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Abstract: Auxin is a key regulator of plant development affecting the formation and maturation of 
reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilita-
tors from the PIN, AUX and ABCB families. The polar localization of these proteins and constant 
recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. 
Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moi-
eties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and 
REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with de-
creased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are af-
fected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to 
the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic 
tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm 
formation in unfertilized ovules and influences embryo development in a maternal sporophytic 
manner. The results show the importance of vesicular traffic for sexual reproduction in flowering 
plants, and highlight RGTB1 as a key component of sporophytic-filial signaling. 

Keywords: Arabidopsis; auxin; embryo; endosperm; PIN1; Rab; Rab Geranylgeranyl Transferase; 
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1. Introduction 
Flowering plants, which dominate present-day flora, have developed a sophisticated 

and successful system of propagation by seeds. Unlike other plants, the angiosperm fe-
male gametophyte (FG) undergoes double fertilization. The haploid egg cell is fertilized 
by one sperm cell to form a zygote [1]. Mitotic divisions of the zygote follow and give rise 
to the embryo, which by the 16-cell globular stage exhibits differentiated inner and outer 
cell layers. In Arabidopsis, when the embryo contains 32 cells, it undergoes a transition 
from globular to bilateral symmetry, initiating cotyledons (embryonic leaves) and a radi-
cle (embryonic root). The endosperm arises from the diploid central cell, which is ferti-
lized by the second sperm cell [1]. The initial divisions of the triploid nuclei in the endo-
sperm are not followed by a cytokinesis and the endosperm, therefore, develops as a syn-
cytium; only when the embryo has reached early heart stage does the endosperm cellu-
larize [2]. In some plants an adaptive mechanism enables formation of the embryo inde-
pendently from fertilization, also referred to as apomixis [3,4]. Autonomous endosperm 
(AE) development is also triggered under stress in vivo/in vitro or in a number of mutants 
[5–7]. The outermost component of the seed is the seed coat, which forms entirely from 
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maternal tissues. Its precursors, the integuments, surround and mechanically protect the 
developing female gametophyte. Moreover, they supply the FG with nutrients and hor-
mones [8] and fulfil an important role in fertilization as a source of chemical attractants 
for pollen tube growth and guidance [9,10]. The seed coat protects the developing embryo 
from mechanical stress, UV radiation and water loss. It plays a role in dissemination and 
later in dormancy maintenance in the mature seed. Finally, during seed germination, the 
seed coat exudes polysaccharides that form a safe microenvironment for radicle growth 
[11,12]. 

Auxin is a hormonal master regulator of plant development and growth. In particu-
lar, it controls the development of pre- and post-fertilization reproductive structures in 
plants (reviewed in [13]). In angiosperms, auxin promotes formation of ovules in the 
ovary [14], female gametophyte development [15–17], pollen development [18–20] and 
the synchronization of anther and ovule maturation [8]. Auxin is also responsible for 
growth and differentiation of the embryo and the endosperm after double fertilization 
[21]. Simultaneously auxin influences growth of the seed coat [22]. Auxin is a factor that 
enables communication of the three main seed tissues: the embryo, the endosperm and 
the seed coat [23–26]. The source of auxin for pre-anthesis, fertilization and post-fertiliza-
tion stages and early embryo development is local synthesis in the sporophytic tissues of 
the ovary, in particular in integuments surrounding the female gametophyte [16,27,28]. 
Its transport to the vicinity of the embryo sac is achieved by the means of polar efflux by 
the PIN family of transporters localized in the funiculus and the integuments [8,15] and 
auxin importers from the AUX and ABCB families [29]. Auxin is thought to be absent from 
the embryo sac throughout its development [8,16], although some controversy remains 
[27]. Later, after the egg cell fertilization, the auxin biosynthesis genes are expressed at the 
embryo suspensor [30,31], and finally, starting from 16-cell globular stage, the embryo 
becomes self-sufficient for auxin biosynthesis [29,31–33]. Around fertilization, the main 
PIN proteins responsible for auxin homeostasis in the ovule are PIN1 and PIN3 [8]. PIN1 
is expressed in the embryo proper from the four-cell stage, and later in the epidermis of 
the cotyledon precursors followed by the pre-vascular strands in both the cotyledons and 
hypocotyl [34–36]. PIN2 and PIN3 are not expressed in the embryo or seed structures until 
the late stages, but PIN4 and PIN7 play an important role in the apical-basal axis estab-
lishment of the embryo [37,38]. In particular, the diversion of PIN7 localization in the sus-
pensor from apical to basal membranes is coincident with the major step in embryo de-
velopment: the change of symmetry from globular to bilateral [33]. PIN4 also enables 
auxin to accumulate at the prospective root meristem [39,40].  

PIN proteins are transported in a polar fashion to their destination, the plasma mem-
brane, by means of vesicular transport; the regulation of their activity in the cell is also 
achieved by a constant recycling from membranes to internal vesicles and back [41,42]. 
Among proteins involved in this membrane recycling are small GTPases from the Rab 
family [43–45]. Rab proteins are key components of vesicular traffic machinery in all Eu-
karyotes [46,47]. They “label” vesicles to their final destination, enable their movement 
via the cytoskeleton and mediate complex formation between membrane fusion machin-
ery proteins located on the donor vesicle and the acceptor membrane [46,48]. Small 
GTPases are post-translationally modified to enable membrane anchoring [48]. The lipid 
modification characteristic for Rab proteins is geranylgeranylation [49], which provides 
the proteins with affinity for membranes, comparable to modification with a long unsatu-
rated fatty acid [50]. Introducing such hydrophobic moieties on two neighboring cysteine 
residues in a Rab polypeptide by a stable tio-ether bond renders the protein membrane-
bound [51]. This lipid modification is crucial for Rab cellular function as a vesicle fusion 
and fission facilitator [46].  

Rab proteins are geranylgeranylated by an enzymatic complex Rab Geranylgeranyl 
Transferase (RGT), which consists of a tightly bound lipid binding RGTB subunit, a cata-
lytic RGTA subunit and an auxiliary Rab-binding REP (Rab Escort Protein) subunit [52]. 
RGTB activity is encoded in Arabidopsis by two genes: RGTB1 and RGTB2 [53]. In previous 



Int. J. Mol. Sci. 2021, 22, 7907 3 of 26 
 

 

studies, the role of RGTB proteins in the development of the Arabidopsis sporophyte [53,54] 
and both male and female gametophytes [15,54] was described, but the embryonic devel-
opment in rgtb1 mutants has not been studied. In the mature sporophytic tissues, RGTB1 
is the more abundant protein isoform and knock-out mutations cause pleiotropic pheno-
types in all rgtb1 plants [53]. RGTB2 protein is less abundant in the sporophytic tissues 
and a knock-out of its gene causes only minor defects in polar growth; moreover, the effect 
of this mutation is not fully penetrant [54]. Both genes are expressed in pollen and are 
responsible for pollen development and pollen tube growth; the combined knock-out of 
RGTB1 and RGTB2 causes total male sterility [54]. Recently, we described the influence of 
the rgtb1 mutation on female gametophyte formation [15]. Disturbance of the Rab-medi-
ated vesicle recycling of PIN1 and PIN3 auxin transporters in the funiculus caused auxin 
accumulation in the ovule and impeded progression of female gametophyte development 
in many ovules [15]. We also noticed some irregularities in integument formation. Here, 
we further explore the role of Rab geranylgeranylation during seed and embryo formation 
to understand how vesicular traffic influences plant reproduction. 

2. Results 
2.1. rgtb1 Mutants Form Fewer Seeds than WT Plants 

The number of ovules in the mature pistils of the rtgb1/rgtb1 plants was approxi-
mately half that of WT [15]. Moreover, a significant fraction of around 20–25% of female 
gametophytes were arrested at the FG1/FG2 stages of development, which coincided with 
PIN1 transporter mislocalization and auxin accumulation in the ovules [15]. However, 
when the rgtb1/rgtb1 flowers were hand-pollinated by either RGTB1 or the rgtb1 pollen, 
seeds were recovered, but always in amounts lower than for WT flowers (we will use the 
name WT meaning the RGTB1/RGTB1 genotype throughout the entire manuscript) (Fig-
ure 1). 

 
Figure 1. Number of seeds per silique is decreased in rgtb1/rgtb1 pistils that were either left for open 
pollination or manually pollinated with WT pollen. (A) Graph showing the number of seeds per 
silique. Number of siliques counted: WT n = 21, rgtb1-1 × WT n = 19, rgtb1-1 × rgtb1-1 n = 12, rgtb1-2 
× WT n = 34, rgtb1-2 × rgtb1-2 n = 19. Bars show mean ± SD. Values were compared with a two-sided 
Student t-test; *** denotes a p value < 0.001. (B) Siliques 6 days after hand pollination (6DAP) showed 
differences: WT silique filled with seeds, an intermediate situation in the rgtb1 × WT cross and a 
silique from a self-pollinated rgtb1 plant with only one seed. Light microscopy, representative im-
ages are shown. Scale bar represents 1 mm, common to all images. 
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The failure of seed formation in the case of open pollination of the rgtb1/rgtb1 plant 
may be due to the discrepancy in anther/pistil size [53], while poor success of hand polli-
nation of the rgtb1/rgtb1 may be explained by low fertility of the rgtb1/rgtb1-derived pollen 
[54]. Interestingly, the amount of seed formation in the rgtb1/rgtb1 × WT manual cross, 
which on average was less than 20% (compared to the WT × WT hand cross; Figure 1A), 
is much lower than expected from the ovule maturation data (a 50% reduction in ovules, 
of which 20–25% are non-functional, would predict a ~40% ratio of a successful seed for-
mation [15]). Therefore, we decided to examine the processes of pollination, fertilization 
and seed formation in rgtb1/rgtb1 mutants. 

2.2. Pre-Fertilization Events May Account for Failure of Seed Formation in rgtb1 Mutants 
Because the reduced capacity of vesicular transport in the rgtb1/rgtb1 plants might 

affect pollen behavior around the time of pollination, we checked pollen receptivity at the 
stigmatic papillae by scoring its recognition and hydration. Stigmatic papillae in the 
rgtb1/rgtb1 mutant developed normally (Figure S1A,B). Inefficient recognition of pollen 
on the stigma results in pollen grain detachment or degeneration [55]. Interestingly, WT 
pollen grains hydrated and germinated on rgtb1/rgtb1 stigmas upon hand pollination but 
with 30% lower efficiency than on WT stigma (Figure 2A,E,I,M). 

WT pollen tubes managed to grow through the transmission tract of the style in the 
rgtb1/rgtb1 mutants (Figure 2B,F,J), but more pollen tubes were mistargeted. Approxi-
mately 65% of the WT tubes found the micropyle in rgtb1/rgtb1 compared to 100% WT 
pollen tubes in WT flowers (Figure 2C,D). Additionally, 35% of WT pollen tubes showed 
abnormal behavior in the vicinity of the micropyle in rgtb1/rgtb1 flowers (Figure 2N); 
tubes meandered randomly (Figure 2G,K,O), more than one tube approached the micro-
pyle (Figure 2G,K) or the pollen tubes missed the micropyle of the unfertilized ovule (Fig-
ure 2O). Because all of the pollen used for this experiment was WT, the atypical behavior 
of the pollen tubes clearly depended on the ovule genotype. The ovules that attracted 
pollen tubes and enabled their entry exhibited a normal FG, while those showing difficul-
ties in pollen tube guidance or entry lacked a female gametophyte or showed an arrested 
one, even though their integuments had developed correctly. Oftentimes, they showed an 
abnormal callose plug in the place of the egg apparatus (Figure 2H,L). 

Deficiencies in the pre-fertilization events may account for the decrease in seed for-
mation efficiency in the rgtb1/rgtb1. However, we were also interested in the fate of the 
apparently normal, mature-looking rgtb1/rgtb1 ovules that showed pollen tube entry. 

2.3. Autonomous Endosperm Formation Is More Frequent in rgtb1 than in WT Plants 
Arabidopsis is a self-fertilizing plant, and in WT flowers, the opening of the flower is 

simultaneous with self-pollination. In contrast, in the rgtb1/rgtb1 mutant, self-pollination 
is a very rare event. Mutant rgtb1/rgtb1 pistils typically showed unfertilized mature ov-
ules, shrunken aborted ovules without FGs, and apparently normal ovules containing 
only endosperm (Figure 3A–C,F–G). Young embryos were observed in very few cases 
(Figure 3E). In contrast, in WT flowers, open pollination nearly always led to correct de-
velopment of the post-fertilization structures, the embryo and the endosperm (Figure 
3C,D), and extremely rarely to endosperm only.  

From the point of view of self-pollination capacity, rgtb1/rgtb1 flowers were (nearly) 
equivalent to emasculated WT flowers. Indeed, the rgtb1/rgtb1 anthers were smaller (Fig-
ure S1C,D) [15,53,54], delayed in tapetum maturation (Figure S1G,H) and indehiscent 
(Figure S1C,D), and therefore, unable to correctly release pollen (Figure S1E,F). After man-
ual emasculation of flower buds at the pre-anthesis stage, in WT plants, most gameto-
phytes paused at FG maturity. In 2.8% of viable unfertilized ovules, the central cell began 
to divide giving rise to autonomous endosperm, consistent with previous reports [26] 
(Figure 3H,I). Interestingly, the percentage of viable, non-degenerated ovules forming au-
tonomous endosperm was always high in the rgtb1/rgtb1 flowers, reaching 10% (Figure 
3H,J), independent of emasculation. 
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Figure 2. Pollen tube germination, growth and guidance are compromised in rgtb1 plants. Reception of pollen on stigma 
and growth of pollen tubes through the transmission tract and toward ovules in WT (A–D) and rgtb1 mutants (E–L,O). 
(A,E,I) Alexander-stained (purple) pollen on WT (A), rgtb1-1 (E) and rgtb1-2 (I) stigmas, 4 h after hand pollination (4HAP) 
with WT pollen (black arrows). Most mutant grains hydrated and germinated, although the capacity of the rgtb1 stigma 
to attach WT pollen was decreased in comparison to WT stigma reception (E,I). Scale bar 250 μm, common to images 
(A,E,I). Quantification of pollen grains germinating on stigmas, bars show mean ± SD of pollen grains germinating per 
stigma; number above bars describe number of stigmas counted per experimental cross. Genotypes used for each cross 
are given in the bar description; pollen donor is given first and pollen acceptor second. (B–D,F–H,J–L,O) Pistils 8 h after 
hand pollination (8HAP) with WT pollen were stained with decolorized aniline blue to visualize callose. (B,F,J) Bundles 
of pollen tubes growing through the transmission tract; white arrows point to the WT pollen tubes growing in the WT 
transmission tract (B) or rgtb1 transmission tracts (F,J), scale bar 500 μm, common to images (B,F,J). (C,D,G,H,K,L,O) 
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Examples of pollen tubes growing toward the micropyle. (C,D) Normal WT pollen tube guidance in WT pistil. (G,K,O) 
More than one WT pollen tube twisting around the micropyle (white arrow) in rgtb1 pistils. (H,L) No WT pollen tubes 
approaching rgtb1 ovules of apparently normal size and integument shape, but showing a callose plug at the site of the 
egg apparatus. Scale bar 100 μm in (C,G,K,O) and 50 μm in (D,H,L,N), quantification of incorrect WT pollen tube guidance 
to the micropyle in rgtb1 mutant transmission tract. Numbers above the bars describe the number of ovules counted per 
genotype. Values were compared with a z-test for two proportions; *** denotes a p value < 0.001. 

 
Figure 3. Post-anthesis stages in rgtb1. Types of ovules after pollination (A–G) or emasculation (H–J). (A,B) Several 
types of neighboring ovules were noted in the same silique of rgtb1 mutant after self-crossing. White arrows point to 
shrunken unfertilized empty ovules (not containing FG), mature unfertilized ovules and enlarged ovules after endosperm 
(and embryo) initiation. (A) Cleared ovules observed in DIC contrast, scale bar 100 μm; (B) representative example of one 
fresh silique dissected in two parts observed under a stereomicroscope, scale bar 500 μm. (C) quantification of the types 
of ovules found in WT vs. rgtb1 mutants after self-pollination: ovule with embryo and endosperm that were dominating 
in WT (D), but noticed very rarely in rgtb1 (E) and seed-like structures with enlarged central cell or endosperm found only 
in rgtb1 (F,G). Scale bar 50 μm for images (D–G). The fraction of ovule types after open pollination in WT and rgtb1 mutants 
was counted in cleared preparations under a microscope 6 days after open pollination (6DAP). The number of ovules 
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counted for each genotype is given above the bars. (H–J) Ovules in WT and rgtb1 after emasculation form autonomous 
endosperm. (H) Quantification of ovules forming autonomous endosperm (AE) in WT and rgtb1 mutants. AE formation 
was counted in cleared preparations or in freshly isolated ovules under a microscope 4 days after emasculation (4DAE). 
The total number of ovules counted for each genotype is given above each bar. Values were compared with a z-test for 
two proportions; *** denotes a p value < 0.001. (I,J) Examples of AE in both WT (I) and rgtb1 (J) emasculated flowers. AE 
have several nuclei (I,J, arrowheads). Scale bar 50 μm for images (I,J). Abbreviations: ec—egg cell; cys—chalazal cyst, en—
endosperm, em—embryo, DAA—day after anthesis, DAE—day after emasculation. Dotted line highlights the cells of the 
embryo. 

Autonomous endosperm formation requires high auxin levels in its precursor, the 
central cell, but the presence of auxin in the central cell was barely detected in previous 
studies [26]. In our experiments, in emasculated WT flowers, the central cell nucleus often 
showed pDR5rev:3xVenus-NLS reporter activity [56], revealing a detectable auxin re-
sponse in the central cell before fertilization (Figures 4A and 5A). In cases where further 
divisions of the unfertilized central cell nucleus followed, the autonomous endosperm 
nuclei in WT plants also showed the pDR5rev:3xVenus-NLS auxin-dependent signal (Fig-
ure 5B). The signal arising from the DIIS-Venus reporter [57] was detected in WT in the 
sporophytic tissues of the ovule only after emasculation (Figure 5C), marking auxin ab-
sence in the integuments and chalaza, while strong pDR5rev:3xVenus-NLS signal domi-
nated in the same structures after fertilization (Figure 4B–D), marking auxin presence in 
the integuments and chalaza. 

 
Figure 4. Auxin signaling is different in WT and rgtb1 ovules after open pollination. (A) signal of auxin reporter 
pDR5rev:3xVenus-NLS (green) is present inside the embryo sac, but not in the sporophytic tissues surrounding it in WT 
ovules. (B–D) Shortly after fertilization in WT plants, the pDR5rev:3xVenus-NLS signal appears in the funiculus and cha-
laza, but is no longer present in the developing endosperm or embryo. (E–H) in rgtb1 ovules, the pDR5rev:3xVenus-NLS 
signal is absent or very weak in the embryo sac and the sporophytic tissues of the ovule before (E) and after anthesis (F–
H), although the formation of the autonomous endosperm is sometimes obvious (F); white arrowheads point to the AE 
nuclei. (C) CSLM image, the pDR5rev:3xVenus-NLS signal (green) are counterstained with FM4-64 (red) to contour the 
cells, all the other images were made using fluorescence microscopy, showing the pDR5rev:3xVenus-NLS signal (green). 



Int. J. Mol. Sci. 2021, 22, 7907 8 of 26 
 

 

The scale bar of 50 μm in (A) is the same in all images. Abbreviations: cc—central cell, ccn—central cell nucleus, ec—egg 
cell, pt—pollen tube, en—endosperm, z—zygote, em—embryo, DAA—day after anthesis. 

 
Figure 5. rgtb1 ovules resemble ovules in emasculated WT plants. Ovules 4 days after manual emas-
culation (4DAE) of flowers. (A,B) Auxin reporter pDR5rev:3xVenus-NLS signal, marking canonical 
auxin-dependent transcription response, is present in the central cell nucleus of unfertilized WT 
flowers (A) and autonomous endosperm nuclei formed in ovules of emasculated WT flowers (B). 
(C) DIIS-Venus auxin reporter (green) is present in the integuments of unfertilized ovules, marking 
an absence of auxin. (D,E,G,H) pDR5rev:3xVenus-NLS signal is absent or weak in the central cell 
nucleus (D) of the unfertilized rgtb1 ovules or AE nuclei (E,G,H), shown by the white arrowheads, 
marking an absence of auxin transcription response. (F,I) DIIS-Venus signal is absent from the spo-
rophytic tissues of the unfertilized rgtb1 ovules, both forming AE nuclei (F), as shown by the white 
arrowheads), and non-forming AE (I), marking the presence of auxin in them. Fluorescence micros-
copy—all images; pDR5rev:3xVenus-NLS (green) or DIIS-Venus (green) as indicated, unspecific flu-
orescence (red). The scale bar of 50 μm in (A) is the same for all images. Abbreviations: ccn—central 
cell nucleus, ec—egg cell, DAE—days after emasculation. 
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Autonomous endosperm in rgtb1/rgtb1 ovules from emasculated flowers initiated 
with a similar frequency compared to non-emasculated flowers, but was higher than that 
in the WT flowers (Figure 3H). We hypothesized that this may relate to high auxin levels 
in the rgtb1 central cell, possibly as a result of lower auxin efflux from the ovule during 
FG development, as was shown in [15]. This would also be consistent with the observation 
that treatment of the flowers with exogenous auxin analogues (in particular 2,4-D) induces 
autonomous endosperm formation in a large portion of WT ovules [26]. Surprisingly, the 
pDR5rev:3xVenus-NLS auxin reporter was not detected, or detected at a very low level, in 
the central cell nucleus or autonomous endosperm nuclei of rgtb1/rgtb1 ovules (Figures 
4E,F and 5D,E,G,H), in contrast to the situation in WT flowers (Figure 5A,B). The opposite 
situation was observed with the DIIS-Venus reporter, which was present in the integu-
ments of emasculated WT flowers, showing that auxin levels are low (Figure 5C), but was 
lacking in the integuments of the rgtb1/rgtb1 non-fertilized ovules, suggesting the presence 
of auxin inside them (Figure 5F,I). 

2.4. Large Malformed Embryos Form in Seeds of rgtb1 Plant 
A significant fraction of the rgtb1/rgtb1 ovules were successfully fertilized, despite 

the problems described above. We followed embryo development in the WT, the 
RGTB1/rgtb1 self-cross and the rgtb1/rgtb1 × WT siliques (Figures 6 and S2A). While the 
WT embryos were uniform in size and developmental stage in the siliques analyzed on 
the same day after pollination, the rgtb1/rgtb1 × WT embryos were not synchronized, re-
sembling the situation that was observed in ovule development in the same ovary in the 
rgtb1/rgtb1 plants [15]. We found major differences between the genotypes starting from 
the transition/early heart stage of embryogenesis (Figure 6). In RGTB1/rgtb1 plants, which 
produce WT:RGTB1/rgtb1:rgtb1/rgtb1 progeny in a 1:2:1 ratio, only 2.8% of embryos were 
wider, larger or otherwise deformed (Figures 6I–L and S2A). After pollination of 
rgtb1/rgtb1 pistils with WT pollen only, the RGTB1/rgtb1 embryos were expected. To our 
surprise we found that more than 10% of the RGTB1/rgtb1 embryos developing on the 
rgtb1/rgtb1 plants pollinated with WT were larger than their WT counterparts (WT × WT 
cross; Figure 6E–H compare with Figure 6A–D, quantification shown on Figure S2A). 
Their body plan was more robust, with wider and shorter cotyledons and wider hypocotyl 
at the base of the cotyledons, while no changes in the hypophysis and other basal parts of 
the embryo were noticed (Figure 6E–H). These embryo deformations were not accompa-
nied by major growth abnormalities, such as cup-shaped fused cotyledons or multiple 
cotyledons. Asymmetry in the cotyledon length was quite common (Figure 6H). The same 
observation of the embryo shape was made for the rgtb1/rgtb1 cross with the RGTB1/rgtb1-
derived pollen (Figure 6M–P). In this case, the ratio of the genotypes was 
RGTB1/rgtb1:rgtb1/rgtb1 1:1; however, far less than half of the embryos were deformed 
(Figure S2A), supporting the notion that it is not the genotype of the embryo itself that is 
responsible for the observed phenotype. 
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Figure 6. Deformed embryos form on the rgtb1 mother plant regardless of the pollen donor. Morphology of the embryos 
from the early heart stage until the torpedo stage formed on WT or rgtb1 mother plants; microscopy images in DIC con-
trast. (A–D) Embryos formed on the WT plant after self-pollination, (E–H) embryos formed on the rgtb1 plant after polli-
nation with WT pollen, (I–L) embryos formed on the RGTB1/rgtb1 plant after self-pollination and (M–P) embryos formed 
on the rgtb1 plant after pollination with pollen coming from RGTB1/rgtb1 plant. Note the characteristic widening in the 
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middle part of the embryo and cotyledon shortening in images (F–H) and (N–P); no changes were seen in the suspensor 
and hypophysis formation in all images. The scale bar of 50 μm in (A) is the same in all images. 

Deformations in embryos usually lead to germination defects or seedling lethality. 
Seedlings and mature RGTB1/rgtb1 plants from the RGTB1/rgtb1 progeny were indistin-
guishable from WT [54]. The number of dwarf seedlings or non-germinating seeds in the 
RGTB1/rgtb1 self-cross was not significantly higher than the 1/4 expected from the Men-
delian segregation (28% out of 212 in case of the rgtb1-1 and 25% out of 220 in case of the 
rgtb1-2 mutants; in this case, the pool of the dwarf seedlings and non-germinating seeds 
represent the rgtb1/rgtb1 progeny, Figure S2B). In contrast, we found 12% dwarf seedling 
and non-germinated seeds in the progeny of rgtb1/rgtb1 × WT (137 were counted, all of 
RGTB1/rgtb1 genotype, Figure S2B) but no such seedlings in WT × WT cross (182 were 
counted, Figure S2B).  

2.5. Deformations in Embryo Shape in rgtb1 × WT Crosses Correlate with Lower and Diffused 
Auxin Maxima at the Cotyledon Tips 

Because cotyledon outgrowth is a process dependent on auxin maxima formation 
[38] we decided to trace the auxin distribution during embryo growth in the rgtb1/rgtb1 
versus RGTB1/rgtb1 plants (Figure 7). During the early globular stage, pDR5rev:3xVenus-
NLS activity was strong at the boundary of the embryo proper (Figure 7A). At the early 
heart to late heart stage, pDR5rev:3xVenus-NLS was detected in the basal cells and at the 
cotyledon primordia (Figure 7B–D), and at the torpedo and upright stage was detected in 
the cotyledon veins, radicle vasculature and the developing shoot apical meristem (Figure 
7E). This held true for the WT × WT cross progeny as well as for the RGTB1/rgtb1 self-
cross progeny. Strikingly, in 10% of the rgtb1/rgtb1 × WT embryos, starting from the heart 
stage, the auxin maxima in the tips of cotyledons were weaker in intensity and incorpo-
rated a lower number of cells (Figure 7H–K). These particular embryos often showed cot-
yledon shortening and widening or asymmetry. 

 
Figure 7. Deformed embryos in rgtb1 plants show diffuse auxin maxima. Auxin maxima monitored by the expression of 
the pDR5rev:3xVenus-NLS reporter (green) in embryos formed on WT or rgtb1 plants. Auxin is abundant in a basal half of 
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the globular embryos (A,F). Strong auxin maxima form in the prospective cotyledon tips and prospective root meristem 
at the triangular stage of the embryos (B,G). Starting from the early heart stage auxin maxima at the tips of the cotyledons 
become more diffuse and weaker in embryos formed on rgtb1 plants (H–J) compared to embryos formed on WT plants 
(C,D). Auxin maximum in the embryo basal part remains strong, regardless of the genotype of the mother plant (B–D,G–
J). Note the larger size, wider middle part of the embryo and shorter cotyledons in the rgtb1-formed embryos (H–J). rgtb1-
formed embryos are delayed in cotyledon vasculature formation (J,K) in comparison to WT embryos (D,E). (E–G,K) CSLM 
images, pDR5rev:3xVenus-NLS (green) counterstained with FM4-64 (red) to visualize cell contours. (A–D,H–J) Fluores-
cence microscopy, pDR5rev:3xVenus-NLS (green). The scale bar is 20 μm for images (A,F) and 50 μm for all the other 
images. 

2.6. PIN1 Efflux Protein Is Mislocalized in the Deformed rgtb1 × WT Embryos 
PIN1 is the main auxin transporter involved in auxin localization in the apical half of 

the Arabidopsis embryo [58]; hence, we studied its distribution (Figure 8). Starting from the 
late globular stage, the PIN1 distribution differed in WT and many rgtb1/rgtb1 × WT em-
bryos. In WT, PIN1 was localized mainly on cell membranes in a polar fashion (Figure 
8A–C), presumably mediating auxin transport to the prospective tips of the cotyledons 
(recently reviewed in [59]). At the early heart stage, when the cotyledon primordia were 
visible, there were two discernible PIN1 expression domains at the embryo surface (Figure 
8B) [58]. The site of auxin biosynthesis between them was devoid of PIN1 expression [59]. 
On the contrary, in many rgtb1/rgtb1 × WT embryos, the PIN1 domain remained wider, 
also covering the region of the embryo between the emerging cotyledon tips (Figure 
8G,K,L,N). In rgtb1/rgtb1 × WT embryos, PIN1 was often internalized in vesicles inside the 
cells (Figure 8H,J–O). At later stages of development, another auxin-dependent process 
was delayed in many rgtb1/rgtb1 × WT embryos—the formation of the embryo vasculature 
[60] (Figure 8I,J,O vs. Figure 8C–E). 

The distribution and localization of two other auxin efflux transporters, PIN4 and 
PIN7, is also important for embryo development in Arabidopsis [37–40]. They are crucial 
for the formation of the basal parts of the embryo, the hypophysis and the prospective 
root apical meristem. However, in rgtb1/rgtb1 × WT embryos, we never observed addi-
tional vertical divisions of cells in the suspensor region or the lens-shaped hypophysis 
precursor cell that are indicative of PIN4 or PIN7 absence or mislocalization [33,37–40] 
(Figures 6–8). 
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Figure 8. Deformed embryos growing on rgtb1 plants show PIN1 protein mislocalization. pPIN1:PIN1-GFP expression in 
embryos in WT (A–E) and rgtb1 plants (F–O). PIN1-GFP protein is often mislocalized from the plasma membrane to in-
tracellular vesicles in embryos formed on rgtb1 plants (H,J–O) in comparison to WT embryos (A–E). Embryos formed on 
rgtb1 plants at transition and heart stages of development show a wider domain of pPIN1:PIN1-GFP expression in the 
prospective apical meristem (G–H,K–N) than WT embryos at corresponding stages (B,C). (B,I,K–O) CLSM images, 
pPIN1:PIN1-GFP signal (green) counterstained with FM4-64 (red) to visualize cell contours; (A,C–H,J) fluorescence mi-
croscopy, pPIN1:PIN1-GFP signal (green). The scale bar of 20 μm in (A) is the same in all images. 

2.7. Seed Coat Morphology in rgtb1 Mutants Is Defective 
Pollination of the rgtb1/rgtb1 plants with WT pollen gave a large fraction of seeds that 

progressed to maturity (Figure S2B). The mature seeds of the rgtb1/rgtb1 plants pollinated 
with WT pollen germinated less efficiently than the WT control seeds (91.25% germinated 
versus 100% germination in WT, Figure S2B). Moreover, some differences in the seed coat 
appearance were obvious when WT and rgtb1/rgtb1 × WT seeds were compared (Figure 
9A–E). WT seeds exhibit hexagonal epidermal cells with a volcano-shaped structure (the 
columella) in the center of each cell (Figure 9A). The rgtb1/rgtb1-derived seeds had irreg-
ularly shaped epidermal cells with cell walls thinner than in the WT; the volcano-shaped 
mucilage pockets were absent (Figure 9D,E). This trait was previously described to coin-
cide with an inability to secrete oligosaccharides during the hydration step of germination 
in transport-related mutants [61,62]. In the rgtb1/rgtb1-derived seeds, the mucilage layer 
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formed during seed imbibition was thinner and more intensely stained than in WT seeds, 
which formed a thicker and more cloudy mucilage sheath (Figure 9F–J). Oftentimes, the 
mucilage layer in the rgtb1/rgtb1-derived seeds was unevenly distributed (Figure 9G). Nei-
ther the seed coat surface nor mucilage formation was changed in seeds formed on the 
RGTB1/rgtb1 plants (Figure 9B,C) in comparison to the WT (Figure 9A,F,H). 

 
Figure 9. Seed coat formation is affected in rgtb1 plants. The seed coat of WT seeds (A) and seeds formed on RGTB1/rgtb1 
self-crossed plants (B,C) appear similar. However, rgtb1-derived seed coats consist of cells of uneven shape that do not 
contain mucilage pockets (D–E). SEM images, scale bar 100 μm, correspond to (A–E). After imbibition, seeds formed on 
WT plants exude large amounts of a mucilage sheath (F,H), but rgtb1-derived seeds form a more compact and uneven 
mucilage sheath (G,I–J). Scale bar 1 mm for images (F,G); scale bar 100 μm for images (H–J); (F–J) microscopic images of 
seeds stained with ruthenium red. Black arrows in (G) point to the seeds forming uneven or no mucilage sheath. 

2.8. Expression of the RGT-Encoding Genes Change during Embryo Development 
To gain insight into the Rab geranylgeranylation processes during rgtb1 embryo de-

velopment, we performed a detailed in silico analysis of the expression of the RGT com-
plex encoding genes based on published data [63] (Figure 10). There are two RGTB encod-
ing genes in Arabidopsis, of which RGTB1 is abundantly and ubiquitously expressed in the 
sporophyte and RGTB2 is about 10–20 times less abundant in the sporophyte [53]. Both 
genes are expressed to a comparable or even higher level in the gametophytes, with 
RGTB2 dominating [15,53]. In the embryo, both genes were expressed, with the RGTB2 
showing higher expression at the early stages and RGTB1 showing higher expression 
starting from globular until late heart stages (Figure 10). Interestingly the other genes cod-
ing for the RGT complex components were also transcribed in a developmentally regu-
lated fashion. In particular, the expression of the REP gene was high at the globular to 
heart stages, resembling RGTB1 (Figure 10). The expression of the RGTA1 gene expression 
peaked at the very early stages (as RGTB2), then decreased and again increased at the 
early heart stage (as REP and RGTB1). The expression of RGTA2 was high only at the 
earliest stages of embryogenesis, but it is uncertain if this gene encodes for a functional 
protein or is just a pseudogene [64].  

Rab-encoding genes may be grouped based on their stage of expression during em-
bryogenesis, such as early (for example Rab A3, Rab D2b, Rab A4a, Rab H1a, Rab A1h, Rab 
A4d and Rab G2), mid (for example Rab E1e, Rab A2d, Rab G3c, Rab G3a, Rab A1c and Rab 
A2a), late (for example Rab G3f, Rab C2a, Rab A5d, Rab B1c and Rab D2c) and ubiquitous 
(for example Rab A1g and Rab G1) (Figure 10). This suggests that the transcription of dif-
ferent genes encoding members of the same Rab family are differentially regulated, but 
for each developmental stage, the set of basic Rab-dependent function is present. Because 
the rgtb1/rgtb1 sporophyte seems to influence embryo development, we also studied the 
transcription of RGT-encoding genes in the seed sporophytic tissues (based on data from 
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[65]) and found that all of them were ubiquitously transcribed (Figure S3). Interestingly 
RGTB1 is strongly transcribed in the seed coat at the very early stages of seed develop-
ment, corresponding to the pre-globular phase of embryogenesis. 

 
Figure 10. Transcriptomic analysis of RGT and Rab components during embryo development. In silico expression profiles 
during embryogenesis of the Rab and RGT complex genes were examined using publicly available transcriptome data 
[63]. RNAseq data were downloaded from the NCBI Gene Expression Omnibus (GEO; 
https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE121236. Average expression values for each gene at each 
stage were calculated and then presented as a proportion of the maximum expression value for each gene, providing a 
relative expression value between 0 and 1. Expression profiles were clustered using hierarchical clustering (Pearson cor-
relation) and heat maps were generated in GraphPad Prism 9.0.0. The maximum RPKM expression value for each gene in 
any given stage is indicated in the black-to-green heatmap on the right. 
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3. Discussion 
3.1. Mislocalized and Weak Auxin Maxima Inhibit the Development of Multiple Reproductive 
Structures in rgtb1 Mutants 

In a previous study, we examined female gametophyte development in the vesicular 
transport-deficient mutant rgtb1 [15]. Abnormal recycling of the PIN1 and PIN3 auxin 
transporters in the funiculus and other sporophytic structures of the ovule led to auxin 
accumulation in the direct vicinity of the developing post-meiotic cells in a significant 
fraction of the ovules. This led to the female gametophyte arrest in these ovules as early 
as the first or second mitosis. The process appeared random and suggested that exceeding 
a threshold limit of auxin in certain ovules led to developmental arrest of the FG, while 
auxin levels just below the threshold did not induce such an effect [15]. A similar mode of 
auxin responsiveness was described earlier for stomata guard cell differentiation from 
meristemoid cells in the pin3 mutant [66]. In this case, the accumulation of auxin in sto-
mata precursors, via PIN3 knockout, disturbed the equal division of these cells and for-
mation of mature stomata. High auxin levels as a result of decreased efflux were also 
shown for another developmental process engaging asymmetric division: the mitosis of 
the unicellular microspore [20]. In both of these cases the small difference in auxin con-
centration in a certain structure leads to strikingly different effects of a binary nature. In-
terestingly, in many rgtb1/rgtb1 × WT embryos, the arrest or delay in the development 
clearly seen for the early stages can be recovered at later, slower stages of development. 
This means that the embryos/seeds reach maturity in a more or less synchronized manner. 
This difference in the zero-to-one effects of auxin in the differentiation of megaspores, 
microspores and guard cells in comparison to the dose-dependent delay in embryos in the 
rgtb1/rgtb1 plants may be explained by the multicellularity of the embryos [67–69]. In all 
the described structures, the increased concentration of auxin in the (sporophytic) tissues 
surrounding the cell/embryo seems to be inhibitory for realization of a correct develop-
mental plan [70,71]. 

3.2. Increased Auxin Levels but not Auxin-Dependent Transcription in the Central Cell Triggers 
Autonomous Endosperm Formation in the rgtb1 Mutant 

The results concerning the nature of the phenotypes induced by deficiencies in Rab-
dependent vesicular traffic in the rgtb1 mutants [15,53,54] point to a generalized deregu-
lation of auxin-dependent pathways. One interesting example of a structure that is formed 
in response to an increase in auxin level is the seed endosperm [26]. After fertilization (or 
external auxin administration), the auxin level in the central cell increases and the nucleus 
starts dividing [26]. Without fertilization, the auxin levels in the central cell are low and 
the mitotic divisions are suspended [26]. In the rgtb1/rgtb1 mutant, the endosperm forms 
without fertilization in over 10% viable ovules, but surprisingly, no signal from the sensi-
tive positive auxin reporter pDR5rev:3xVenus-NLS [56] was observed in the central cell or 
the endosperm nuclei. Moreover, the signal from the DIIS-Venus negative auxin reporter 
[57] is detected in the integuments, meaning that high auxin concentration in the integu-
ments does not translate to an auxin transcriptional response in the embryo sac. In con-
trast, in WT unfertilized ovules, a strong response from the pDR5rev:3xVenus-NLS re-
porter was observed in the central cell, but the endosperm nucleus divisions rarely fol-
lowed.  

This discrepancy in the auxin reporter behavior in the unfertilized central cell nucleus 
and its derivative, the endosperm, may be explained by the nature of reporters used in 
this study: DIIS-Venus is a reporter of auxin input signaling—a protein that is quickly 
degraded upon auxin binding [57]. The lack of the signal coming from DIIS reporter in 
the rgtb1/rgtb1 integuments may reveal the presence of auxin in the sporophytic ovule 
tissues around maturity. pDR5rev:3xVenus-NLS is an auxin output reporter, showing 
auxin-dependent transcriptional activity [56]. It is possible, therefore, that in the 
rgtb1/rgtb1 ovules, auxin is present and leads to AE nuclei division, but the transcription 
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of the auxin-dependent genes (having classical, consensus auxin response elements in 
their promoters) is compromised; hence, no signal from pDR5rev reporter is observed. The 
explanation may be that some fast process engaging auxin directly [72], not through 
auxin-dependent transcription, plays a role. One example of such a process is auxin-de-
pendent plasmodesmata gating by callose [73,74], while another is the auxin-dependent 
pathway of plasma membrane depolarization and membrane protein degradation (re-
viewed in [75]). Of particular note is that in both explanations, the vesicular transport 
downturn seen in the rgtb1 mutant may be directly detrimental: the transport of callose 
synthase is Rab-mediated [76] as well as the transport of the ubiquitinated membrane pro-
teins for degradation (reviewed in [77]). Alternatively, a non-canonical transcription pro-
cess may be engaged. The pDR5rev reporter is based exactly on a consensus auxin respon-
sive element sequence binding IAA domain containing transcription regulators [78]. In 
contrast, the ETTIN (ARF3) auxin-dependent transcription factor takes part in many de-
velopmental processes, but does not bind the canonical ARE sequences [79]. Many of the 
phenotypes of the ett mutant, especially in ovule and seed formation [79], are similar to 
those exerted by the rgtb1 mutation, for example an inner integument deformation, a 
lower seed set and excessive branching. 

What is the source of the auxin in the central cell and the endosperm in the rgtb1/rgtb1 
mutants? It may originate from the remaining high auxin levels in the sporophytic tissues 
of the developing ovule. This abnormal auxin maximum is a result of disturbed PIN1 and 
PIN3 transport and/or recycling in the funiculus at earlier stages of FG development, lead-
ing to compromised auxin efflux out of the ovule [15]. One possibility is that some trans-
porters from the PIN, AUX and ABCB families enable auxin influx into the embryo sac 
from the surrounding integument tissues at maturity [29,31]. A recent report also suggests 
that auxin can move from cell to cell through plasmodesmata, and that this process in 
some tissues may significantly contribute to auxin fluxes [80].  

3.3. Deficiency in Vesicular Transport in the Sporophyte Affects Embryo Size and Shape in the 
rgtb1 Mutant 

Despite the presumably high auxin level in the mature ovules of the rgtb1/rgtb1 
plants, the initial stages of embryo formation are not affected. This coincides with appar-
ently normal PIN1-GFP and auxin (detected through pDR5rev:3xVenus-NLS reporter) dis-
tribution. The PIN4 and PIN7 auxin carriers are engaged in the early embryo development 
as well [31], but were not studied here. No major changes in cell division patterns, neither 
in the upper half of the embryo (PIN1-dependent [34]) nor in the lower half (PIN4-de-
pendent [39]) or the suspensor (PIN7-dependent [38]) were noticed in embryos develop-
ing on the rgtb1/rgtb1 plants before the late globular stage. Interestingly, 10% of embryos 
arising from the rgtb1/rgtb1 × WT cross were larger and had shorter and/or asymmetric 
cotyledons. This developmental defect should be of sporophytic maternal nature, because 
the genotype of these embryos was RGTB1/rgtb1, and only 2.8% embryos that formed on 
the RGTB1/rgtb1 plant showed such deformations. If this deformation was dependent on 
the genotype of the embryo itself, then the fraction of the abnormally developing embryos 
should be higher in the RGTB1/rgtb1 progeny, where both rgtb1/rgtb1 and RGTB1/rgtb1 
embryos existed. 

All the deformed embryos developing after the rgtb1/rgtb1 × WT cross showed de-
creased auxin maxima in the emerging cotyledons and defects in PIN1 localization, re-
sembling mutants in PIN1 and its regulator PINOID [58]. The site of auxin synthesis is 
normally the domain between the emerging cotyledons, from which it is transported to 
the cotyledon tips by the PIN1 transporter (reviewed in [59]. The auxin trapped in the 
domain between the cotyledons promotes growth locally, while its decrease in the cotyle-
don tips apparently prevents their elongation in embryos developing on the rgtb1/rgtb1 
plant. Hence, it may be the absence of auxin in the prospective cotyledon tips and its pres-
ence in the prospective apical meristem that leads to extensive embryo growth in the up-
per domain and reduced growth of the cotyledons [58]. This situation resembles the case 
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where the absence of auxin is important for auxillary meristem formation in the mature 
sporophyte [81]. In many embryos where defects were observed in cotyledon growth, 
PIN1 was internalized to intracellular vesicles or remained trapped on the transport route 
and was unable to reach its final destination on the plasma membrane. Nevertheless, the 
PIN1 effect cannot explain the maternal influence of the rgtb1 mutation on embryo devel-
opment. 

To achieve a maternal effect, a molecule must be exuded from the sporophytic tissues 
surrounding the developing embryo and endosperm, for example from the integuments 
that form a direct contact with the post-fertilization structures. This molecule may be 
auxin itself, and indeed, there are reports of auxin flux from the integuments inside the 
mature ovule around fertilization [79]. If this is the case, an effect of this surplus auxin 
would most likely be evident at very early stages of the embryo development, which is 
not observed in case of the rgtb1 mutation. Another possibility is that a regulatory mole-
cule that acts on auxin levels in the embryo indirectly is produced in the maternal tissues 
and exported to the embryo sac. Very few genes have been shown to affect the embryo 
development in a sporophytic maternal mode, but among them are genes encoding for 
miRNAs [82–86]. For example, the miRNA167A gene affects embryo development in a 
maternal sporophyte-dependent manner [86] and regulates the level of mRNAs for auxin-
dependent transcription factors ARF6 and ARF8 [86–88]. Levels of miRNA167 in the cell 
are down-regulated by the absence of auxin which leads to an increase in ARF8 protein 
[87,88]. The GH3-2 gene, coding for an enzyme responsible for auxin conjugation to amino 
acids [89] and silencing of auxin-dependent responses, is positively regulated by ARF8 in 
rice [87]. Another miRNA that down-regulates the GH family of genes is miRNA160, 
which acts through ARF17 [90]. 

How can rgtb1, a vesicular transport impeding mutation, theoretically impact 
miRNA synthesis, transport and/or metabolism? Based on our results and literature, we 
propose an appealing but highly speculative hypothesis. One possible explanation is that 
the transport of miRNAs from the integuments to the embryo surroundings through plas-
modesmata is affected in the rgtb1 mutant. Plasmodesmata channels are open in the em-
bryo body at least until the late heart stage [91], while connecting the embryo and the 
suspensor at least until the differentiation of the hypophysis at the globular stage [92,93]. 
Indeed, plasmodesmata gating through callose deposition at the pore may be dependent 
on vesicular transport of callose synthases to the neck of plasmodesmata. Although no 
particular Rab proteins have been proposed so far to be responsible for this process, can-
didates are for example, but not exclusively, RabA4 [76] or Rab F2b [94]. If this was the 
case, then disturbance in the Rab prenylation due to the rgtb1 mutation in the sporophyte 
would lead to the deficiency of callose synthase at the neck of the plasmodesmal tunnel, 
opening plasmodesmata and allowing excessive miRNA leakage into the embryo sac (for 
example miRNA167 [86]). In turn, this would cause ARF mRNA degradation and arf6 arf8 
knockdown-like phenotypes. ARF6 and ARF8 are negative regulators of auxin levels in 
the cell, and the arf6 arf8 double mutant shows increased free auxin activity in the cyto-
plasm [88]. A similar mechanism involving miRNAs may then play a role in the differen-
tiation and development of other structures in rgtb1 mutants, such as the young ovules 
[15,82,95] or pollen ([54] and this work). Coincidently, other phenotypic traits in the rgtb1 
are reminiscent of arf6 arf8 double mutant phenotypes, such as dichotomous branching at 
the apical meristem [53], pollen tube deformations [54], integument asymmetry [15] and 
anther indehiscence. 

3.4. The Imbalance of Proteins Building the RGT Complex May Influence Rab Functions in the 
Embryo Development 

Most genes encoding Rab proteins and all genes encoding Rab Geranylgeranyl Trans-
ferase complex components are expressed during embryo development in Arabidopsis. 
This reflects the high demand for vesicular traffic in cells undergoing rapid divisions and 
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growth. Genes encoding members of the RGT complex undergo stage-dependent regula-
tion in the embryo; the REP gene transcription mirrors RGTB1 transcription, and is highest 
from the pre-globular until early heart stages. The RGTA1 gene transcription shows a bi-
phasic mode, with peaks at pre-globular and transition stages of the embryogenesis. 
While at the pre-globular stage of embryogenesis the transcription of the RGTB2 gene is 
relatively high, expression of the RGTB1 gene peaks from the globular to late heart stages. 
The disturbances in Rab prenylation and Rab-dependent vesicular transport in the 
rgtb1/rgtb1-formed embryo may depend on the balance of the proteins building the RGT 
complex and the affinity of the Rabs to REP [96] and the REP-Rab complex to RGTA/B 
heterodimer [97]. The lower level of expression of the RGTB1 encoding gene in the 
rgtb1/rgtb1 seed coat at the transition stage, when the major deformations in the rgtb1/rgtb1 
× WT embryos were observed, may reflect the demand for this particular enzyme subunit 
at this particular time. It suggests that RGTB1 and RGTB2 affinity to particular Rabs (REP-
Rab complexes) is not equal, as has been shown for selected Rab proteins during in vitro 
biochemical experiments [64]. If the transport from the maternal sporophyte to the em-
bryo is RGTB1-dependent, then its deficiency in the seed-coat (at pre-globular stages of 
the embryo), when RGTB1 gene expression should be particularly high, may explain the 
observed effects on the endosperm and embryo development at the following stages. 

3.5. Both Pre- and Post-Fertilization Events Limit the Seed Set in rgtb1 Mutants 
In summary, many factors are responsible for the efficiency of seed formation in rgtb1 

mutants. Importantly, most of them are attributable to disturbed auxin homeostasis in the 
sporophytic tissues of the parent plant. Anther development and pollen grain formation, 
ovule and female gametophyte maturation, ovule targeting by the pollen tube, integu-
ment/seed coat growth, endosperm development and last but not least embryogenesis 
depend on auxin balance and timely creation and removal of auxin maxima. In the condi-
tions of perturbed vesicular traffic, auxin transporters such as PIN proteins are mislocal-
ized from their polar site of action and are often internalized from the plasma membrane 
to vesicles. Auxin transporter mislocalization provides a plausible explanation for creat-
ing auxin-enriched domains at the sites where they should not be present and auxin deficit 
at the sites where the hormone is necessary for correct sporophyte development. Intri-
guingly, the auxin action seems to be non-autonomous in male and female gametophytes 
as well as embryo development. The proposed explanation for many rgtb1 phenotypes, 
related to aspects of vesicular traffic other than auxin transporters mislocalization, may 
be the transport of miRNA through plasmodesmata. This very interesting hypothesis 
awaits direct experimental proof in further studies. 

4. Materials and Methods 
4.1. Plant Material and Growth Conditions 

Plant lines used: WT Col-0, rgtb1-1 (SALK 015871) and rgtb1-2 (SALK 125416) as in 
[53], pPIN1:PIN1-GFP, NASC number N9362 [98], DII-Venus, NASC number N799173 [57] 
and pDR5rev:3xVenus-NLS, NASC number N799364 [56]. rgtb1-1 and rgtb1-2 crosses to 
fluorescent marker lines are described in [15].  

For flower and seed observations and for genetic crosses, plants were grown in soil 
in long day conditions (16 h light, 8 h darkness). Homozygous plants were chosen by 
means of their characteristic dwarf phenotype and heterozygous plants by genotyping. 
Flowers were manually crossed as indicated, after emasculation of the white buds two 
days before crossing.  

A test for seed germination and seedling growth was performed in long day condi-
tions on 1/2 MS medium plates enriched in 1% sucrose and solidified with 1% agar. 
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4.2. Scanning Electron Microscopy 
For SEM observations, flowers were fixed in 3% glutaraldehyde in 25 mM phosphate 

buffer (pH 7.2) overnight, rinsed once in the phosphate buffer and post-fixed in 1% os-
mium tetroxide overnight. Samples were rinsed three times with distilled water and de-
hydrated in a graded ethanol series (50, 70, 96 and 100% for 10 min each). Next, specimens 
were critical-point dried (dried seeds were spilled directly on microscope tables), coated 
with a thin gold layer and examined using a LEO 1430VP scanning electron microscope 
(Carl Zeiss). 

4.3. Aniline Blue Staining 
For observation of pollen tube growth through the pistil transmission tract, pistils of 

WT or rgtb1/rgtb1 flowers were hand pollinated with WT pollen 48 h after emasculation. 
8–16 h post pollination pistils were fixed overnight in an acetic acid: ethanol 1:3 solution, 
hydrated in an ethanol series 75%, 50% and 25%, rinsed in water and incubated overnight 
in 1M NaOH at room temperature. After washing in water, the specimens were stained 
overnight in a decolorized aniline blue solution [99]. Pistils were observed under an 
Eclipse E-800 epifluorescence microscope (Nikon) with an Epi-Fl Filter Block N UV-2A 
(EX 330-380, DM 400, BA 435-485) and photographed with an ORCA ER monochromatic 
camera (Hammamatsu) or Nikon DS-5Mc CCD camera (PRECOPTIC Co.). 

4.4. Ruthenium Red Staining 
Oligosaccharide halo formation during seed germination was observed by ruthe-

nium red staining of the pectins formed around seeds. After 20 min of imbibition seeds 
were treated with a ruthenium red solution (0.25 mg/mL) and incubated for 15 min at 
room temperature [100]. Seeds were observed under an Eclipse E-800 epifluorescence mi-
croscope (Nikon) and photographed with an ORCA ER monochromatic camera (Ham-
mamatsu) or were observed under an Olympus SZ61 stereoscope and photographed with 
a Canon 750D camera. 

4.5. Alexander Staining of Pollinated Stigma 
Flowers were emasculated 48 h before pollination with appropriate pollen. After 4 h, 

the pistils were removed and fixed in Carnoy solution overnight and stained with Alex-
ander stain according to [101]. Stigmas were observed under an Olympus SZ61 stereo-
scope and photographed with a Canon 750D camera. 

4.6. Semi-Thin Sections Preparation  
Semi-thin sections for anthers analysis were prepared using the standard method for 

TEM as previously described [102]. 

4.7. Sample Clearing 
Siliques were fixed in acetic acid: ethanol 1:3 solution and cleared in chloral hydrate 

solution (66.7% chloral hydrate (w/w), 8.3% glycerol (w/w)) or cedar oil as described [102]. 
Ovules or embryos were examined under a Nikon Eclipse E800 epifluorescence micro-
scope equipped with differential interference contrast (DIC) optics and a Nikon DS-5Mc 
CCD camera (PRECOPTIC Co.). 

4.8. Fluorescence Analysis of Ovules  
For fluorescence analysis, the ovules or manually isolated embryos were mounted in 

7% glucose. For FM® 4–64 dye application (Invitrogen), dissected ovules or embryos were 
incubated in 4 μM FM® 4–64 diluted in 7% glucose, on glass slides for 1–2 h in the dark 
and observed using a Confocal Laser Scanning Microscope (CLSM; Leica TCS SP8X). To 
avoid differences in fluorescence intensity due to transcript silencing in consecutive gen-
erations, sister (progeny of the same mother plant) WT and rgtb1 plants were used for 
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imaging. Specimens were imaged using an epifluorescence microscope (Nikon Eclipse 
E800) or CLSM. Detection of GFP and YFP (VENUS) under the epifluorescence micro-
scope was achieved with Epi-Fl Filter Block B-1E (EX 470-490, DM 505, BA 520-560). A 
filter Block G-2A (EX 510-560, DM 575, BA 590) was used for co-localization of non-specific 
fluorescent signal and cuticle-like components.  

Under CLSM, the GFP excitation wavelength was set to 489 nm and emission was 
detected at 505–547 nm; for YFP (VENUS)—ex 514 nm, em 524–566 nm. For FM® 4–64—
ex 558 nm, em 674–766 nm. CLSM imaging was performed with 63× oil immersion objec-
tive. 

All figures were prepared in Adobe Photoshop (Elements 11 and CS6 versions). 

4.9. Statistical Analysis 
All calculations were performed in GraphPad Prism 5.0 software. Mean values and 

standard deviation (SD) were calculated and data were compared with a two-tailed un-
paired Student t-test. In cases where proportions were compared, the z-test for two pro-
portions was used, assuming large samples (using normal distribution). In case of germi-
nation efficiency, the χ2 test was used, comparing the observed genotype segregation and 
the theoretical Mendelian inheritance. Graphs were prepared using the same software. To 
avoid possibility that the environmental conditions in the greenhouse influence the stud-
ied phenomena at least three independent plant cultivations, each with at least 10 plants 
per genotype, were performed to generate data. The number of observed structures (ov-
ules/seeds/pollen grains, embryos, etc.) is given in the graphs.  

4.10. Transcriptomic Analysis 
In silico expression profiles were extracted from [63,65]. The dataset in [63] incorpo-

rates multiple stages of embryo development including 2-cell, 8-cell, 32-cell, preglobular, 
globular, early heart, late heart, early torpedo, late torpedo, bent cotyledon and mature 
green embryos. RNAseq data were downloaded from the NCBI Gene Expression Omni-
bus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE121236. Data 
from [65] were obtained from http://seedgenenetwork.net/, which incorporates microar-
ray profiles of laser dissected Arabidopsis seed compartments at different stages of devel-
opment. The stages of development include: pre-globular, globular, heart, linear cotyle-
don and green cotyledon; the tissues include: chalazal endosperm, chalazal seed coat, em-
bryo proper, general seed coat, micropylar endosperm, peripheral endosperm and whole 
seed. 

5. Conclusions 
Mutants in the Arabidopsis Rab Geranylgeranyl Transferase β1 subunit-encoding 

gene have lower seed set due to defects in pre- and postfertilization stages. Pollen recep-
tion at the stigma and pollen tube guidance are decreased. Mature rgtb1 ovules form au-
tonomous endosperm at a high frequency due to increased auxin levels inside the embryo 
sac. rgtb1 plants exert a sporophytic maternal effect on the embryos at the transition stage 
by releasing an unknown factor from the seed coat acting non-autonomously. At the pre-
ceding stages of development, RGTB1 expression in the seed coat is high in the WT plants, 
while it is absent in rgtb1 plants. These observations highlight the importance of Rab-de-
pendent vesicular traffic in seed formation in angiosperms. 

Supplementary Materials: The following are available online: www.mdpi.com/arti-
cle/10.3390/ijms22157907/s1. Figure S1: Development of stigmatic papillae and anthers in rgtb1 
plants, Figure S2: Quantification of incorrectly developing embryos and seeds in rgtb1 plants, Figure 
S3: Transcriptomic analysis of RGT components in different seed compartments. 
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