferred
to uninfected T cells within 2 hours after contact. The formation of VS and the transport of
viral proteins towards the VS and into the target cell requires the integrity of the micro-
tubule cytoskeleton. The polarization of the microtubule organizing centers (MTOC) of the
infected cell towards the cell—cell contact may be promoted by both the viral transactivator
Tax-1 and the cell adhesion molecule ICAM-1, which is also induced by Tax-1 [14]. Consis-
tent with these observations are results suggesting that besides Tax, HBZ also promotes
HTLV-1 infectivity by upregulating ICAM-1, thus contributing to homotypic aggregation
of HBZ-expressing Jurkat clones. Moreover, by using luciferase-based infection assays
with HTLV-1-infected SLB1 cells deleted for HBZ, significantly lower luciferase activity
was observed from cocultures containing HBZ knock-down cells than from control cells,
supporting the role of HBZ in facilitating HTLV-1 infection [34].
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Electron tomography studies on CD4+ T cells isolated from HTLV-1-infected indi-
viduals and MS-9 chronically HTLV-1-infected cell line have revealed the ultrastructure
of the HTLV-1 VS and the requirement for cell contact and the HTLV-1-Env protein for
HTLV-1 [14,35,36]. Viral transmission at VS could also occur through the generation of a
biofilm-like structure in the extracellular matrix (ECM), called viral biofilm (VB) which fa-
vors the transfer of viruses accumulated at the surface of infected cell. HTLV-1 transmission
via VBs represents a major route of transmission in vitro, since removal of biofilms severely
impairs cell-to-cell transmission [37]. It has been suggested that Tax-1 might contribute
to the formation of VB by inducing the expression of the actin-binding protein Fascin,
which plays a significant role in enhancing HTLV-1 gag protein transfer to uninfected target
cells. Furthermore, confocal microscopy studies conducted in HTLV-1-infected MS-9 cells
cocultured with Jurkat T cells revealed that Fascin colocalized with gag in long-distance
connections between chronically infected and newly infected T cells, suggesting that Fascin
could be important for the transport of viral proteins to foster polarized budding, virus
release and cell-to-cell transmission of HTLV-1 [38]. The role of Tax-1 HTLV-1 transmission
by VB formation was also sustained by the observation that Tax-1 increases the expres-
sion of Collagen IV (COL4), a crucial component of VB, in either HTLV-1-infected (MT-2,
C91-PL and HUT-102) or Tax-transformed T cell lines (Tesi, Tri and TAXI-1). Consistently,
imaging and flow cytometry studies have revealed that CRISPR/Cas9 knockout of COL4
in the chronically HTLV-1-infected T cell line C91PL significantly impacts HTLV-1 Gag-
p19 transfer to target cells, indicating an important role of COL4 in HTLV-1 cell-to-cell
transmission [30].

Recent studies by coculturing HCT-5 cells with salivary gland epithelial cells have
suggested that VB might facilitate the initial phase of transmission of HTLV-1 virions to
non-immune cells, such as salivary gland epithelial cells [39,40].

Cellular conduits induced in the infected cells by the accessory protein p8 represent
another route for HTLV-1 transmission. In addition to its role in increasing adhesion
molecules association, such as Lymphocyte Function Associated Antigen 1/Intracellular
Adhesion Molecules 1 (LFA- 1/ICAM-1) interactions, the combined use of live imaging
and electron transmission microscopy (TEM) demonstrated that overexpression of p8 in
MT-2 chronically infected cells increases the number and length of these conduits, as well
as the number of contacts between infected and uninfected cells [41]. A recent report aimed
at identifying cellular interaction partners of p8, responsible for its rapid transfer through
cellular conduits, demonstrated that Vasodilator-stimulated phosphoprotein (VASP) inter-
acts with p8 and this interaction is crucial for p8 transfer between cells [42]. Imaging and
flow cytometry studies have revealed that silencing of both endogenous and overexpressed
VASP by RNA interference or by CRISPR/Cas9 reduced p8 transfer to the cell surface
and to target Jurkat T cells. In addition, stable repression of VASP by RNA interference in
chronically infected MT-2 cells impaired not only p8, but most importantly HTLV-1 Gag
transfer to target Jurkat T cells, suggesting that HTLV-1 cell-to-cell transmission depends
on VASP containing cellular conduits [38,43,44]. The viral protein p8 has also been shown
to contribute to HTLV-1 transmission through the formation of actin, but not tubulin,
containing structures, defined as tunneling nanotubes (TNTs). Immunofluorescence and
confocal microscopy studies have indicated that MT-2 formed TNT with noninfected T
cells or monocytes containing gag, Tax-1 and p8, and the number of TNT was significantly
reduced in cells treated with cytarabine, an inhibitor of TNT formation [33].

In vivo HTLV-1 preferentially infects CD4+ T cells co-expressing CCR4 receptor and
induces functional changes in the infected cells, mainly driven by oncoprotein Tax-1 [7].
Besides CD4+ T cells and, to a lesser extent, CD8+ T lymphocytes, other immune cell types
such as myeloid dendritic cells (DC) and monocyte-derived dendritic cells (MDDC) have
been shown to be productively infected by HTLV-1 in vitro and release viral particles in
culture supernatants. Interestingly, infected DC could efficiently transmit the infection
to T cells through cell-cell contact or VB accumulated at the surface of infected donor
cells, thus contributing to viral dissemination and, concomitantly, being inhibited in their
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antigen-presenting function [45]. As a result, HTLV-1-infected DC could not prime naive T
cells, thus preventing their final effector function [46].

In fact, monocytes obtained from ATL patients differentiate poorly into monocyte-
derived dendritic cells (MDDCs) in vitro, have a reduced ability to present antigen, and
have altered capacities to stimulate proliferation of allogeneic T lymphocytes [47].

2.2. HTLV-1 Dissemination

In vivo, HTLV-1 spreads through two different mechanisms: neo-infection of target
cells or clonal proliferation of Tax-1-immortalized cells [7]. The activation of Tax-1 specific
CTL and the direct inactivation of viral RNA contribute to the establishment of chronic
infection, thus inhibiting viral replication. Recent reports have shown that extracellular
vesicles (EV) isolated from HTLV-1-infected cell lines contain Tax-1 and can also be isolated
from HAM/TSP patient PBMCs and cerebrospinal fluid (CSF) samples [48]. Moreover,
by using ionizing radiation to activate the virus in HTLV-1-infected HUT-102 cells it has
been shown that EV release is increased. Fluorescent microscopy studies have shown that
EV derived from HTLV-1-infected cells, such as MT-2, MT-4 and HUT-102, were found to
colocalize with cell membranes of co-cultured uninfected cells, thus suggesting a possible
mechanism of trans-cell Tax-1-dependent activation without infection. Furthermore, by
using neutralizing antibody, it was shown that both CD45 and ICAM-1 could be consid-
ered a crucial molecular target in EV-mediated cell-to-cell contact, since their inhibition
potentially suppresses viral transmission in PBMCs [49].

2.3. Restriction Factors

The interaction between HTLV-1 and the host immune response plays an important
role in the outcome of HTLV-1-induced diseases [50]. The first line of defense against
viral infection is represented by restriction factors (RF), host anti-viral components of
intrinsic immunity that block viral replication and spreading. These cellular proteins
usually pre-exist in certain cell types, contributing to a phenotype that is non-permissive
to viral infection. Most of them are induced by interferon (IFN) acting as innate sensors
that trigger innate response against a large variety of viruses. Many RF suppress viral
replication by directly targeting conserved essential steps of the viral cycle, including
viral entry, uncoating, DNA integration, proviral genome transcription, and budding,
thus exerting broad antiviral activity. In contrast, some RF inhibit viral pathogens more
indirectly by affecting the stability, localization or activity of cellular factors or limiting
the availability of cellular resources such as nucleotides needed in the viral replication
cycle [51,52]. While each RF uses a distinct mechanism of inhibition, the virus has equally
evolved complex strategies to neutralize their inhibitory effect. The majority of these factors
were discovered in primates through studies on HIV-1. Apolipoprotein B mRNA-editing
enzyme-catalytic polypeptide-like 3G (APOBEC3G), tetherin/BST?2, Sterile Alpha Motif
and Histidine-Aspartate Domain 1 (SAMHD1), and Tripartite motive 5« (TRIM5«) are
some of the best-known HIV-1 RF that have been studied in great detail. [53]. Among
them, APOBEC3G (A3G), a cytidine deaminase in which G-to-A hypermutation in the viral
genome, inhibiting viral infectivity, was shown to be incorporated into HTLV-1 virions and
inhibit HTLV-1 infection without exerting its cytidine deaminase activity. Incorporation
of A3G was detected in HTLV-1 virions produced in 293T cells transfected with A3G
expression vector, and also by using MT-2, an HTLV-1 producing cell line, which expresses
endogenous A3G [54]. Conversely, in another study using HTLV-1 virions produced in
293T expressing exogenous A3G, the authors showed that, despite A3G being efficiently
encapsidated in HTLV-1 virions, it was not able to block HTLV-1 infection [55]. By using the
same experimental approach, another study demonstrated that HTLV-1 resistance to A3G
was partially mediated by a peptide motif in the C terminus of the HTLV-1 nucleocapsid
(NC) domain, inhibiting AC3 packaging into nascent virions. [56]. In line with this evidence,
DNA sequence analysis of viral genome isolated from HTLV-1 asymptomatic carriers and
HAM/TSP patients’ cells has shown that hypermutations occur at very low frequencies,
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within the range 0.1-5%, suggesting that the packaging of A3G in viral particles is not
sufficient to suppress viral infectivity. Interestingly, in HTLV-1-transformed cell lines
such as MT-2 and MT-4, and in samples collected from ATL patients and HTLV-1 carriers,
sequence analysis of proviral genome indicated that the target sequences of A3G were
less frequent in the plus strand of the HBZ coding region than in other coding regions of
the HTLV-1 provirus, such as Tax, in part explaining the maintenance of HBZ expression
during neoplastic transformation and ATL progression [57]. More recently, a footprint
analysis of A3G on the genome of human viruses revealed that A3G editing activity acts
both on the antisense and the sense transcripts of the HTLV-1 coding sequence, suggesting
that A3G left an evolutionary footprint on the HTLV-1 virus through editing during reverse
transcription [58].

Comparatively less information is available for the effect of other RFs on HTLV-1.
TRIM5«x was originally discovered to be an important determinant of the resistance of
monkey cells to HIV-1 infection. Indeed, rhesus monkey TRIM5« (thTRIM5«), but not
human TRIM5«, potently limits HIV-1 infection in Old World monkeys by targeting the
viral capsid, thus preventing the uncoating of the viral pre-integration complex. Unlike
other RFs, the activity of TRIM5« is not antagonized by an accessory viral protein, since
HIV-1 had evolved its capsid to avoid recognition by human TRIM5«, although it is still
susceptible to the rhesus monkey version. Rhesus TRIM5« restricts a broad range of
retroviruses including HIV-1, HIV-2, N-tropic murine leukemia virus (N-MLV), and equine
infectious anemia virus (EIAV).

Interestingly, genome sequence analysis of peripheral blood mononuclear cells (PBMC)
from both HAM /TSP patients and AC identified specific TRIM5« polymorphisms asso-
ciated with proviral load (PLV), indicating a possible role of TRIM5¢« in HTLV-1 repli-
cation [59]. The same correlation was found for TRIM22, another member of the TRIM
family [60].

In relation to SAMHDI, recent data obtained from 22 HAM /TSP patients and 61 AC,
again demonstrated that the rs6029941 (A /G) polymorphism in host dNTPase SAMHD1
is associated with increased HTLV-1 PLV in HTLV-1-infected individuals, suggesting that
the polymorphism could be a factor contributing to the development of the symptoms
of the disease [61]. By using HTLV-1 virus isolated from MT-2 supernatants, SAMHD1
has been described to exert its antiviral activity by inducing apoptosis of HTLV-1-infected
monocytes, which represents another target of HTLV-1 infection [62].

Besides the classical RF, cellular miR-28-3p was found to suppress viral replication
and gene expression in transiently transfected cells with an HTLV-1 molecular clone, by
targeting a sequence localized within the viral gag/pol genomic viral mRNA. Indeed,
cells expressing a high level of miR-28-3p were found to be resistant to HTLV-1 infection,
suggesting a possible antiviral function of this cellular-derived miRNA. Consistent with
this hypothesis, a single nucleotide polymorphism within the miR-28-3p target site in
the Japanese ATK-1 viral genome strain renders this viral strain relatively resistant to the
presence of miR-28, highlighting the role of miRNA in viral transmission [63].

Another cellular factor exerting a potent antiviral activity against HTLV-1 is the MHC
class 1II transactivator, also designated as CIITA, the master regulator of MHC-II genes
transcription. First described in our laboratory, CIITA potently suppressed HTLV-1 replica-
tion by targeting the viral transactivator Tax-1 [64,65]. Interestingly, the inhibitory activity
of CIITA was demonstrated by using HTLV-1 virions produced both in cells ectopically
expressing CIITA and, more importantly, in isogenic promonocytic U937 cells that ex-
pressed physiological level of CIITA and previously characterized for their efficient or
inefficient capacity to support productive HIV-1 infection [66]. Moreover, CIITA as a direct
inhibitor of Tax-1 function, was the first RF described to inhibit both viral replication and
Tax-1-driven neoplastic transformation. Indeed, CIITA was found to block the persistent
activation of NF-kB pathway by Tax-1 not only in cells ectopically expressing CIITA, but
more importantly in cells expressing endogenous CIITA [67].
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2.4. NF-xB Pathway

The HTLV-1-transformed cell lines (e.g., MT-4, C8166, HUT-102, and M-T2), ATL-
derived cells (e.g., F6T, K3T, S1T, and Su9T01) or transiently transfected cells (e.g., Jurkat,
HEK293, HeLa cells) are the common cell models used to investigate the role of Tax and
HBZ in cell signaling deregulation [11,28]. NF-«B is one of the most extensively studied
pathways deregulated by Tax and HBZ, and the Tax activation of the NF-«B pathway is
well established as a critical step in the onset of T-cell transformation and development
of ATL [68-70] (Figure 3). On the other hand, HBZ is required for viral latency and
antagonizes many of the activities mediated by Tax, including NF-«B activation [71-73]. In
transduced 293T and Jurkat cells, HBZ inhibits the expression of cyclin D, a regulator of
the G1/S phase transition, interacting with the NF-kB p65 factor [74].

HTLV-1
fARY TRB2
Cytoplasm Q""‘
!-'—!E! !gTax-1 Tax-1 TRAF3
“SSS} w Proteasomal @gg@@
Canonical l degradation Non-canonical
NF-xB pathway NF-xB pathway
Pp P p
o — @y — Gk — e
p50 RelA @ p52

Nucleus Tax-1 NF-KBtargelgenes\

p50 RelA transcription

Figure 3. HTLV-1 Tax-mediated NF-kB activation.

Comparative studies with the less pathogenic HTLV-2 homolog, which expresses a
Tax-2 and antisense protein APH-2, have highlighted the exclusive properties of Tax-1 and
HBZ that may account for the divergences in HTLV types linked pathobiology [75-77].
Tax-1, but not Tax-2, activates both canonical and non-canonical NF-«B pathway; although
they share a high amino acidic identity, only Tax-1 presents two leucine-zipper-like regions
(LZR), which are required for NF-«B activation and a PDZ-binding domain (PBM) at the C-
terminal; they also differ in the cytoplasmic and nuclear domains, which confer a prevalent
nuclear distribution to Tax-1 and a prevalent cytoplasmic distribution to Tax-2 [77-79].
Tax-1 and Tax-2 also differ in their interactome repertoire and the effects deriving from the
interactions [80].

HBZ presents an N-terminal transactivation domain that lacks in APH-2 and inhibits
Tax-1 activity more efficiently than APH-2 [81-83]. They also differ in the mechanisms that
control their intracellular stability, which is regulated by an E3 ubiquitin ligase (UBR5) in
HBZ, and by sumoylation mediated by PML nuclear bodies in APH-2 [84,85]. Several genes
that are targets of NF-kB, as well as long noncoding RNAs, are differentially expressed in
Jurkat Tet-On human T cells expressing subgroups of Tax or HBZ proteins [86].
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In vitro cell models have demonstrated the direct interaction of Tax-1 with several
factors of the NF-«kB pathway, including NEMO/IKKy, IKK«, TAB2, TRAF6, and the cross-
talk factors IKKe and TBK1 [87-89]. In cell models, using Tax mutants, it has been possible
to characterize the functional requirement of Tax post-transcriptional modifications such as
ubiquitination, sumoylation, and phosphorylation in NF-«B activation and binding to the
IKK signalosome [90-92]. We recently demonstrated using a CRISPR/Cas9 knockout cell
model that tumor necrosis factor receptor associated factor 3, TRAF3, a negative regulator
of the non-canonical NF-«B pathway, is required for Tax-1-mediated NF-«B activation [70].
Additional cellular factors are required for the efficient Tax NF-«kB activation, including
optineurin (OPTN) and Tax1-Binding Protein 1 (TAX1BP1), which have been demonstrated
to participate in the K63-polyubiquitination of Tax-1. OPTN was shown to interact with
Tax in Golgi-associated structures and to enhance its activities in a TAX1BP1-dependent
manner [93-95]. Recently it has been demonstrated in cell models that SQSTM-1/p62
potentiates Tax activity by facilitating the association of ubiquitin chains with the Tax/IKK
signalosome, and the interaction of E3/E4 ubiquitin conjugation factor UBE4B supports
HTLV-1 Tax polyubiquitination, NF-«B activation, and cell survival [28,96]. In HTLV-1-
infected T cells, Tax activates the early phase of NF-«B activation through interaction with
autophagy-regulatory proteins such as Beclin 1, which promotes the recruitment of the
IKK complex to an autophagy molecular complex and induces efficient autophagosome
formation [97]. Tax protein expression is also stabilized by the NF-«kB activity in a positive
feedback loop between Tax and NF-«B that requires polyubiquitinilation [98].

Tax expression is silenced in the majority of ATL due to genetic alterations in the
tax gene or DNA hypermethylation of the 5-LTR [99]. Nevertheless, NF-kB remains
persistently activated in HTLV-1-induced ATL as a consequence of somatic mutations in
genes involved in T-/B-cell receptor (T/BCR)-NF-«B signaling and additional epigenetic
modification [100]. Recently, the role of mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT-1) proto-oncogene has been investigated in ATL cells. MALT-
1 is known to participate in the activation of NF-«B by cleavage of inhibitors of NF-«B
pathway such as A2 and RelB. In MT-1 and TL-Om1 T cell lines established from ATL
patients, which do not express Tax-1, MALT-1 expression is upregulated. Interestingly,
the inhibition of MALT-1 expression leads to a reduction in growth and viability of the
ATL-derived T cell lines, suggesting MALT-1 as a possible target for future therapeutic
approaches in ATL patients [101].

Finally, Tax-mediated NF-«kB activation may have an impact on alternative splicing
events, enhancing physical and functional interaction between p65 and the DDX17 splicing
factor. By constitutive activation of NF-kB pathway, Tax may promote DDX17-dependent
splicing regulation enhancing DDX17/p65 recruitment in intragenic region, thus altering
splicing target specificity [102].

3. Animal Models

Animal models, including mice, rats, rabbits, squirrel monkeys, baboons, macaques,
and even fruit flies, although not the natural hosts of HTLV infection, may help in eluci-
dating some aspects of HTLV infection, persistence, host immune response, and diseases-
associated developments [103-107]. Examples of the contributions in HTLV studies derived
by different animal models are listed in Table 2. In the following sections, we will discuss
the most recent advances in the knowledge of HTLV infection and pathogenesis derived
by studies in animal models.
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Table 2. Exemplification of animal models contribution for HTLV studies.

Animal Models

Contribution

References

SCID Mice

ATL-like pathologic features;
viral proliferation; ATL
therapeutic drugs; tumorigenic
potential of HTLV-infected or
ATL cells

[108-114]

Humanized mice

ATL development, immune
response; HAM /TSP
neuropathogenesis, HTLV-1 and
HTLV-2 cell tropism; Tax
functional domains

[115-119]

Transgenic mice

Tax and HBZ role in HTLV-1
pathogenesis; vaccine
development; ATL stem cells

[23,25,104,120~129]

Rat

HAM/TPS disease, MTCT,
CTL response

[130-136]

Rabbit

HTLV persistence and viral
requirement, distinct
pathogenesis of HTLV-1
and HTLV-2

[75,137-143]

Monkey

Viral persistence, immune
response and vaccination, viral
protein requirement for
HTLV infection

[144-147]

BLV/HTLV

Virus Transmission, latency,
leukemogenesis
genome integration

[148-152]

STLV

Viral clonality, immuno-
based therapies

[153-158]

3.1. Mouse Models

Although immunocompetent murine cells are not productively infected with HTLV-1,
xenograft and transgenic mice are widely used for the study of HTLV-1 infection and
related diseases. Starting from the late 1990s, when the C3H/HeJ and BALB/c strains
were used to establish persistent infection injecting HTLV-1-producing MT-2 cell intraperi-
toneally in neonatal mice, several HTLV immunocompromised mouse models have been
further developed [159-162]. The development of SCID mice, unable to perform VD]
recombination of B- and T-cell receptors because of a nonsense mutation in the PRKDC
(Protein Kinase, DNA-Activated, Catalytic Subunit protein kinase) gene, has generated
animals with severe combined immunodeficiency (SCID). These mice allow the engraft-
ment of human cells. By introducing additional genetic mutations, several other types
of SCID immunocompromised mouse strains become available, i.e., NOD-SCID mice, in
which SCID mutation is present in a non-obese diabetic (NOD) genetic background mouse
that shows NK cell dysfunction, low cytokine production, and T- and B-cell deregulation;
NSG and NOG mice, in which different mutations in the interleukin-2 receptor common
subunit y (IL2R-yC) leading to a complete loss of T, B, and NK cells, are introduced into
the NOD/SCID background; and BALB/c mice deficient in IL2R-yC and the recombinase-
activating gene 2 (Rag2) (BRG), which are impaired in T- and B-cell differentiation and
have high levels of NK-cell activity [163].

SCID xenograft mouse models can reproduce some features of HTLV-1 disease, such
as multiple organ engraftments with ATL cells, expression of parathyroid hormone-related
protein (PTHrP), a mediator of hypercalcemia in ATL patients, and increased levels
of IL2 R and (-2 microglobulin [164-166]. These xenograft mouse models have con-
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tributed to the recapitulation of splenomegaly and lymphoma similar to ATL pathologic
features [108]. Several studies have reported the successful engraftments in NOG mice
of HTLV-1-transformed cell lines, ATL cells, and PBMCs from asymptomatic HTLV-1
carriers [167-169]. Engrafted SCID mice have also been used to assess the tumorigenic
potential of ATL cell lines [170]. In NOG mice, a highly tumorigenic ATL cell was selected
by serial xenotransplantation of patient leukemic cells and used to study features of ATL
such as the involvement of carbonic anhydrase IX (CA9), a membrane-associated enzyme
that regulates cellular pH. It was found that CA9 is upregulated and promotes tumori-
genicity of ATL-derived cells [171]. A highly penetrant in vivo model of HTLV-1-induced
T-cell lymphoma was established by intraperitoneally engrafting immune-compromised
NOD/SCID mice with tumorigenic HTLV-1-transformed SLB1 and MET-1 lymphoma T
cell lines. In this model, a cooperative role was found between the the viral p30II latency
regulatory factor and the cellular TP53-induced glycolysis and apoptosis regulator (TIGAR)
in cancer progression, highlighting TIGAR involvement in tumor lymphocyte infiltra-
tion [113]. NOD/SCID mice injected with leukemic cells (MET-1) from a patient with ATL
were proposed as preclinical in vivo murine models of ATL [172]. In this model, the ATL
therapeutic efficacy of selected compounds has been reported. Among other treatments,
the efficacy of daclizumab, a monoclonal antibody against the IL-2R-« (CD25), combined
with depsipeptide, a member of the cyclic peptide class of HDAC inhibitors, was tested
by analyzing the survival of the leukemia-bearing mice and the levels of soluble IL-2R-«
and 32 levels. Both depsipeptide and daclizumab led to inhibition of tumor growth and
prolonged the survival of mice with leukemia suggesting its potential use in the treatment
of ATL patients [166].

NOD/ SCID mice have recently been used to evaluate a new therapeutic agent for
ATL. In this study, NOD/SCID mice were injected with S1T cells, an HTLV-1-infected CD4 +
T cell line derived from an ATL patient, and treated with dorsomorphin, an inhibitor of the
bone morphogenetic protein (BMP) and AMP-activated protein kinase (AMPK) pathway:.
The administration of dorsomorphin to NOD/SCID mice proved to be efficient in reducing
tumor growth [109]. In another mouse model, the efficacy of monoclonal antibodies in ATL
therapy was investigated targeting the matricellular molecule OPN, which is known to
participate in cancer processes by interaction with integrins. NSG mice inoculated with
ATL cells present increased plasma levels of OPN, and when treated with a monoclonal
antibody against OPN tumor growth, invasion and metastasis were inhibited [110]. More
recently, the same group examined the antitumor effects of 2’-deoxy-2’-methylidenecytidine
(DMDC) and its derivative 2’-deoxy-2'-methylidene-5-fluorocytidine FDMDC in NOG mice
inoculated subcutaneously with an ATL-derived cell line. They observed that NOG mice
bearing ATL tumor treated with the two compounds resulted in significant inhibition
of tumor growth suggesting that nucleosides may be proposed as therapeutic agents in
ATL [111].

Antitumor effects of autologous Tax-specific cytotoxic T cell (CTS) have also been
tested in NOG mice bearing human primary ATL cells. Tax-CTL treatment led to Tax-
specific CTL infiltration in the tumor site, recognition and blocking of the proliferation of
autologous ATL cells and prolongation of mouse survival [112], although the reproducibil-
ity of this finding is not constant [173].

3.1.1. Humanized Mouse Models

Humanized mouse models derived from mouse xenotransplanted with human cells
or engineered to express human genes may be used to study human-specific function in
physiological and pathological conditions, most of them related to the human immune
system [115]. In HTLV, humanized mouse models are mostly applied for studying the
tropism and proliferation of HTLV-infected T cells, but also to elucidate the mechanism
of in vivo development of ATL. Humanized mice infected with HTLV-1 may develop
ATL, but they are not always consistent in reproducing the human immune responses
against HTLV-1 [108,174]. An interesting model was generated by transplanting CD133+
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human stem cells into the bone marrow cavity of NOD/Shi-scid /IL-2Ryc null (NOG)
mice. These mice, named IBMI-huNOG mice, recapitulate distinct ATL-like symptoms,
such as hyperproliferation of CD3+ T cells, clonal proliferation of CD25+ /CD4+ T cells,
formation of flower cells in the peripheral blood, hepatosplenomegaly, inflammatory
hypercytokinemia, and an adaptive immune response against HTLV-1 [117]. Humanized
mice have also been employed to study HAM/TSP neuropathogenesis in an in vivo model.
Balb/c-Ragl-hu =/~ yc =/~ (Ragl) and Bone Marrow Liver Thymic (BLT) humanized
mice (hu-mice) were engrafted with human CD34+ hematopoietic stem cells and were able
to reconstitute human macrophages, dendritic cells, T cells, and B cells [118]. Both models
may be susceptible to HTLV-1 infection presenting Tax expression in the spleen and CNS.
They also show myelin disruption resembling HTLV-1-associated neuropathogenesis.

Recently, humanized mice that cannot mount an adaptive immune response were
obtained by injecting human umbilical-cord stem cells into the livers of immunodeficient
NSG mice, and these were applied in the study of T cell tropism and lymphoproliferation
of HTLV [175]. In these models, a different tropism of HTLV-1 compared to HTLV-2 was
confirmed. HTLV-1 infection is associated with the preferential proliferation of CD4+ T
cells, whereas CD8+ T proliferation is associated with HTLV-2. Notably, both viruses are
lymphomagenic in mice, in contrast to human leukemia-lymphoma induction, which is
typically associated only with HTLV-1 infection, suggesting that the adaptive immune
response is critical in conditioning the lymphoma development. A relevant limit in ap-
plying the humanized mouse models is the development of graft-versus-host diseases
(GVHD), which may cause the early death of mice or inefficiency in recapitulating, within
the short lifetime of the mice, the complexity of events that occur in humans over decades
of persistent virus prior to ATL development. This limitation was highlighted in a recent
study using two humanized mouse models [116]. The authors investigated the role of
p8 and p12 regulatory proteins in HTLV-1 infectivity and pathogenicity. p8 and p12, ex-
pressed by the open reading frames of the viral genome (orf-I), are required for persistent
infection of primary human peripheral blood mononuclear cells in vitro and macaques
in vivo [145,146], but are not required in rabbit models of HTLV-1 infection [141,176]. Using
NSG-1d mice originated by NOD/SCID/yc ~/~ c-kit" engrafted with human tissues and
NSG mice implanted with human fetal liver, thymus tissue and stem cells (BLT mice),
the authors demonstrated that these humanized mice were highly susceptible to HTLV-1
infection with the rapid polyclonal proliferation of CD4+ CD25+ T cells, similarly to the
events in the healthy carrier stage of HTLV infection, although they did not reproduce
the monoclonal origin of ATL, as happens in humans [116]. As proposed by the authors,
these models may be valid for studying the early phase of HTLV-1 infection and proving
interventions that may reduce the CD4+ proliferation induced by the virus.

In addition to the numerous studies aimed at dissecting the molecular function of the
Tax and HBZ viral protein in in vitro cellular model, as summarized in Section 2, interesting
contributions towards interpreting their role in vivo in the lymphoproliferative process
have also been derived using humanized mouse models. Recently, the contribution of
the Tax PDZ binding motif (PBM) to T-cell proliferation was analyzed in humanized mice
carrying a human hemato-lymphoid system. It was shown that Tax-PBM enhanced HTLV-
1-mediated T-cell proliferation compared to a PBM-deleted mutant, and that this domain is
required for T-cell proliferation. Furthermore, comparative transcriptome analyses of T
cells derived by humanized mice infected with wt and mutant Tax showed that the absence
of PBM is associated with the deregulation of genes involved in T-cell signaling and
proliferation, apoptosis induction, and cytoskeletal organization [119]. Taking advantage
of humanized mice, the role of HBZ in altering the expression of the receptor activator of
NF-«kB ligand (RANKL), a regulator of osteoclast differentiation, was evaluated in vivo. In
this HTLV-1-infected humanized mouse model, treatment with denosumab, a monoclonal
antibody against human RANKL, resulted in reduced bone loss [177].
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3.1.2. Transgenic Mouse Models

Transgenic mice have been generated mostly to analyze the oncogenic potential of
Tax and HBZ viral protein. Indeed, Tax expression in transgenic mice is sufficient to
induce tumors, confirming the in vivo oncogenic potential of Tax [104,120]. An interesting
transgenic mouse model was developed by introducing the firefly luciferase gene driven
by the HTLV-1 LTR (LTR-LUC) in transgenic Tax mice. The double transgenic Tax-Luc
mice develop lymphoma, splenomegaly, hypercalcemia, osteolytic bone selections, and
persistent activation of neutrophils [178]. The same team demonstrated that IL-15-deficient
Tax-LUC mice developed an aggressive lymphoma and an increased expression of IL-«,
thus suggesting IL- 15 and anti IL-1c as potential targets for ATL therapies [121].

To restrict Tax expression to the thymus, Tax transgenic mice have been generated
using lymphocyte-specific protein-tyrosine kinase (lck) promoters. These Lck-Tax mouse
models develop lymphoma and leukemia after a long latency period of almost 18 months
and present most of the characteristics of acute ATL patients [122,123]. Tax transgenic
models have also been used to test in vivo the efficacy of ATL therapy [179]. SCID mice
injected with spleen cells from Tax transgenic mice developed ATL-like tumors. Treatment
of these mice with arsenic/IFN-o or synthetic retinoid ST11926 compound resulted in a
significant increase in animal survival [124,180]. In addition, normal syngenic mice injected
with ATL cells from Tax-transgenic mice showed inefficient Tax-specific T-cell induction
and ATL cells elimination [181].

As for Tax, the in vivo role of HBZ has been studied in HBZ transgenic (HBZ-Tg)
mice. HBZ is the only regulatory/accessory gene encoded by HTLV-1 to be expressed in all
ATL patients and necessary for the proliferation of ATL cells [23]. Mice expressing HBZ
under the Granzyme B promoter (Gzmb-HBZ) developed lymphoproliferative disease
and hypercalcemia [125]. HBZ transgenic models in which HBZ expression is restricted
to CD4+ are preferentially used to study the inflammatory process correlated with HTLV-
1-mediated pathogenesis. These HBZ-Tg mice develop systemic inflammation and T-
cell lymphoma [182], and show higher levels of the immunosuppressive cytokine IL-
10 and dysfunctional Treg cells [23,126]. In an interesting HBZ-Tg-based model, it was
recently demonstrated that HBZ plays a pivotal role in dysregulating the cytokine signaling
modulating the IL-10/JAK/STAT signaling pathway. As expected, in HBZ-Tg the loss of
IL-6 and expression of IL 10 accelerates inflammation and lymphomagenesis [25]. HBZ-Tg-
derived T-cell lymphoma has also been used to establish an HBZ-induced T cell line, named
Ht48, which has been used to test an HBZ-targeted HTLV-1 vaccine. This model identified
a candidate peptide (HBZ157-176) for vaccine development by using rVV-vaccinated
mice [127].

PBMC-humanized NSG mice and HBZ-transgenic (Tg) mice, which develop systemic
inflammation, were recently used to validate the efficacy of administration of pentosan
polysulfate (PPS), a semisynthetic glycosaminoglycan, to counteract HTLV-1 infection and
pathological sequelae. PPS blocked HTLV-1 infection in huPBMC NSG and suppressed the
development of dermatitis and lung damage in HBZ-Tg mice, supporting the therapeutic
use of PPS in the treatment of HTLV-1-induced inflammatory diseases [183].

Tax-transgenic (Tax-Tg) and HBZ Tg mouse models have contributed to identifying
functional ATL stem cells (ATLSC) and determining that c-kit, a common surface marker
of ATLSCs, is a key regulator of ATL disease initiation and progression [128]. Unexpected
results were obtained using a double transgenic mouse model expressing both Tax and
HBZ in CD4+ cells. These mice developed T-cell lymphoma but not ATL-like leukemia,
suggesting that the balancing effect of Tax/HBZ expression is critical for oncogenic out-
come [129]. Mouse models of acute-type ATL can be rapidly generated by transplanting
in vitro-induced T cells that have been retrovirally transduced with HBZ. In this model, it
is possible to study the cooperative action of HBZ and host factors in contributing to ATL
development [184].
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3.2. Rat Models

Rat models have been useful in the study of HAM/TPS pathology. HTLV-infected
Wistar-King-Apekman (WKA) rat strain develops spastic paraparesis and clinical symp-
toms similar to the humans with HAM/TPS [130]. Rats have also been used to study
mother-to-child transmission (MTCT) of HTLV-1 Recently an MTCT model was developed
using orally HTLV-1-infected rats that did not have antibody responses against viral anti-
gens. In this model, rats inoculated with ILT-M1, an IL-2-dependent HTLV-1-infected T cell
line derived from an HAM/TSP patient, transmitted HTLV-1 to their offspring at a high
rate (50-100%), and the rate of transmission correlated with the PVL of the infected mother
rats [131]. This model has been also proposed for studying the neutralizing potential of
antibodies against HTLV-1 envelope gp-46 (LAT27) through antibody-dependent cellular
cytotoxicity in MTCT [132,185].

The role of host factors in supporting viral infection has also been investigated in rat
models. Human CRM1 (hCRM1) protein, a member of the importin 3 family, acts as a
cofactor of Rex-dependent viral mRNA transport. Transgenic CRMI1 rats intraperitoneally
inoculated with HTLV-1-infected cells exhibited a much higher HTLV-1 viral production
than wild type rats, and presented more extensive invasion of the thymus by HTLV-1,
supporting the in vitro evidence of the key role of CRM1 in HTLV-1 infection [133]. Rat
models were also used to test the effect of vaccines based on HTLV-1 Tax-specific cytotoxic
T lymphocyte immunity response, the oncolytic potential of vaccinia viruses (VVs) and
the ability of siRNA Tax downregulated HTLV-1-infected cells to develop tumors in T-cell-
deficient nude rats [134-136]. These studies confirm the significant roles of Tax in activating
cytotoxic host immune response to the virus and in the survival of infected cells in vivo.

3.3. Rabbit Models

Rabbits are well established and reproducible models to study HTLV-1 transmission,
immune responses, and viral determinants required for HTLV infection. Rabbits can be
infected with HTLV, but do not develop HTLV-associated diseases; nevertheless, they
produce a persistent infection and represent a useful animal model for studying the early
steps of infection [106,149,186]. New Zealand White (NZW) rabbits injected with an HTLV-
1 carrying a PBM-deleted form of Tax-1 showed that this domain was important for the
establishment and maintenance of persistent infection [137]. A similar model was used
to demonstrate in vivo that HBZ enhances infectivity and persistence and that the HBZ
leucine zipper domain is critical for HBZ functional activity, whereas HBZ is dispensable
for immortalization/transformation of primary T lymphocytes in cell culture [138]. In
rabbits, APH-2 studies have demonstrated that compared to HBZ, APH is not required
for viral persistence [140]. In addition, rabbit models have been successfully applied to
demonstrate that the HTLV-1 accessory proteins p12, p13 and p30 are necessary to establish
the infection and maintain viral loads in vivo [141-143].

Recently the NZW rabbit model was also used to study epigenetic regulation of
HTLV-1 gene expression in vivo, demonstrating that the CCCTC binding site present in the
overlapping p12 and HBZ sequences of the HTLV-1 genome is dispensable for persistent
infection [75]. Particularly worthy of note are studies in rabbit models that have contributed
to better defining the differences in the HTLV-1 and HTLV-2 tropisms. It has been possible
to determine that at early steps of infection, at the entry step, the tropism is almost the
same, represented by CD4+ and CD8+ T cells, although, consistent with reports in humans,
HTLV-1 establishes a more robust infection in both CD4+ and CD8+ T cells, compared to
HTLV-2 [139].

3.4. Non-Human Primate Models

Non-human primates are susceptible to HTLV-1 infection and develop HTLV-1-
associated diseases, including leukemia. Squirrel monkeys, cynomolgus monkeys, rhesus
macaques, and pig-tailed macaques have been used to study HTLV immune response,
viral persistence, and ATL-like disease. In squirrel monkey Saimiri sciureus injected with
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HTLV-1-immortalized PBMCs, the spleen and lymph nodes were shown to serve as ma-
jor reservoirs for HTLV-1 [187]. p12, p30, and HBZ have been found to be essential for
establishing and maintaining HTLV-1 infection in macaques, but not in rabbits [145]. Fur-
thermore, by inoculating macaques intravenously with lethally y-irradiated B-cell lines
producing mutated viral clones, it was shown that p12 and p8 are necessary for efficient
viral persistence and spread [146]. The non-human primate models have contributed to
recapitulating the initial steps of viral infections, including viral genome reverse transcrip-
tion and persistent clonal expansion of infected cells [147]. Squirrel monkeys, as well as
macaque rhesus, have also been used to evaluate the immunogenicity of experimental vac-
cines against HTLV-1 [127,144]. However, due to the high cost and restrictive regulations
related to their application in experimental research, non-human primate models remain
of very limited use in the study of HTLV-1.

3.5. Transgenic Fly Model

A Tax and HBZ transgenic Drosophila melanogaster fly model was recently proposed
as a suitable model for studying HTLV-I transformation, persistence, and epigenetic modi-
fication. The in vivo fly model demonstrated that Tax activates the chromatin polycomb
repressive complex 2 (PRC2), which acts on the regulation of the expression of genes
involved in cell survival, proliferation, or apoptosis. In this model, HBZ does not in-
duce transformation or NF-«kB activation, but its expression abolishes Tax-mediated PRC2
activation in flies expressing both Tax and HBZ [107,188].

4. HTLV-1-Related Virus and Animal Models of Leukemogenesis
4.1. HTLV-1/BLV Models

Bovine leukemia virus (BLV) is a retrovirus closely related to HTLV-1 that causes B-cell
lymphoma in ~5% of infected animals and has been proposed as a model for investigating
the transmission, latency and pathogenesis of both BLV and HTLV [149,152]. In addition
to cattle, BLV may infect sheep, and both species can develop leukemia and lymphoma.
Sheep experimentally infected with BLV represent an interesting model for studying
leukemia/lymphoma, as they systematically develop leukemia/lymphoma in a shorter
period of ~20 months. In this model, it is possible to monitor all stages of the viral-induced
disease, from infection, through asymptomatic stages, to terminal leukemia, recapitulating
the development of HTLV-1-associated human malignancy. BLV sheep models have con-
tributed to defining the viral and host determinants for viral persistence and latency and
to exploring the efficacy of potential cancer treatment and viral vaccine [150,151,189]. Re-
cently, comparative analyses of HTLV-1/BLV proviral integration sites in the host genomes
were performed from the primary tumors and asymptomatic stages of the infection using
high-throughput sequencing mapping and RNAseq [148]. This study demonstrated that
HTLV/BLV proviruses are integrated close to cancer driver genes, the expression of which
may be cis-perturbed, contributing to malignant progression in the polyclonal expansion
of the infected cells. Proteome analysis of sheep lymphocytes in the course of BLV-induced
leukemia identified novel potential protein markers of disease progression such as spleen
trypsin inhibitor, CXCL4/PF-4, thrombospondin, vasodilator-stimulated phosphoprotein,
and the fibrinogen alpha chain that are worthy of further investigation in HTLV-induced
leukemia [190]. Defining the genetic and epigenetics factors that characterize the sheep
BLV leukemia also offers the opportunity to test antiviral gene target therapies.

4.2. STLV Models

STLV-1 naturally infects non-human primates such as the Japanese rhesus macaque,
Mandrillus sphinx, and Papio anubis and, like HTLV-1, causes ATL adult T-cell leukemia
and lymphoma. [153]. Compared to HTLV-1 infection, Japanese monkeys infected by
STLV-1 present similar host immune responses to viral protein and similar clonality of
virus-infected T cells, representing a valid model for studying persistent infection and
for developing immune-based therapy and prophylaxis [153]. Administration of anti-
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CCR4 antibodies to STLV-1-infected Japanese macaques resulted in a reduced proviral load
in vivo, which is consistent with its efficacy in patient ATL treatment [154]. Furthermore, a
long-lasting decrease in the number of STLV-1-infected cells in vivo was observed when
Japanese macaques were treated with the humanized anti-CCR4 monoclonal antibody
mogamulizumab, which enhances T-cell responses to viral antigens and suppresses CCR4+
Treg cells [155]. Recently, the effect of monoclonal antibodies on CD8 and CD16 was also
explored in Japanese macaques infected with STLV-1; although not conclusive, the results
suggested that depletion of CD8+ cells was able to modify the clonal proliferation of the
infected cells [156].

In Papio papio baboons naturally infected with STLV-1, it was observed that the com-
bined treatment with valproate, an inhibitor of histone deacetylases, and azidothymidine,
an inhibitor of reverse transcriptase, caused a strong decrease in the proviral load and an
increase in the STLV-1 specific cytotoxic T-cell population [157]. Due to the similarity with
the human immune system, STLV-1-infected baboons have been proposed as a model for
testing HTLV-1 vaccines based on immunogenic Tax epitopes. In this model, distinct Tax
epitope-rich regions have been shown to be targeted by STLV-1-specific CD8+ T cells [158].

5. Conclusions

Despite recent advances in ATL treatment, including multiagent chemotherapy, al-
logeneic hematopoietic stem cell transplantation, anti-CCR4 monoclonal antibody, and
antiviral therapy, the ATL prognosis remains poor. Cell and animal models, although they
suffere limitations with respect to replicating HTLV-1 human infection and related diseases,
have been and still remain extremely useful models for identifying new key host and viral
factors required for HTVL replication ad pathogenesis. It is expected that these models
will be improved following the recent advancement in cell-based technologies. Genome
editing by CRISPR/Cas9 system targeting HTLV integrated genomes, single-cell analyses,
immunogenic peptide design, RNA-based therapy, and improvement in drug delivery are
all expected to contribute to the future development of novel and more effective therapies
for HTLV-1 related diseases.
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