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Abstract: The aim of this work was to determine the effect of stress conditions caused by different
light sources, i.e., blue LED (λ = 430 nm), red LED (λ = 670 nm), blue and red LED (70%:30%)
and white LED (430–670 nm) on the growth and morphology of cultivated in vitro Dracocephalum
forrestii shoot culture. It also examines the effects on bioactive phenolic compound production and
photosynthetic pigment content, as well as on antioxidant enzyme activity (CAT, SOD, POD) and
antioxidant properties. The most beneficial proliferation effect was observed under white LEDs
(7.1 ± 2.1 shoots per explant). The white and blue lights stimulated the highest fresh weight gain,
while red light induced the highest dry weight gain. The total phenolic acid content ranged from
13.824 ± 1.181 to 20.018 ± 801 mg g DW−1 depending on light conditions. The highest content of
rosmarinic acid was found in the control shoots (cultivated under fluorescent lamps), followed by
culture grown under red light. All LED treatments, especially red and blue, increased salvianolic
acid B content, and blue increased apigenin p-coumarylrhamnoside biosynthesis. The greatest
ferric reduction activity was observed in shoots cultivated under red light, followed by blue; this is
associated with the presence of the highest total phenol content, especially phenolic acids. Similarly,
the highest DPPH radical scavenging potential was observed under red light followed by blue.
This study proves that LEDs have emerged as significant support for directed in vitro propagation,
taking advantage of specific stress responses on various light spectra. This study also showed how
stress induced by different LED light spectra increases in Dracocephalum forrestii the synthesis of
pharmacologically-active compounds. Hence, light stress may turn out to be a simpler alternative to
metabolic engineering for improving the production of secondary metabolites of therapeutic value.

Keywords: apigenin derivative; fluorescent light; light conditions; LEDs; rosmarinic acid; salvianolic
acid B; shoot culture

1. Introduction

The production and accumulation of secondary metabolites (SM) is an example of a
sophisticated process developed by plants to facilitate survival and adaptation. This het-
erogeneous group of compounds is involved in defence against abiotic and biotic stresses,
as well as in signalling of symbiotic communication, attracting pollinating animals and
protecting plants from UV radiation and oxidants [1]. A range of classifications exist for
plant metabolites. They may refer to chemical structure (concerning presence of sugars
or rings), solubility in water or organic solvents, composition (presence of nitrogen ele-
ment) and their biosynthetic pathway [1]. However, the most practical classification may
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be that based on synthetic route, which results in three large classes: terpenes, phenolic
compounds and alkaloids. Of these, the most abundant group is the terpenes, followed
by the phenolic compounds [1]. The latter class is synthesized in plant cells by the shiki-
mate/phenylpropanoid and/or the malonate/acetate pathways. Phenolic compounds are
chemically a very diverse group that encompass several thousand SM in higher plants but
are uncommon in bacteria, fungi and algae. They are considered to play a crucial role in
the antioxidative defence system by neutralising free radicals and other oxidative agents
released under environmental stress conditions, typically high light level, nutrient defi-
ciency, low temperatures and pathogen infection. A body of evidence suggests that plant
phenolics support the capability of plants to scavenge reactive oxygen species (ROS) [2,3].

In addition to their vital role in maintaining plant fitness and competitiveness, SM
also serve as food additives or important pharmaceuticals. Natural compounds, and SM
in particular, can provide effective and safe alternatives to synthetic drugs for human
therapy. It has been estimated that one fourth of the prescribed drugs contain components
directly or indirectly derived from plants [4]. One plant species that has been screened
for pharmacologically bioactive molecules is the Tibetan medical species Dracocephalum
forrestii W.W. Smith, which grows in Chinese mountains in Yunnan province, where its
aerial parts are known for their astringent, diuretic and antipyretic properties [5]. Among
its SM, terpenoids, flavonoids, phenolic acids and lignans are believed to predominate [6].
However, most of the therapeutic activities of Dracocephalum result from the synthesis
and accumulation of phenolic compounds, including a number of caffeic acid derivatives
(e.g., chlorogenic acid, rosmarinic acid, salvianolic acid B). Interestingly, transgenic hairy
roots have also been found to demonstrate antioxidant, anti-inflammatory and anticancer
properties [7].

However, the chemical synthesis of plant compounds is often expensive and not eco-
nomically viable due to their complex nature; in addition, metabolic engineering requires
a good theoretical understanding of SM pathways. With this in mind, there is a need to
find a procedure to increase the production of SM in D. forrestii. The synthesis of SM can be
accelerated using factors known as elicitors, also commonly defined as stressors [8]. One
such stressor known to influence the growth and morphology of shoots is the choice of
light spectra, which may also influence the production of bioactive phenolic compounds.
Light influences and alters plant physiological pathways in varied ways by affecting the
sophisticated system of photoreceptors developed by plants. It can influence the processes
behind flowering, circadian rhythm, photosynthesis, production of carotenoids and an-
thocyanins, vegetative growth, shoot biomass, production of different defence proteins
or decreased leaf area. However, the nature of the feedback is strongly species and/or
cultivar dependent [9–11].

Therefore, the aim of the present study is to demonstrate the influence of light as a
stressor on the growth and phytochemical profile of D. forrestii, particularly on the accumu-
lation of secondary compounds with therapeutic value. The study examines the effect of
different light spectra, induced by LED (Light Emitting Diode) lamps, on tissue cultures of
D. forrestii. Four types of LED are used: blue light λ = 430 nm; red light λ = 670 nm; a com-
bination of red and blue lights—70%:30%, and white light λ ∈ (430–670 nm). Fluorescent
light was used as a reference. Although it is well known that light affects plant metabolism,
growth and development, the nature of the response varies between species, and no such
information is currently available for the genus Dracocephalum. Moreover, most previous
studies on the effect of light as a stressor have examined ornamental species and focused
on growth and morphological traits. A relatively low number of studies have been related
to light-induced changes in secondary metabolism associated with the production of plant
compounds having pharmacological activity. Hence, our findings will demonstrate the
influence of light stressor on growth and the phytochemical profile of the D. forrestii.
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2. Results and Discussion
2.1. Light-Mediated Morphology and Growth

In the present study, fluorescent light, was chosen as a reference as it has played a
dominant role as the supplemental lighting for greenhouse breeding for several decades.
It encompasses a wider range of wavelengths, including both the visible and non-visible
light spectrum (350–750 nm, although this range varies between reports) [12]. In our
study, fluorescent lighting was found to result in the lowest rate of proliferation, with the
shoots appearing fragile and demonstrating longer stems with long internodes and small,
relatively short leaves (Figures 1–3). Consequently, D. forrestii cultures also demonstrated
the lowest biomass values (measured as fresh and dry weight) compared to the other
LED sources (Figure 4). Surprisingly, the control demonstrated the highest photosynthetic
pigment contents (ChA, ChT and Cr) (Figure 5); this may have been due to the fact that
chlorophyll and carotenoid synthesis can be favoured by the wider and/or specific spectra
provided by the fluorescent light with respect to the LED ones. In contrast to our present
findings, illumination of Saccharum officinarum shoots with white LEDs resulted in greater
pigment content than under other light treatments [13]; in our present study, LED white
illumination resulted in the lowest levels of chloroplastid pigment production (Figure 5),
highlighting a species-specific response to light stress.
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Figure 1. The effect of light conditions: (B) blue, (R) red, (B/R) blue/red, (W) white, (F) fluorescent
on proliferation and length of D. forrestii shoots. The values represented means ± SE of three
independent experimental replicates. The means marked with various letters for the same parameter
were different at p < 0.05 according to one way ANOVA test followed by the post-hoc Tukey’s test.
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Figure 4. The effect of light condition: (B) blue, (R) red, (B/R) blue/red, (W) white, (F) fluorescent
on biomass of shoots of D. forrestii. The values represented means ± SE of three independent
experimental replicates. The means marked with various letters for the same parameter were
different at p < 0.05 according to one-way ANOVA test followed by the post hoc Tukey’s test.
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Figure 5. The effect of light conditions: (B) blue, (R) red, (B/R) blue/red, (W) white, (F) fluorescent on the photosynthetic
pigments contents (mg g−1 FW) in shoots of D. forrestii. The values represented means ± SE of three independent
experimental replicates. The means marked with various letters for the same parameter were different at p < 0.05 according
to one way ANOVA test followed by the post-hoc Tukey’s test. (ChA) chlorophyll A, (ChB) chlorophyll B, (ChT) total
chlorophyll, (Cr) carotenoids.
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All investigated growth parameters changed when LEDs were used to stimulate plant
development. The most beneficial proliferation effect was observed in explants stimulated
by white light (Figure 1); this may have been due to its spectral profile (Figure S1). A slightly
lesser positive effect was demonstrated by the other LED variants, but no statistically
significant differences were found between them. Finally, fluorescent illumination yielded
the least response, giving the lowest shoot number. Interestingly, white light triggered
the opposite reaction to fluorescent light with regard to proliferation: mean 7.1 ± 2.1
under white LED to 3.3 ± 1.2 shoots per explant by fluorescent-type lighting (Figure 1).
Since the visible spectra of white LED and fluorescent light demonstrate quite significant
overlapping, a response of D. forrestii may be due to species specific sensitivity to even
slight spectra differences that results in significant change in the efficiency of bud induction.
Hence, any generalisation to other species should be made with caution, as e.g., a clear
increase in the number of shoots per explant was reported in Vanilla planifolia under both
white LED and fluorescent light, as well as under blue/red LED lighting [14].

Further development of shoots, expressed as mean length, was most stimulated by
combined blue/red light (3.4 ± 1.5 cm) compared to 2.1 ±1.1 cm under fluorescent light,
followed by blue or red light alone (Figures 1 and 2). The results are partially consistent
with those of Silva et al. [13], indicating that this combination has a significant influence on
shoot lengthening in sugarcane, in comparison to white LED; however, it was also found
that the highest fresh weight and shoot multiplication ratio was stimulated by the blue/red
light blend ratio [13]. Combined blue/red light was also found to have a positive influence
on the shoot height in strawberry plants [15].

The white and blue LED regimes yielded an increase in fresh weight production;
however, the highest dry biomass values were obtained under separate red and blue
light conditions (Figure 4). Among all LED treatments, the total biomass ranged from
0.153 ± 0.020 g to 0.214 ± 0.030 g (FW) and from 0.017 ± 0.001 g to 0.024 ± 0.002 g (DW).
It was found that the highest gain for FW was achieved by white and blue light equally,
followed by red > blue/red > fluorescent light, while red light yielded the highest DW,
followed by blue≥ blue/red≥white > fluorescent light (Figure 4). It has been reported that
blue and red wavelengths have a particularly strong effect on the opening and closure of
stomata which control leaf gas exchange including both CO2 and the transpired water [16].
This transpiration changes may alter the water content in tissues, which can influence plant
biomass, and the size and height of shoots [17]. The most spectacular change concerned the
white light regime. While it results in the highest accumulation of fresh biomass, it does
not effectively promote dry weight acquisition (Figure 4). Hence, it appears that white
LED may be a better stimulator of tissue hydration and/or callus generation. Red and blue
illumination turned out to display the most beneficial effect in dry biomass production;
interestingly, they also induced internode shortening and leaf lengthening and widening
(Figures 3 and 4). For some species light-mediated hormonal regulation of plant growth
was presented. The analysis of phytohormone transduction pathways revealed that some
of the transcription factors were common for light and hormone signalling, hence light-
mediated changes in the synthesis or activity of transcription regulators resulted in changes
in phytohormone balance simultaneously. Namely, shoot elongation and root formation
were promoted by auxin activity enhanced by blue light. The blue light caused an increase
in the activity of indole-3-acetic acid oxidase, the enzyme that stimulates the biosynthesis of
auxin [18]. However, the range and direction of response may vary depending on species
and light spectrum. For example, Petunia displayed higher biosynthesis of gibberellins
(and subsequent shoot elongation) under blue light conditions than when red light was
used [19]. However, again this is not a general rule in LED-mediated plant breeding; for
example, studies on grapes indicate that red LEDs induced the highest shoots with longer
internodes [20].

Among tested LED sources the chloroplastid pigments reached maximum values under
blue and blue/red treatments (Figure 5). The red LED operated antagonistically during
pigment synthesis. Our data confirm previous findings that a blue source of light is a
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significant factor for chlorophyll induction, while red decreases its level [8]. Blue illumina-
tion has also been reported to positively influence chlorophyll synthesis and chloroplast
development in studies on Chrysanthemum and Tripterospermum japonicum [21,22].

2.2. Bioactive Compound Production

The extracts from the cultivated shoots contained ten examined phenolic compounds,
including nine phenolic acid derivatives and one flavonoid (Table 1, Figure 6). All these
compounds were previously detected in the extract of D. forrestii shoots grown in vitro [5,7].

The total phenolic compound content ranged from 13.824± 1.181 to 20.018± 0.801 mg/g
DW, depending on LED treatment (Table 1), which indicates that light is not only an im-
portant factor for photosynthesis, but for other physiological mechanism involved in the
biosynthesis of SM [23]. HPLC analysis indicates that white LEDs were less favourable
for the production of majority of phenolic acids than the other light conditions (Table
1). The quantitatively dominant metabolite was rosmarinic acid (RA); it was found to
be present at the highest levels in the control shoots (11.461 ± 0.759), followed by those
grown under red LEDs (10.896 ± 0.180). Although these two values were not significantly
different, they were more than twice as high as those in the shoots grown under white
LEDs (4.942 ± 0.314 mg/g d.w.) (Table 1). Other studies have also demonstrated a dis-
advantageous effect of white light on production of shikonin derivatives in Lithospermum
erythrorhizon [24] or tropane alkaloids in Hyoscyamus muticus [25]. Elsewhere, control fluo-
rescent lamp light was found to stimulate the greatest accumulation of gallic acid in in vitro
cultures of Myrtus communis compared to all LED variants (red, blue, red/blue) [26].
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numbers correspond to those in Table 1. The detection wavelength was set at 325 nm. (1) Chlorogenic acid, (2) Caffeic acid,
(3/4) Salvianolic acid I/H and Salvianolic acid E, (5) Dicaffeoylquinic acid, (6) Rosmarinic acid, (7) Lithospermic acid, (8)
Salvianolic acid B, (9) Apigenin p-coumarylrhamnoside, (10) Metyl rosmarinate.

However, all LED treatments were found to increase biosynthesis of polyphenolic
acids with more complex molecular structure, such as salvianolic acids, in D. forrestii shoots
(Table 1). Salvianolic acid B (SalB), a dimer of RA, was the second most quantitatively domi-
nant compound in the studied extracts, with amounts ranging from 3.608± 0.144 mg/g d.w.
in shoots under red LEDs to 2.884 ± 0.278 and 2.842 ± 0.251 mg/g d.w., respectively, under
white and mixed red/blue LEDs; in contrast, it was present at only 0.289 ± 0.020 mg/g d.w.
in the control shoots (Table 1). Previous studies have shown that SalB can inhibit platelet
aggregation and adhesion, which has great significance for the prevention of cardiovascular
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diseases [27]. SalB has been found to reduce oxidative stress by protecting animal cells
from peroxidation and free radical damage [28]. Our results indicate that SalB content was
always higher under LED treatments, however LED did not stimulate the increase in RA
content. Conversely, it has previously been reported that LED treatment stimulated RA
synthesis but did not catalyse its conversion to SalB in S. miltiorrhiza hairy roots; the authors
hypothesized that SalB is not obtained by conversion from RA, but from danshensu via the
tyrosine-derived pathway [29]. This would explain why changes in SalB production were
not related to changes in RA production.

Also, significantly higher combined salvianolic acid H/I and E content was observed
during the growth under LEDs than under fluorescent lamps (Table 1). The compound
contents peaked in shoots under mixed red/blue treatment (1.921 ± 0.093 mg/g d.w.), this
being 2.5-fold greater than in control conditions.

Combined red/blue and blue light alone yielded the greatest production of chlorogenic
acid (Table 1), while red light significantly reduced it. In a previous study of Peucedanum
japonicum callus culture [30], optimal chlorogenic acid production (3.4 mg/g d.w.) was
obtained for mixed light, albeit in another combination (3Red3Blue3Infra-red); in contrast,
chlorogenic acid production fell under blue or red light alone, or a mixture of red and
blue, with a predominance of red light, (0–0.09 mg/g d.w.) compared to shoots grown
under white light (0.44 mg/g d.w.). Similar results were reported for Ruta graveolens:
red light inhibited chlorogenic acid biosynthesis compared to other LED treatments [31].
However, red light induced maximum production of caffeic acid in Ocimum bassilicum [32]
and cinnamic acid in Ruta graveolens [31].

Table 1. The effect of light conditions: blue, red, blue/red, white, fluorescent on accumulation of phenolic compounds in D.
forrestii shoot culture. The values represented means ± SE of three independent experimental replicates.

Peak No. Compound
Compound Content [mg/g DW] under Different Light Treatments

Blue Red Red/Blue White Control

1 Chlorogenic acid 2.001 ± 0.065 a 1.021 ± 0.125 c 2.043 ± 0.045 a 1.839 ± 0.143 b 1.086 ± 0.101 c

2 Caffeic acid 0.096 ± 0.002 b 0.040 ± 0.003 d 0.049 ± 0.005 cd 0.054 ± 0.025 c 0.133 ± 0.011 a

3
4

Salvianolic acid I/H
Salvianolic acid E 1.364 ± 0.050 c 1.196 ± 0.135 c 1.921 ± 0.093 a 1.513 ± 0.151 b 0.777 ± 0.066 d

5 Dicaffeoylquinic acid 0.049 ± 0.003 b 0.043 ± 0.004 b 0.043 ± 0.003 b 0.06 ± 0.006 a 0.053 ± 0.007 a,b

6 Rosmarinic acid 9.187 ± 0.320 b 10.896 ± 0.810 a 6.833 ± 0.591 c 4.942 ± 0.314 d 11.461 ± 0.759 a

7 Lithospermic acid 0.492 ± 0.016 b 0.151 ± 0.004 d 0.552 ± 0.016 a 0.546 ± 0.045 a,b 0.414 ± 0.028 c

8 Salvianolic acid B 3.285 ± 0.253 a,b 3.608 ± 0.144 a 2.842 ± 0.251 b 2.884 ± 0.278 b 0.289 ± 0.020 c

9 Apigenin
p-coumarylrhamnoside 2.448 ± 0.053 a 1.171 ± 0.084 c 1.632 ± 0.110 b 1.180 ± 0.140 c 1.305 ± 0.061 c

10 Metyl rosmarinate 1.096 ± 0.028 a 1.035 ± 0.013 b 1.137 ± 0.045 a 0.806 ± 0.063 c 0.551 ± 0.028 d

Total phenol content 20.018 ± 0.801 a 19.161 ± 1.360 a,b 17.052 ± 1.170 b,c 13.824 ± 1.181 d 16.069 ± 1.090 c,d

The means marked with various letters for the same parameter were different at p < 0.05 according to one way ANOVA test followed by the
post-hoc Tukey’s test.

Blue LEDs were found to be extremely beneficial for the production of the flavonoid,
apigenin p-coumarylrhamnoside in shoot culture of D. forrestii (Table 1). A high level has
been reported in Agrobacterium rhizogenes transformed shoots, but only traces were found in
the young wild type shoot culture [5,7,33]. Apigenin p-coumaryl rhamnoside biosynthesis
appears to be particularly sensitive to lighting conditions: blue LED treatment yielded
twice as much as other light conditions. Blue light was also most beneficial for production
of the flavonoid glycosides cynaroside, quercitrin and rutoside in shoot cultures of three
Aronia species [34].

In summary, our findings confirm that blue and red light are needed for optimal total
phenol production (20.018 ± 0.801 and 19.161 ± 1.36 mg/g d.w., respectively) in the shoots
of D. forrestii; however, the profile of the individual compounds differed between these
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two treatments (Table 1). This clearly proves that different light conditions stimulate the
individual polyphenolic compound biosynthesis pathway influencing only its selected
nodal points (the nodal points of the polyphenol metabolism pathway are catalysed by one
specific enzyme, the production of which is associated with changes in the expression of a
single gene that could be influenced by different light spectra; it is likely that only selected
nodal points are activated/inhibited under a given light regime changing the synthesis of
a specific compound without significantly influencing production of the others). This is
likely connected with the influence of light on the expression of biosynthetic genes via pho-
toreceptors [35]. Blue light often promotes the accumulation of total phenolic compounds
in in vitro cultures. Such an effect has been described for the biosynthesis of verbascoside
in Verbena officinalis [36] or Scutellaria lateriflora [37] or total phenols in the leaf extracts of
Rehmannia glutinosa [36]. On the other hand, the total flavonoid content in R. glutinosa and
in Ocimum bassilicum culture increased most intensely under red LEDs [32,38]. Similarly,
myricetin was clearly promoted by red light in in vitro cultures of the Myrtus communis [21].

2.3. Antioxidant Response

The fast responses of antioxidant enzyme activities such as POD, CAT and SOD,
and SM production are the important strategies for reducing ROS formed during stress
reactions [39]. High phenolic content enhances the antioxidant property of the plant,
because phenols are capable of scavenging free radicals and preventing oxidative damage.
As polyphenol production has been found to change when plants were exposed to light,
changes in the antioxidant potential of a culture can also be expected. Furthermore, in
D. forrestii shoots, the LED wavelengths were found to not only enhance the polyphenol
content, but also the activities of antioxidant enzymes (Figure 7).

The blue LED treatment dramatically increased CAT (4.5-fold) and SOD activities (3.5-
fold) compared to shoots under fluorescent lamps (Figure 7). The results were similar to
these obtained for leaves of Rehmannia glutinosa, in which blue LED treatment demonstrated
the greatest influence on enzymatic antioxidant mechanism [33]. Blue light treatment also
increased POD activity in shoots of D. forrestii, but the highest enzyme activity level was
found under mixed light (Figure 7).

The highest iron reduction capacity was observed for D. forrestii shoots grown under
red light, followed by blue (Figure 8) (no statistical differences); this might be due to fact
that these treatments are eliciting the highest total phenol content, especially phenolic acids
(including SalB and RA). Shoots treated with white LEDs or F light show a significantly
weaker ability to reduce iron (Figure 8); the two treatments demonstrated comparable iron
reduction potential, although the white LED treatment yielded a three-fold lower content
of RA (Table 1). This reflects the strong antioxidant activity of SalB, the content of which
was significantly higher in the shoots under red and blue light—the conditions that yielded
the highest level of iron reduction capacity. Hence, extrapolating this result, if in the case
of white LED treatment, the RA content was low and SalB content was high, there is likely
that SalB is responsible for significant antioxidant potential. SalB is known as natural
antioxidant obtained from S. miltiorrhiza and demonstrated strong potential in scavenging
O2

- and OH- and inhibiting lipid peroxidation of microsomes [40]. Chen et al. [41] showed
that salvianolic acid B has a higher radical scavenging capacity (IC50 value = 8.8 µM than
other phenolic acids e.g., chlorogenic acid (IC50 value = 27.5 µM).
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Figure 7. The effect of light conditions: (B) blue, (R) red, (B/R) blue/red, (W) white, (F) fluorescent on
the antioxidant enzyme (POD—peroxidase, SOD—superoxide dismutase, CAT—catalase) activities
in shoots of D. forrestii. The values represented means ± SE of three independent experimental
replicates. The means marked with various letters for the same parameter were different at p < 0.05
according to one way ANOVA test followed by the post-hoc Tukey’s test.

Similarly, among all light treatments, the shoots cultivated under red light demon-
strated the highest DPPH radical scavenging potential, followed by the blue treatment (no
statistical differences) (Figure 8).

The results of our studies: the increased enzyme activities and antioxidant assay
findings are consistent with the fact that the cultures grown under red and blue light
produced the highest amounts of antioxidant compounds. This could indicate that the
plant tried to adapt to these specific spectral ranges. A particularly strong direct relationship
was found between polyphenol content in D. forrestii culture and the results of the iron
reduction test (r = 0.91) and superoxide dismutase activity (r = 0.88) (Table 2). A positive
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correlation between antioxidant potential and phenolic content has been also reported for
callus culture of Lepidium sativum [42], Basella rubra [43] or Fagonia indica [44].
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Figure 8. The effect of light conditions: (B) blue, (R) red, (B/R) blue/red, (W) white, (F) fluorescent
on the antioxidant capacity (FRAP—ferric reducing antioxidant power, DPPH—1,1-diphenyl-2-
picrylhydrazyl) of hydromethanolic extract from shoots of D. forrestii. The values represented
means ± SE of three independent experimental replicates. The means marked with various letters
for the same parameter were different at p < 0.05 according to one way ANOVA test followed by the
post-hoc Tukey’s test.

Table 2. Correlation coefficient between antioxidant activity and phenolic content in D. forrestii shoot
culture under various light conditions.

r FRAP DPPH POD SOD CAT

Total phenol content 0.91 −0.67 0.40 0.88 0.70
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3. Conclusions

Plant secondary metabolites are usually studied in the context of their role in plant
defence against abiotic and biotic stresses. Little data is available regarding the corre-
lation between the culture light conditions and the mechanisms underlying the physio-
logical secondary metabolism in D. forrestii. Our findings indicate that under controlled
in vitro conditions, manipulation of light quality could induce significant changes to
physiological and biochemical responses of D. forrestii shoot culture. Optimum biomass
accumulation and shoot micropropagation ratio were recorded under blue light, as was
SM accumulation. Moreover, it has been observed that light-stimulated D. forrestii shoots
display specific stress-derived phytochemical profiles leading to more effective synthesis
of pharmacologically-active compounds. Maximum total polyphenolic acid levels were
achieved by exposure to blue light treatment followed by red LEDs, and this was strongly
correlated with an enhancement of antioxidant capacity. Hence, light stress may turn out to
be a simpler alternative to metabolic engineering offering new perspectives for improving
the production of such valuable compounds.

4. Materials and Methods
4.1. Plant Material

The in vitro culture shoots of D. forrestii, were initiated from seeds obtained from Parco
Nazionale Gran Paradiso, Valnontey (Italy). The optimization of shoot growth conditions
and bioactive compound production are described by Weremczuk-Jeżyna et al. [5]. In the
present experiment, nodal segments 1 cm in length were used as explants. The explants
were placed on MS (Murashige and Skoog) [45] agar (0.7%) medium containing 0.5 mg/L
BAP and 0.2 mg/L IAA. Shoot cultures were kept at 26 ± 2 ◦C under a 16 h photoperiod
provided by different light conditions. After five weeks of culture, the number of shoots or
buds per explant was recorded, as was their length, fresh (FW) and dry weight (mg/tube)
(DW). Each experiment including at least 20 explants was repeated three times.

4.2. Light Conditions

In this study, four LEDs were used: the lamps emitted blue light (430 nm), red light
(670 nm), a combination of red and blue lights (70%:30%) and white light (430–670 nm)
(PXM Sp. (Niepołomice, Poland). Spectral characterization of the tested LED lamps was
made using a BTS256-LED Tester (Gigahertz-Optik, Germany). Fluorescent light emitted
by cool white fluorescent lamps was used as a control. The light intensity was the same for
all light sources (40 µM m−2 s−1). The spectral characterisation of LEDs showed Figure S1.

4.3. Analysis of Photosynthetic Pigments

The samples were prepared with 80% acetone by macerating 0.2 g of FW of the shoots
according to method described by Oren et al. [46]. The photosynthetic pigments content
was determined spectrophotometrically (UV-1800 UV/VIS Spectrophotometer (Beijing,
China). The absorbance of samples was indicated at wavelengths: chlorophyll a (664 nm),
chlorophyll b (647 nm) and carotenoids (470 nm) [47]. The level of pigments were expressed
as mg g−1 FW.

4.4. Extraction of Phenolic Acids

Lyophilized and powdered shoots (100 mg) were first sonicated with 15 mL chloroform
using a UD-20 ultrasonic disintegrator (15 mL). After filtration, the defatted samples were
sonicated for 15 min with 80% (v/v) aqueous methanol (25 mL) at 40 ◦C in an ultrasonic
bath, and then twice in 10 mL of the same solvent for 15 min. The extracts were filtered and
evaporated to dryness under reduced pressure. The residue was dissolved in methanol
(2 mL) and centrifuged at 18,000 rpm for three minutes, and the supernatant was analyzed
by HPLC.
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4.5. Determination of Phenolic Acids Content

A quantitative analysis was performed using a Waters HPLC system consisting of a
binary HPLC pump (Waters 2545), a diode array detector (Waters 2998) and an auto sampler
(Waters 2767). MassLynx software (version 4.1) was used for instrument control and data
acquisition. The analysis was performed on a XBridge C18 OBD column (4.6 mm× 100 mm)
with a particle size of 5µm.The mobile phase (A) was 0.1% trifluoroacetic acid in water and
the mobile phase B was 0.1% trifluoroacetic acid in acetonitrile. The following gradient
system was used for the analysis: 0–20 min 5–50 solvent B, 20–21 min 50% solvent B, 21–22
min 50−5% solvent B, 22–27 min 5% solvent B. The flow rate was 1.6 mL/min. UV spectra
were recorded over range of 190–700 nm, chromatograms were acquired at 325 nm. The
injection volume was arranged as 4 µL. The compounds were identified by comparison
of their retention times and UV spectra with those of the standard compounds and/or
literature data [5,7]. For quantitative analysis, individual standard calibration curves
were constructed based on the area peaks. Standards: chlorogenic acid, caffeic acid, RA
were obtained from Sigma-Aldrich, Germany and apigenin-7-O-glucoside and SalB from
Extrasynthese, France. Compounds, for which pure standards were not available, were
quantified according to the calibration curve of similar standards.

4.6. Determination of Activities of Antioxidant Enzymes

The extracts needed to analyze peroxidase (POD), catalase (CAT) and superoxide
dismutase (SOD) activity were obtained by grinding (in 4 ◦C) fresh biomass of shoots (0.5 g)
with 4 mL phosphate buffer (pH = 7.5) with the addition of 0.5 mM EDTA. Next, the mixture
was centrifuged (12,000 rpm for 10 min) and supernatant was taken for antioxidant enzyme
activity assay by spectrophotometry (UV-1800, UV/VIS Spectrophotometer). The CAT
activity was determined at 240 nm and results expressed as units mg−1 of protein (U = 1 µM
of H2O2 reduction min−1 mg−1 protein) [48]. The SOD activity was evaluated according to
Giannopolitis and Reis [49]: the ability to inhibit reduction of nitro blue tetrazolinum (NBT)
(Sigma-Aldrich, Darmstadt, Germany) and the absorbance of the samples was determined
at 560 nm [50]. SOD activity was expressed as enzyme units per mg of protein (U mg−1

protein). The POD activity was determined by the increase in absorbance at 470 nm due to
guaiacol (Sigma-Aldrich, Germany) oxidation [51]. The activity was reported as U mg−1

protein. Bovine serum albumin (Sigma-Aldrich, Germany) was used as standard protein.
Protein concentration was determined according to Bradford [52].

4.7. Antioxidant Assays

Antioxidant analysis was performed using hydromethanolic extracts obtained from
1 g dried, lyophilized and powdered plant material. The same extraction procedure was
used as for the phytochemical analysis. The antioxidant potential of the extracts from
transformed D. forrestii shoots grown under different light conditions was determined
using two antioxidant tests: ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-
picrylhydrazyl (DPPH) radical assays.

For the FRAP assay, antioxidant activity was determined spectrophotometrically
against a calibration curve of ferrous sulfate; absorbance was measured at 595 nm and
expressed as µM Fe(II) g−1 DW of extract [53]. The radical scavenging activity (DPPH test),
was determined according to [54]; absorbance was measured after 30 min at 517 nm, and
antiradical activity was expressed as IC50 value (µg mL−1). IC50 value is the concentration
of the sample demonstrating 50% of maximum absorption.

4.8. Statistical Analysis

The data were presented as means ± SE (standard error). All the aforementioned
tests were repeated three times. All estimated values including values of means, standard
deviations, standards errors, EC50 values, correlation coefficients between polyphenolic
compound content and antioxidant activity as well as enzyme antioxidant activity were
calculated using MS-Excel (Microsoft Sp. Z o. o., Warsaw, Poland). The results were



Int. J. Mol. Sci. 2021, 22, 7965 14 of 16

analyzed using the one-way ANOVA test and multivariate analysis of variance, followed
by the Tukey’s post-hoc test. The significance level for all calculations was set at p < 0.05.
All tests were performed using STATISTICA 10.0 software (STATSoft, Krakow, Poland).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22157965/s1. Figure S1. The spectral characterisation of used LEDs: (A) blue LED
(430 nm), (B) red LED (670 nm), (C) white LED (390–760 nm). Red/blue LED was mixed red (70%)
and blue (30%) LED.
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